linux-sg2042/arch/arm/mach-stmp37xx/stmp37xx.c

220 lines
5.3 KiB
C

/*
* Freescale STMP37XX platform support
*
* Embedded Alley Solutions, Inc <source@embeddedalley.com>
*
* Copyright 2008 Freescale Semiconductor, Inc. All Rights Reserved.
* Copyright 2008 Embedded Alley Solutions, Inc All Rights Reserved.
*/
/*
* The code contained herein is licensed under the GNU General Public
* License. You may obtain a copy of the GNU General Public License
* Version 2 or later at the following locations:
*
* http://www.opensource.org/licenses/gpl-license.html
* http://www.gnu.org/copyleft/gpl.html
*/
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/device.h>
#include <linux/platform_device.h>
#include <linux/irq.h>
#include <linux/io.h>
#include <asm/setup.h>
#include <asm/mach-types.h>
#include <asm/mach/arch.h>
#include <asm/mach/irq.h>
#include <asm/mach/map.h>
#include <asm/mach/time.h>
#include <mach/stmp3xxx.h>
#include <mach/dma.h>
#include <mach/platform.h>
#include <mach/regs-icoll.h>
#include <mach/regs-apbh.h>
#include <mach/regs-apbx.h>
#include "stmp37xx.h"
/*
* IRQ handling
*/
static void stmp37xx_ack_irq(unsigned int irq)
{
/* Disable IRQ */
stmp3xxx_clearl(0x04 << ((irq % 4) * 8),
REGS_ICOLL_BASE + HW_ICOLL_PRIORITYn + irq / 4 * 0x10);
/* ACK current interrupt */
__raw_writel(1, REGS_ICOLL_BASE + HW_ICOLL_LEVELACK);
/* Barrier */
(void)__raw_readl(REGS_ICOLL_BASE + HW_ICOLL_STAT);
}
static void stmp37xx_mask_irq(unsigned int irq)
{
/* IRQ disable */
stmp3xxx_clearl(0x04 << ((irq % 4) * 8),
REGS_ICOLL_BASE + HW_ICOLL_PRIORITYn + irq / 4 * 0x10);
}
static void stmp37xx_unmask_irq(unsigned int irq)
{
/* IRQ enable */
stmp3xxx_setl(0x04 << ((irq % 4) * 8),
REGS_ICOLL_BASE + HW_ICOLL_PRIORITYn + irq / 4 * 0x10);
}
static struct irq_chip stmp37xx_chip = {
.ack = stmp37xx_ack_irq,
.mask = stmp37xx_mask_irq,
.unmask = stmp37xx_unmask_irq,
};
void __init stmp37xx_init_irq(void)
{
stmp3xxx_init_irq(&stmp37xx_chip);
}
/*
* DMA interrupt handling
*/
void stmp3xxx_arch_dma_enable_interrupt(int channel)
{
switch (STMP3XXX_DMA_BUS(channel)) {
case STMP3XXX_BUS_APBH:
stmp3xxx_setl(1 << (8 + STMP3XXX_DMA_CHANNEL(channel)),
REGS_APBH_BASE + HW_APBH_CTRL1);
break;
case STMP3XXX_BUS_APBX:
stmp3xxx_setl(1 << (8 + STMP3XXX_DMA_CHANNEL(channel)),
REGS_APBX_BASE + HW_APBX_CTRL1);
break;
}
}
EXPORT_SYMBOL(stmp3xxx_arch_dma_enable_interrupt);
void stmp3xxx_arch_dma_clear_interrupt(int channel)
{
switch (STMP3XXX_DMA_BUS(channel)) {
case STMP3XXX_BUS_APBH:
stmp3xxx_clearl(1 << STMP3XXX_DMA_CHANNEL(channel),
REGS_APBH_BASE + HW_APBH_CTRL1);
break;
case STMP3XXX_BUS_APBX:
stmp3xxx_clearl(1 << STMP3XXX_DMA_CHANNEL(channel),
REGS_APBX_BASE + HW_APBX_CTRL1);
break;
}
}
EXPORT_SYMBOL(stmp3xxx_arch_dma_clear_interrupt);
int stmp3xxx_arch_dma_is_interrupt(int channel)
{
int r = 0;
switch (STMP3XXX_DMA_BUS(channel)) {
case STMP3XXX_BUS_APBH:
r = __raw_readl(REGS_APBH_BASE + HW_APBH_CTRL1) &
(1 << STMP3XXX_DMA_CHANNEL(channel));
break;
case STMP3XXX_BUS_APBX:
r = __raw_readl(REGS_APBH_BASE + HW_APBH_CTRL1) &
(1 << STMP3XXX_DMA_CHANNEL(channel));
break;
}
return r;
}
EXPORT_SYMBOL(stmp3xxx_arch_dma_is_interrupt);
void stmp3xxx_arch_dma_reset_channel(int channel)
{
unsigned chbit = 1 << STMP3XXX_DMA_CHANNEL(channel);
switch (STMP3XXX_DMA_BUS(channel)) {
case STMP3XXX_BUS_APBH:
/* Reset channel and wait for it to complete */
stmp3xxx_setl(chbit << BP_APBH_CTRL0_RESET_CHANNEL,
REGS_APBH_BASE + HW_APBH_CTRL0);
while (__raw_readl(REGS_APBH_BASE + HW_APBH_CTRL0) &
(chbit << BP_APBH_CTRL0_RESET_CHANNEL))
cpu_relax();
break;
case STMP3XXX_BUS_APBX:
stmp3xxx_setl(chbit << BP_APBX_CTRL0_RESET_CHANNEL,
REGS_APBX_BASE + HW_APBX_CTRL0);
while (__raw_readl(REGS_APBX_BASE + HW_APBX_CTRL0) &
(chbit << BP_APBX_CTRL0_RESET_CHANNEL))
cpu_relax();
break;
}
}
EXPORT_SYMBOL(stmp3xxx_arch_dma_reset_channel);
void stmp3xxx_arch_dma_freeze(int channel)
{
unsigned chbit = 1 << STMP3XXX_DMA_CHANNEL(channel);
switch (STMP3XXX_DMA_BUS(channel)) {
case STMP3XXX_BUS_APBH:
stmp3xxx_setl(1 << chbit, REGS_APBH_BASE + HW_APBH_CTRL0);
break;
case STMP3XXX_BUS_APBX:
stmp3xxx_setl(1 << chbit, REGS_APBH_BASE + HW_APBH_CTRL0);
break;
}
}
EXPORT_SYMBOL(stmp3xxx_arch_dma_freeze);
void stmp3xxx_arch_dma_unfreeze(int channel)
{
unsigned chbit = 1 << STMP3XXX_DMA_CHANNEL(channel);
switch (STMP3XXX_DMA_BUS(channel)) {
case STMP3XXX_BUS_APBH:
stmp3xxx_clearl(1 << chbit, REGS_APBH_BASE + HW_APBH_CTRL0);
break;
case STMP3XXX_BUS_APBX:
stmp3xxx_clearl(1 << chbit, REGS_APBH_BASE + HW_APBH_CTRL0);
break;
}
}
EXPORT_SYMBOL(stmp3xxx_arch_dma_unfreeze);
/*
* The registers are all very closely mapped, so we might as well map them all
* with a single mapping
*
* Logical Physical
* f0000000 80000000 On-chip registers
* f1000000 00000000 32k on-chip SRAM
*/
static struct map_desc stmp37xx_io_desc[] __initdata = {
{
.virtual = (u32)STMP3XXX_REGS_BASE,
.pfn = __phys_to_pfn(STMP3XXX_REGS_PHBASE),
.length = SZ_1M,
.type = MT_DEVICE
},
{
.virtual = (u32)STMP3XXX_OCRAM_BASE,
.pfn = __phys_to_pfn(STMP3XXX_OCRAM_PHBASE),
.length = STMP3XXX_OCRAM_SIZE,
.type = MT_DEVICE,
},
};
void __init stmp37xx_map_io(void)
{
iotable_init(stmp37xx_io_desc, ARRAY_SIZE(stmp37xx_io_desc));
}