2106 lines
52 KiB
C
2106 lines
52 KiB
C
/*
|
|
* linux/drivers/misc/xillybus_core.c
|
|
*
|
|
* Copyright 2011 Xillybus Ltd, http://xillybus.com
|
|
*
|
|
* Driver for the Xillybus FPGA/host framework.
|
|
*
|
|
* This driver interfaces with a special IP core in an FPGA, setting up
|
|
* a pipe between a hardware FIFO in the programmable logic and a device
|
|
* file in the host. The number of such pipes and their attributes are
|
|
* set up on the logic. This driver detects these automatically and
|
|
* creates the device files accordingly.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the smems of the GNU General Public License as published by
|
|
* the Free Software Foundation; version 2 of the License.
|
|
*/
|
|
|
|
#include <linux/list.h>
|
|
#include <linux/device.h>
|
|
#include <linux/module.h>
|
|
#include <linux/io.h>
|
|
#include <linux/dma-mapping.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/cdev.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/mutex.h>
|
|
#include <linux/crc32.h>
|
|
#include <linux/poll.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/workqueue.h>
|
|
#include "xillybus.h"
|
|
|
|
MODULE_DESCRIPTION("Xillybus core functions");
|
|
MODULE_AUTHOR("Eli Billauer, Xillybus Ltd.");
|
|
MODULE_VERSION("1.07");
|
|
MODULE_ALIAS("xillybus_core");
|
|
MODULE_LICENSE("GPL v2");
|
|
|
|
/* General timeout is 100 ms, rx timeout is 10 ms */
|
|
#define XILLY_RX_TIMEOUT (10*HZ/1000)
|
|
#define XILLY_TIMEOUT (100*HZ/1000)
|
|
|
|
#define fpga_msg_ctrl_reg 0x0008
|
|
#define fpga_dma_control_reg 0x0020
|
|
#define fpga_dma_bufno_reg 0x0024
|
|
#define fpga_dma_bufaddr_lowaddr_reg 0x0028
|
|
#define fpga_dma_bufaddr_highaddr_reg 0x002c
|
|
#define fpga_buf_ctrl_reg 0x0030
|
|
#define fpga_buf_offset_reg 0x0034
|
|
#define fpga_endian_reg 0x0040
|
|
|
|
#define XILLYMSG_OPCODE_RELEASEBUF 1
|
|
#define XILLYMSG_OPCODE_QUIESCEACK 2
|
|
#define XILLYMSG_OPCODE_FIFOEOF 3
|
|
#define XILLYMSG_OPCODE_FATAL_ERROR 4
|
|
#define XILLYMSG_OPCODE_NONEMPTY 5
|
|
|
|
static const char xillyname[] = "xillybus";
|
|
|
|
static struct class *xillybus_class;
|
|
|
|
/*
|
|
* ep_list_lock is the last lock to be taken; No other lock requests are
|
|
* allowed while holding it. It merely protects list_of_endpoints, and not
|
|
* the endpoints listed in it.
|
|
*/
|
|
|
|
static LIST_HEAD(list_of_endpoints);
|
|
static struct mutex ep_list_lock;
|
|
static struct workqueue_struct *xillybus_wq;
|
|
|
|
/*
|
|
* Locking scheme: Mutexes protect invocations of character device methods.
|
|
* If both locks are taken, wr_mutex is taken first, rd_mutex second.
|
|
*
|
|
* wr_spinlock protects wr_*_buf_idx, wr_empty, wr_sleepy, wr_ready and the
|
|
* buffers' end_offset fields against changes made by IRQ handler (and in
|
|
* theory, other file request handlers, but the mutex handles that). Nothing
|
|
* else.
|
|
* They are held for short direct memory manipulations. Needless to say,
|
|
* no mutex locking is allowed when a spinlock is held.
|
|
*
|
|
* rd_spinlock does the same with rd_*_buf_idx, rd_empty and end_offset.
|
|
*
|
|
* register_mutex is endpoint-specific, and is held when non-atomic
|
|
* register operations are performed. wr_mutex and rd_mutex may be
|
|
* held when register_mutex is taken, but none of the spinlocks. Note that
|
|
* register_mutex doesn't protect against sporadic buf_ctrl_reg writes
|
|
* which are unrelated to buf_offset_reg, since they are harmless.
|
|
*
|
|
* Blocking on the wait queues is allowed with mutexes held, but not with
|
|
* spinlocks.
|
|
*
|
|
* Only interruptible blocking is allowed on mutexes and wait queues.
|
|
*
|
|
* All in all, the locking order goes (with skips allowed, of course):
|
|
* wr_mutex -> rd_mutex -> register_mutex -> wr_spinlock -> rd_spinlock
|
|
*/
|
|
|
|
static void malformed_message(struct xilly_endpoint *endpoint, u32 *buf)
|
|
{
|
|
int opcode;
|
|
int msg_channel, msg_bufno, msg_data, msg_dir;
|
|
|
|
opcode = (buf[0] >> 24) & 0xff;
|
|
msg_dir = buf[0] & 1;
|
|
msg_channel = (buf[0] >> 1) & 0x7ff;
|
|
msg_bufno = (buf[0] >> 12) & 0x3ff;
|
|
msg_data = buf[1] & 0xfffffff;
|
|
|
|
dev_warn(endpoint->dev,
|
|
"Malformed message (skipping): opcode=%d, channel=%03x, dir=%d, bufno=%03x, data=%07x\n",
|
|
opcode, msg_channel, msg_dir, msg_bufno, msg_data);
|
|
}
|
|
|
|
/*
|
|
* xillybus_isr assumes the interrupt is allocated exclusively to it,
|
|
* which is the natural case MSI and several other hardware-oriented
|
|
* interrupts. Sharing is not allowed.
|
|
*/
|
|
|
|
irqreturn_t xillybus_isr(int irq, void *data)
|
|
{
|
|
struct xilly_endpoint *ep = data;
|
|
u32 *buf;
|
|
unsigned int buf_size;
|
|
int i;
|
|
int opcode;
|
|
unsigned int msg_channel, msg_bufno, msg_data, msg_dir;
|
|
struct xilly_channel *channel;
|
|
|
|
buf = ep->msgbuf_addr;
|
|
buf_size = ep->msg_buf_size/sizeof(u32);
|
|
|
|
ep->ephw->hw_sync_sgl_for_cpu(ep,
|
|
ep->msgbuf_dma_addr,
|
|
ep->msg_buf_size,
|
|
DMA_FROM_DEVICE);
|
|
|
|
for (i = 0; i < buf_size; i += 2) {
|
|
if (((buf[i+1] >> 28) & 0xf) != ep->msg_counter) {
|
|
malformed_message(ep, &buf[i]);
|
|
dev_warn(ep->dev,
|
|
"Sending a NACK on counter %x (instead of %x) on entry %d\n",
|
|
((buf[i+1] >> 28) & 0xf),
|
|
ep->msg_counter,
|
|
i/2);
|
|
|
|
if (++ep->failed_messages > 10) {
|
|
dev_err(ep->dev,
|
|
"Lost sync with interrupt messages. Stopping.\n");
|
|
} else {
|
|
ep->ephw->hw_sync_sgl_for_device(
|
|
ep,
|
|
ep->msgbuf_dma_addr,
|
|
ep->msg_buf_size,
|
|
DMA_FROM_DEVICE);
|
|
|
|
iowrite32(0x01, /* Message NACK */
|
|
ep->registers + fpga_msg_ctrl_reg);
|
|
}
|
|
return IRQ_HANDLED;
|
|
} else if (buf[i] & (1 << 22)) /* Last message */
|
|
break;
|
|
}
|
|
|
|
if (i >= buf_size) {
|
|
dev_err(ep->dev, "Bad interrupt message. Stopping.\n");
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
buf_size = i + 2;
|
|
|
|
for (i = 0; i < buf_size; i += 2) { /* Scan through messages */
|
|
opcode = (buf[i] >> 24) & 0xff;
|
|
|
|
msg_dir = buf[i] & 1;
|
|
msg_channel = (buf[i] >> 1) & 0x7ff;
|
|
msg_bufno = (buf[i] >> 12) & 0x3ff;
|
|
msg_data = buf[i+1] & 0xfffffff;
|
|
|
|
switch (opcode) {
|
|
case XILLYMSG_OPCODE_RELEASEBUF:
|
|
if ((msg_channel > ep->num_channels) ||
|
|
(msg_channel == 0)) {
|
|
malformed_message(ep, &buf[i]);
|
|
break;
|
|
}
|
|
|
|
channel = ep->channels[msg_channel];
|
|
|
|
if (msg_dir) { /* Write channel */
|
|
if (msg_bufno >= channel->num_wr_buffers) {
|
|
malformed_message(ep, &buf[i]);
|
|
break;
|
|
}
|
|
spin_lock(&channel->wr_spinlock);
|
|
channel->wr_buffers[msg_bufno]->end_offset =
|
|
msg_data;
|
|
channel->wr_fpga_buf_idx = msg_bufno;
|
|
channel->wr_empty = 0;
|
|
channel->wr_sleepy = 0;
|
|
spin_unlock(&channel->wr_spinlock);
|
|
|
|
wake_up_interruptible(&channel->wr_wait);
|
|
|
|
} else {
|
|
/* Read channel */
|
|
|
|
if (msg_bufno >= channel->num_rd_buffers) {
|
|
malformed_message(ep, &buf[i]);
|
|
break;
|
|
}
|
|
|
|
spin_lock(&channel->rd_spinlock);
|
|
channel->rd_fpga_buf_idx = msg_bufno;
|
|
channel->rd_full = 0;
|
|
spin_unlock(&channel->rd_spinlock);
|
|
|
|
wake_up_interruptible(&channel->rd_wait);
|
|
if (!channel->rd_synchronous)
|
|
queue_delayed_work(
|
|
xillybus_wq,
|
|
&channel->rd_workitem,
|
|
XILLY_RX_TIMEOUT);
|
|
}
|
|
|
|
break;
|
|
case XILLYMSG_OPCODE_NONEMPTY:
|
|
if ((msg_channel > ep->num_channels) ||
|
|
(msg_channel == 0) || (!msg_dir) ||
|
|
!ep->channels[msg_channel]->wr_supports_nonempty) {
|
|
malformed_message(ep, &buf[i]);
|
|
break;
|
|
}
|
|
|
|
channel = ep->channels[msg_channel];
|
|
|
|
if (msg_bufno >= channel->num_wr_buffers) {
|
|
malformed_message(ep, &buf[i]);
|
|
break;
|
|
}
|
|
spin_lock(&channel->wr_spinlock);
|
|
if (msg_bufno == channel->wr_host_buf_idx)
|
|
channel->wr_ready = 1;
|
|
spin_unlock(&channel->wr_spinlock);
|
|
|
|
wake_up_interruptible(&channel->wr_ready_wait);
|
|
|
|
break;
|
|
case XILLYMSG_OPCODE_QUIESCEACK:
|
|
ep->idtlen = msg_data;
|
|
wake_up_interruptible(&ep->ep_wait);
|
|
|
|
break;
|
|
case XILLYMSG_OPCODE_FIFOEOF:
|
|
if ((msg_channel > ep->num_channels) ||
|
|
(msg_channel == 0) || (!msg_dir) ||
|
|
!ep->channels[msg_channel]->num_wr_buffers) {
|
|
malformed_message(ep, &buf[i]);
|
|
break;
|
|
}
|
|
channel = ep->channels[msg_channel];
|
|
spin_lock(&channel->wr_spinlock);
|
|
channel->wr_eof = msg_bufno;
|
|
channel->wr_sleepy = 0;
|
|
|
|
channel->wr_hangup = channel->wr_empty &&
|
|
(channel->wr_host_buf_idx == msg_bufno);
|
|
|
|
spin_unlock(&channel->wr_spinlock);
|
|
|
|
wake_up_interruptible(&channel->wr_wait);
|
|
|
|
break;
|
|
case XILLYMSG_OPCODE_FATAL_ERROR:
|
|
ep->fatal_error = 1;
|
|
wake_up_interruptible(&ep->ep_wait); /* For select() */
|
|
dev_err(ep->dev,
|
|
"FPGA reported a fatal error. This means that the low-level communication with the device has failed. This hardware problem is most likely unrelated to Xillybus (neither kernel module nor FPGA core), but reports are still welcome. All I/O is aborted.\n");
|
|
break;
|
|
default:
|
|
malformed_message(ep, &buf[i]);
|
|
break;
|
|
}
|
|
}
|
|
|
|
ep->ephw->hw_sync_sgl_for_device(ep,
|
|
ep->msgbuf_dma_addr,
|
|
ep->msg_buf_size,
|
|
DMA_FROM_DEVICE);
|
|
|
|
ep->msg_counter = (ep->msg_counter + 1) & 0xf;
|
|
ep->failed_messages = 0;
|
|
iowrite32(0x03, ep->registers + fpga_msg_ctrl_reg); /* Message ACK */
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
EXPORT_SYMBOL(xillybus_isr);
|
|
|
|
/*
|
|
* A few trivial memory management functions.
|
|
* NOTE: These functions are used only on probe and remove, and therefore
|
|
* no locks are applied!
|
|
*/
|
|
|
|
static void xillybus_autoflush(struct work_struct *work);
|
|
|
|
struct xilly_alloc_state {
|
|
void *salami;
|
|
int left_of_salami;
|
|
int nbuffer;
|
|
enum dma_data_direction direction;
|
|
u32 regdirection;
|
|
};
|
|
|
|
static int xilly_get_dma_buffers(struct xilly_endpoint *ep,
|
|
struct xilly_alloc_state *s,
|
|
struct xilly_buffer **buffers,
|
|
int bufnum, int bytebufsize)
|
|
{
|
|
int i, rc;
|
|
dma_addr_t dma_addr;
|
|
struct device *dev = ep->dev;
|
|
struct xilly_buffer *this_buffer = NULL; /* Init to silence warning */
|
|
|
|
if (buffers) { /* Not the message buffer */
|
|
this_buffer = devm_kcalloc(dev, bufnum,
|
|
sizeof(struct xilly_buffer),
|
|
GFP_KERNEL);
|
|
if (!this_buffer)
|
|
return -ENOMEM;
|
|
}
|
|
|
|
for (i = 0; i < bufnum; i++) {
|
|
/*
|
|
* Buffers are expected in descending size order, so there
|
|
* is either enough space for this buffer or none at all.
|
|
*/
|
|
|
|
if ((s->left_of_salami < bytebufsize) &&
|
|
(s->left_of_salami > 0)) {
|
|
dev_err(ep->dev,
|
|
"Corrupt buffer allocation in IDT. Aborting.\n");
|
|
return -ENODEV;
|
|
}
|
|
|
|
if (s->left_of_salami == 0) {
|
|
int allocorder, allocsize;
|
|
|
|
allocsize = PAGE_SIZE;
|
|
allocorder = 0;
|
|
while (bytebufsize > allocsize) {
|
|
allocsize *= 2;
|
|
allocorder++;
|
|
}
|
|
|
|
s->salami = (void *) devm_get_free_pages(
|
|
dev,
|
|
GFP_KERNEL | __GFP_DMA32 | __GFP_ZERO,
|
|
allocorder);
|
|
if (!s->salami)
|
|
return -ENOMEM;
|
|
|
|
s->left_of_salami = allocsize;
|
|
}
|
|
|
|
rc = ep->ephw->map_single(ep, s->salami,
|
|
bytebufsize, s->direction,
|
|
&dma_addr);
|
|
if (rc)
|
|
return rc;
|
|
|
|
iowrite32((u32) (dma_addr & 0xffffffff),
|
|
ep->registers + fpga_dma_bufaddr_lowaddr_reg);
|
|
iowrite32(((u32) ((((u64) dma_addr) >> 32) & 0xffffffff)),
|
|
ep->registers + fpga_dma_bufaddr_highaddr_reg);
|
|
|
|
if (buffers) { /* Not the message buffer */
|
|
this_buffer->addr = s->salami;
|
|
this_buffer->dma_addr = dma_addr;
|
|
buffers[i] = this_buffer++;
|
|
|
|
iowrite32(s->regdirection | s->nbuffer++,
|
|
ep->registers + fpga_dma_bufno_reg);
|
|
} else {
|
|
ep->msgbuf_addr = s->salami;
|
|
ep->msgbuf_dma_addr = dma_addr;
|
|
ep->msg_buf_size = bytebufsize;
|
|
|
|
iowrite32(s->regdirection,
|
|
ep->registers + fpga_dma_bufno_reg);
|
|
}
|
|
|
|
s->left_of_salami -= bytebufsize;
|
|
s->salami += bytebufsize;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int xilly_setupchannels(struct xilly_endpoint *ep,
|
|
unsigned char *chandesc,
|
|
int entries)
|
|
{
|
|
struct device *dev = ep->dev;
|
|
int i, entry, rc;
|
|
struct xilly_channel *channel;
|
|
int channelnum, bufnum, bufsize, format, is_writebuf;
|
|
int bytebufsize;
|
|
int synchronous, allowpartial, exclusive_open, seekable;
|
|
int supports_nonempty;
|
|
int msg_buf_done = 0;
|
|
|
|
struct xilly_alloc_state rd_alloc = {
|
|
.salami = NULL,
|
|
.left_of_salami = 0,
|
|
.nbuffer = 1,
|
|
.direction = DMA_TO_DEVICE,
|
|
.regdirection = 0,
|
|
};
|
|
|
|
struct xilly_alloc_state wr_alloc = {
|
|
.salami = NULL,
|
|
.left_of_salami = 0,
|
|
.nbuffer = 1,
|
|
.direction = DMA_FROM_DEVICE,
|
|
.regdirection = 0x80000000,
|
|
};
|
|
|
|
channel = devm_kcalloc(dev, ep->num_channels,
|
|
sizeof(struct xilly_channel), GFP_KERNEL);
|
|
if (!channel)
|
|
return -ENOMEM;
|
|
|
|
ep->channels = devm_kcalloc(dev, ep->num_channels + 1,
|
|
sizeof(struct xilly_channel *),
|
|
GFP_KERNEL);
|
|
if (!ep->channels)
|
|
return -ENOMEM;
|
|
|
|
ep->channels[0] = NULL; /* Channel 0 is message buf. */
|
|
|
|
/* Initialize all channels with defaults */
|
|
|
|
for (i = 1; i <= ep->num_channels; i++) {
|
|
channel->wr_buffers = NULL;
|
|
channel->rd_buffers = NULL;
|
|
channel->num_wr_buffers = 0;
|
|
channel->num_rd_buffers = 0;
|
|
channel->wr_fpga_buf_idx = -1;
|
|
channel->wr_host_buf_idx = 0;
|
|
channel->wr_host_buf_pos = 0;
|
|
channel->wr_empty = 1;
|
|
channel->wr_ready = 0;
|
|
channel->wr_sleepy = 1;
|
|
channel->rd_fpga_buf_idx = 0;
|
|
channel->rd_host_buf_idx = 0;
|
|
channel->rd_host_buf_pos = 0;
|
|
channel->rd_full = 0;
|
|
channel->wr_ref_count = 0;
|
|
channel->rd_ref_count = 0;
|
|
|
|
spin_lock_init(&channel->wr_spinlock);
|
|
spin_lock_init(&channel->rd_spinlock);
|
|
mutex_init(&channel->wr_mutex);
|
|
mutex_init(&channel->rd_mutex);
|
|
init_waitqueue_head(&channel->rd_wait);
|
|
init_waitqueue_head(&channel->wr_wait);
|
|
init_waitqueue_head(&channel->wr_ready_wait);
|
|
|
|
INIT_DELAYED_WORK(&channel->rd_workitem, xillybus_autoflush);
|
|
|
|
channel->endpoint = ep;
|
|
channel->chan_num = i;
|
|
|
|
channel->log2_element_size = 0;
|
|
|
|
ep->channels[i] = channel++;
|
|
}
|
|
|
|
for (entry = 0; entry < entries; entry++, chandesc += 4) {
|
|
struct xilly_buffer **buffers = NULL;
|
|
|
|
is_writebuf = chandesc[0] & 0x01;
|
|
channelnum = (chandesc[0] >> 1) | ((chandesc[1] & 0x0f) << 7);
|
|
format = (chandesc[1] >> 4) & 0x03;
|
|
allowpartial = (chandesc[1] >> 6) & 0x01;
|
|
synchronous = (chandesc[1] >> 7) & 0x01;
|
|
bufsize = 1 << (chandesc[2] & 0x1f);
|
|
bufnum = 1 << (chandesc[3] & 0x0f);
|
|
exclusive_open = (chandesc[2] >> 7) & 0x01;
|
|
seekable = (chandesc[2] >> 6) & 0x01;
|
|
supports_nonempty = (chandesc[2] >> 5) & 0x01;
|
|
|
|
if ((channelnum > ep->num_channels) ||
|
|
((channelnum == 0) && !is_writebuf)) {
|
|
dev_err(ep->dev,
|
|
"IDT requests channel out of range. Aborting.\n");
|
|
return -ENODEV;
|
|
}
|
|
|
|
channel = ep->channels[channelnum]; /* NULL for msg channel */
|
|
|
|
if (!is_writebuf || channelnum > 0) {
|
|
channel->log2_element_size = ((format > 2) ?
|
|
2 : format);
|
|
|
|
bytebufsize = channel->rd_buf_size = bufsize *
|
|
(1 << channel->log2_element_size);
|
|
|
|
buffers = devm_kcalloc(dev, bufnum,
|
|
sizeof(struct xilly_buffer *),
|
|
GFP_KERNEL);
|
|
if (!buffers)
|
|
return -ENOMEM;
|
|
} else {
|
|
bytebufsize = bufsize << 2;
|
|
}
|
|
|
|
if (!is_writebuf) {
|
|
channel->num_rd_buffers = bufnum;
|
|
channel->rd_allow_partial = allowpartial;
|
|
channel->rd_synchronous = synchronous;
|
|
channel->rd_exclusive_open = exclusive_open;
|
|
channel->seekable = seekable;
|
|
|
|
channel->rd_buffers = buffers;
|
|
rc = xilly_get_dma_buffers(ep, &rd_alloc, buffers,
|
|
bufnum, bytebufsize);
|
|
} else if (channelnum > 0) {
|
|
channel->num_wr_buffers = bufnum;
|
|
|
|
channel->seekable = seekable;
|
|
channel->wr_supports_nonempty = supports_nonempty;
|
|
|
|
channel->wr_allow_partial = allowpartial;
|
|
channel->wr_synchronous = synchronous;
|
|
channel->wr_exclusive_open = exclusive_open;
|
|
|
|
channel->wr_buffers = buffers;
|
|
rc = xilly_get_dma_buffers(ep, &wr_alloc, buffers,
|
|
bufnum, bytebufsize);
|
|
} else {
|
|
rc = xilly_get_dma_buffers(ep, &wr_alloc, NULL,
|
|
bufnum, bytebufsize);
|
|
msg_buf_done++;
|
|
}
|
|
|
|
if (rc)
|
|
return -ENOMEM;
|
|
}
|
|
|
|
if (!msg_buf_done) {
|
|
dev_err(ep->dev,
|
|
"Corrupt IDT: No message buffer. Aborting.\n");
|
|
return -ENODEV;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int xilly_scan_idt(struct xilly_endpoint *endpoint,
|
|
struct xilly_idt_handle *idt_handle)
|
|
{
|
|
int count = 0;
|
|
unsigned char *idt = endpoint->channels[1]->wr_buffers[0]->addr;
|
|
unsigned char *end_of_idt = idt + endpoint->idtlen - 4;
|
|
unsigned char *scan;
|
|
int len;
|
|
|
|
scan = idt;
|
|
idt_handle->idt = idt;
|
|
|
|
scan++; /* Skip version number */
|
|
|
|
while ((scan <= end_of_idt) && *scan) {
|
|
while ((scan <= end_of_idt) && *scan++)
|
|
/* Do nothing, just scan thru string */;
|
|
count++;
|
|
}
|
|
|
|
scan++;
|
|
|
|
if (scan > end_of_idt) {
|
|
dev_err(endpoint->dev,
|
|
"IDT device name list overflow. Aborting.\n");
|
|
return -ENODEV;
|
|
}
|
|
idt_handle->chandesc = scan;
|
|
|
|
len = endpoint->idtlen - (3 + ((int) (scan - idt)));
|
|
|
|
if (len & 0x03) {
|
|
dev_err(endpoint->dev,
|
|
"Corrupt IDT device name list. Aborting.\n");
|
|
return -ENODEV;
|
|
}
|
|
|
|
idt_handle->entries = len >> 2;
|
|
endpoint->num_channels = count;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int xilly_obtain_idt(struct xilly_endpoint *endpoint)
|
|
{
|
|
struct xilly_channel *channel;
|
|
unsigned char *version;
|
|
long t;
|
|
|
|
channel = endpoint->channels[1]; /* This should be generated ad-hoc */
|
|
|
|
channel->wr_sleepy = 1;
|
|
|
|
iowrite32(1 |
|
|
(3 << 24), /* Opcode 3 for channel 0 = Send IDT */
|
|
endpoint->registers + fpga_buf_ctrl_reg);
|
|
|
|
t = wait_event_interruptible_timeout(channel->wr_wait,
|
|
(!channel->wr_sleepy),
|
|
XILLY_TIMEOUT);
|
|
|
|
if (t <= 0) {
|
|
dev_err(endpoint->dev, "Failed to obtain IDT. Aborting.\n");
|
|
|
|
if (endpoint->fatal_error)
|
|
return -EIO;
|
|
|
|
return -ENODEV;
|
|
}
|
|
|
|
endpoint->ephw->hw_sync_sgl_for_cpu(
|
|
channel->endpoint,
|
|
channel->wr_buffers[0]->dma_addr,
|
|
channel->wr_buf_size,
|
|
DMA_FROM_DEVICE);
|
|
|
|
if (channel->wr_buffers[0]->end_offset != endpoint->idtlen) {
|
|
dev_err(endpoint->dev,
|
|
"IDT length mismatch (%d != %d). Aborting.\n",
|
|
channel->wr_buffers[0]->end_offset, endpoint->idtlen);
|
|
return -ENODEV;
|
|
}
|
|
|
|
if (crc32_le(~0, channel->wr_buffers[0]->addr,
|
|
endpoint->idtlen+1) != 0) {
|
|
dev_err(endpoint->dev, "IDT failed CRC check. Aborting.\n");
|
|
return -ENODEV;
|
|
}
|
|
|
|
version = channel->wr_buffers[0]->addr;
|
|
|
|
/* Check version number. Accept anything below 0x82 for now. */
|
|
if (*version > 0x82) {
|
|
dev_err(endpoint->dev,
|
|
"No support for IDT version 0x%02x. Maybe the xillybus driver needs an upgarde. Aborting.\n",
|
|
*version);
|
|
return -ENODEV;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static ssize_t xillybus_read(struct file *filp, char __user *userbuf,
|
|
size_t count, loff_t *f_pos)
|
|
{
|
|
ssize_t rc;
|
|
unsigned long flags;
|
|
int bytes_done = 0;
|
|
int no_time_left = 0;
|
|
long deadline, left_to_sleep;
|
|
struct xilly_channel *channel = filp->private_data;
|
|
|
|
int empty, reached_eof, exhausted, ready;
|
|
/* Initializations are there only to silence warnings */
|
|
|
|
int howmany = 0, bufpos = 0, bufidx = 0, bufferdone = 0;
|
|
int waiting_bufidx;
|
|
|
|
if (channel->endpoint->fatal_error)
|
|
return -EIO;
|
|
|
|
deadline = jiffies + 1 + XILLY_RX_TIMEOUT;
|
|
|
|
rc = mutex_lock_interruptible(&channel->wr_mutex);
|
|
if (rc)
|
|
return rc;
|
|
|
|
while (1) { /* Note that we may drop mutex within this loop */
|
|
int bytes_to_do = count - bytes_done;
|
|
|
|
spin_lock_irqsave(&channel->wr_spinlock, flags);
|
|
|
|
empty = channel->wr_empty;
|
|
ready = !empty || channel->wr_ready;
|
|
|
|
if (!empty) {
|
|
bufidx = channel->wr_host_buf_idx;
|
|
bufpos = channel->wr_host_buf_pos;
|
|
howmany = ((channel->wr_buffers[bufidx]->end_offset
|
|
+ 1) << channel->log2_element_size)
|
|
- bufpos;
|
|
|
|
/* Update wr_host_* to its post-operation state */
|
|
if (howmany > bytes_to_do) {
|
|
bufferdone = 0;
|
|
|
|
howmany = bytes_to_do;
|
|
channel->wr_host_buf_pos += howmany;
|
|
} else {
|
|
bufferdone = 1;
|
|
|
|
channel->wr_host_buf_pos = 0;
|
|
|
|
if (bufidx == channel->wr_fpga_buf_idx) {
|
|
channel->wr_empty = 1;
|
|
channel->wr_sleepy = 1;
|
|
channel->wr_ready = 0;
|
|
}
|
|
|
|
if (bufidx >= (channel->num_wr_buffers - 1))
|
|
channel->wr_host_buf_idx = 0;
|
|
else
|
|
channel->wr_host_buf_idx++;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Marking our situation after the possible changes above,
|
|
* for use after releasing the spinlock.
|
|
*
|
|
* empty = empty before change
|
|
* exhasted = empty after possible change
|
|
*/
|
|
|
|
reached_eof = channel->wr_empty &&
|
|
(channel->wr_host_buf_idx == channel->wr_eof);
|
|
channel->wr_hangup = reached_eof;
|
|
exhausted = channel->wr_empty;
|
|
waiting_bufidx = channel->wr_host_buf_idx;
|
|
|
|
spin_unlock_irqrestore(&channel->wr_spinlock, flags);
|
|
|
|
if (!empty) { /* Go on, now without the spinlock */
|
|
|
|
if (bufpos == 0) /* Position zero means it's virgin */
|
|
channel->endpoint->ephw->hw_sync_sgl_for_cpu(
|
|
channel->endpoint,
|
|
channel->wr_buffers[bufidx]->dma_addr,
|
|
channel->wr_buf_size,
|
|
DMA_FROM_DEVICE);
|
|
|
|
if (copy_to_user(
|
|
userbuf,
|
|
channel->wr_buffers[bufidx]->addr
|
|
+ bufpos, howmany))
|
|
rc = -EFAULT;
|
|
|
|
userbuf += howmany;
|
|
bytes_done += howmany;
|
|
|
|
if (bufferdone) {
|
|
channel->endpoint->ephw->hw_sync_sgl_for_device(
|
|
channel->endpoint,
|
|
channel->wr_buffers[bufidx]->dma_addr,
|
|
channel->wr_buf_size,
|
|
DMA_FROM_DEVICE);
|
|
|
|
/*
|
|
* Tell FPGA the buffer is done with. It's an
|
|
* atomic operation to the FPGA, so what
|
|
* happens with other channels doesn't matter,
|
|
* and the certain channel is protected with
|
|
* the channel-specific mutex.
|
|
*/
|
|
|
|
iowrite32(1 | (channel->chan_num << 1) |
|
|
(bufidx << 12),
|
|
channel->endpoint->registers +
|
|
fpga_buf_ctrl_reg);
|
|
}
|
|
|
|
if (rc) {
|
|
mutex_unlock(&channel->wr_mutex);
|
|
return rc;
|
|
}
|
|
}
|
|
|
|
/* This includes a zero-count return = EOF */
|
|
if ((bytes_done >= count) || reached_eof)
|
|
break;
|
|
|
|
if (!exhausted)
|
|
continue; /* More in RAM buffer(s)? Just go on. */
|
|
|
|
if ((bytes_done > 0) &&
|
|
(no_time_left ||
|
|
(channel->wr_synchronous && channel->wr_allow_partial)))
|
|
break;
|
|
|
|
/*
|
|
* Nonblocking read: The "ready" flag tells us that the FPGA
|
|
* has data to send. In non-blocking mode, if it isn't on,
|
|
* just return. But if there is, we jump directly to the point
|
|
* where we ask for the FPGA to send all it has, and wait
|
|
* until that data arrives. So in a sense, we *do* block in
|
|
* nonblocking mode, but only for a very short time.
|
|
*/
|
|
|
|
if (!no_time_left && (filp->f_flags & O_NONBLOCK)) {
|
|
if (bytes_done > 0)
|
|
break;
|
|
|
|
if (ready)
|
|
goto desperate;
|
|
|
|
rc = -EAGAIN;
|
|
break;
|
|
}
|
|
|
|
if (!no_time_left || (bytes_done > 0)) {
|
|
/*
|
|
* Note that in case of an element-misaligned read
|
|
* request, offsetlimit will include the last element,
|
|
* which will be partially read from.
|
|
*/
|
|
int offsetlimit = ((count - bytes_done) - 1) >>
|
|
channel->log2_element_size;
|
|
int buf_elements = channel->wr_buf_size >>
|
|
channel->log2_element_size;
|
|
|
|
/*
|
|
* In synchronous mode, always send an offset limit.
|
|
* Just don't send a value too big.
|
|
*/
|
|
|
|
if (channel->wr_synchronous) {
|
|
/* Don't request more than one buffer */
|
|
if (channel->wr_allow_partial &&
|
|
(offsetlimit >= buf_elements))
|
|
offsetlimit = buf_elements - 1;
|
|
|
|
/* Don't request more than all buffers */
|
|
if (!channel->wr_allow_partial &&
|
|
(offsetlimit >=
|
|
(buf_elements * channel->num_wr_buffers)))
|
|
offsetlimit = buf_elements *
|
|
channel->num_wr_buffers - 1;
|
|
}
|
|
|
|
/*
|
|
* In asynchronous mode, force early flush of a buffer
|
|
* only if that will allow returning a full count. The
|
|
* "offsetlimit < ( ... )" rather than "<=" excludes
|
|
* requesting a full buffer, which would obviously
|
|
* cause a buffer transmission anyhow
|
|
*/
|
|
|
|
if (channel->wr_synchronous ||
|
|
(offsetlimit < (buf_elements - 1))) {
|
|
mutex_lock(&channel->endpoint->register_mutex);
|
|
|
|
iowrite32(offsetlimit,
|
|
channel->endpoint->registers +
|
|
fpga_buf_offset_reg);
|
|
|
|
iowrite32(1 | (channel->chan_num << 1) |
|
|
(2 << 24) | /* 2 = offset limit */
|
|
(waiting_bufidx << 12),
|
|
channel->endpoint->registers +
|
|
fpga_buf_ctrl_reg);
|
|
|
|
mutex_unlock(&channel->endpoint->
|
|
register_mutex);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If partial completion is disallowed, there is no point in
|
|
* timeout sleeping. Neither if no_time_left is set and
|
|
* there's no data.
|
|
*/
|
|
|
|
if (!channel->wr_allow_partial ||
|
|
(no_time_left && (bytes_done == 0))) {
|
|
/*
|
|
* This do-loop will run more than once if another
|
|
* thread reasserted wr_sleepy before we got the mutex
|
|
* back, so we try again.
|
|
*/
|
|
|
|
do {
|
|
mutex_unlock(&channel->wr_mutex);
|
|
|
|
if (wait_event_interruptible(
|
|
channel->wr_wait,
|
|
(!channel->wr_sleepy)))
|
|
goto interrupted;
|
|
|
|
if (mutex_lock_interruptible(
|
|
&channel->wr_mutex))
|
|
goto interrupted;
|
|
} while (channel->wr_sleepy);
|
|
|
|
continue;
|
|
|
|
interrupted: /* Mutex is not held if got here */
|
|
if (channel->endpoint->fatal_error)
|
|
return -EIO;
|
|
if (bytes_done)
|
|
return bytes_done;
|
|
if (filp->f_flags & O_NONBLOCK)
|
|
return -EAGAIN; /* Don't admit snoozing */
|
|
return -EINTR;
|
|
}
|
|
|
|
left_to_sleep = deadline - ((long) jiffies);
|
|
|
|
/*
|
|
* If our time is out, skip the waiting. We may miss wr_sleepy
|
|
* being deasserted but hey, almost missing the train is like
|
|
* missing it.
|
|
*/
|
|
|
|
if (left_to_sleep > 0) {
|
|
left_to_sleep =
|
|
wait_event_interruptible_timeout(
|
|
channel->wr_wait,
|
|
(!channel->wr_sleepy),
|
|
left_to_sleep);
|
|
|
|
if (left_to_sleep > 0) /* wr_sleepy deasserted */
|
|
continue;
|
|
|
|
if (left_to_sleep < 0) { /* Interrupt */
|
|
mutex_unlock(&channel->wr_mutex);
|
|
if (channel->endpoint->fatal_error)
|
|
return -EIO;
|
|
if (bytes_done)
|
|
return bytes_done;
|
|
return -EINTR;
|
|
}
|
|
}
|
|
|
|
desperate:
|
|
no_time_left = 1; /* We're out of sleeping time. Desperate! */
|
|
|
|
if (bytes_done == 0) {
|
|
/*
|
|
* Reaching here means that we allow partial return,
|
|
* that we've run out of time, and that we have
|
|
* nothing to return.
|
|
* So tell the FPGA to send anything it has or gets.
|
|
*/
|
|
|
|
iowrite32(1 | (channel->chan_num << 1) |
|
|
(3 << 24) | /* Opcode 3, flush it all! */
|
|
(waiting_bufidx << 12),
|
|
channel->endpoint->registers +
|
|
fpga_buf_ctrl_reg);
|
|
}
|
|
|
|
/*
|
|
* Reaching here means that we *do* have data in the buffer,
|
|
* but the "partial" flag disallows returning less than
|
|
* required. And we don't have as much. So loop again,
|
|
* which is likely to end up blocking indefinitely until
|
|
* enough data has arrived.
|
|
*/
|
|
}
|
|
|
|
mutex_unlock(&channel->wr_mutex);
|
|
|
|
if (channel->endpoint->fatal_error)
|
|
return -EIO;
|
|
|
|
if (rc)
|
|
return rc;
|
|
|
|
return bytes_done;
|
|
}
|
|
|
|
/*
|
|
* The timeout argument takes values as follows:
|
|
* >0 : Flush with timeout
|
|
* ==0 : Flush, and wait idefinitely for the flush to complete
|
|
* <0 : Autoflush: Flush only if there's a single buffer occupied
|
|
*/
|
|
|
|
static int xillybus_myflush(struct xilly_channel *channel, long timeout)
|
|
{
|
|
int rc;
|
|
unsigned long flags;
|
|
|
|
int end_offset_plus1;
|
|
int bufidx, bufidx_minus1;
|
|
int i;
|
|
int empty;
|
|
int new_rd_host_buf_pos;
|
|
|
|
if (channel->endpoint->fatal_error)
|
|
return -EIO;
|
|
rc = mutex_lock_interruptible(&channel->rd_mutex);
|
|
if (rc)
|
|
return rc;
|
|
|
|
/*
|
|
* Don't flush a closed channel. This can happen when the work queued
|
|
* autoflush thread fires off after the file has closed. This is not
|
|
* an error, just something to dismiss.
|
|
*/
|
|
|
|
if (!channel->rd_ref_count)
|
|
goto done;
|
|
|
|
bufidx = channel->rd_host_buf_idx;
|
|
|
|
bufidx_minus1 = (bufidx == 0) ?
|
|
channel->num_rd_buffers - 1 :
|
|
bufidx - 1;
|
|
|
|
end_offset_plus1 = channel->rd_host_buf_pos >>
|
|
channel->log2_element_size;
|
|
|
|
new_rd_host_buf_pos = channel->rd_host_buf_pos -
|
|
(end_offset_plus1 << channel->log2_element_size);
|
|
|
|
/* Submit the current buffer if it's nonempty */
|
|
if (end_offset_plus1) {
|
|
unsigned char *tail = channel->rd_buffers[bufidx]->addr +
|
|
(end_offset_plus1 << channel->log2_element_size);
|
|
|
|
/* Copy unflushed data, so we can put it in next buffer */
|
|
for (i = 0; i < new_rd_host_buf_pos; i++)
|
|
channel->rd_leftovers[i] = *tail++;
|
|
|
|
spin_lock_irqsave(&channel->rd_spinlock, flags);
|
|
|
|
/* Autoflush only if a single buffer is occupied */
|
|
|
|
if ((timeout < 0) &&
|
|
(channel->rd_full ||
|
|
(bufidx_minus1 != channel->rd_fpga_buf_idx))) {
|
|
spin_unlock_irqrestore(&channel->rd_spinlock, flags);
|
|
/*
|
|
* A new work item may be queued by the ISR exactly
|
|
* now, since the execution of a work item allows the
|
|
* queuing of a new one while it's running.
|
|
*/
|
|
goto done;
|
|
}
|
|
|
|
/* The 4th element is never needed for data, so it's a flag */
|
|
channel->rd_leftovers[3] = (new_rd_host_buf_pos != 0);
|
|
|
|
/* Set up rd_full to reflect a certain moment's state */
|
|
|
|
if (bufidx == channel->rd_fpga_buf_idx)
|
|
channel->rd_full = 1;
|
|
spin_unlock_irqrestore(&channel->rd_spinlock, flags);
|
|
|
|
if (bufidx >= (channel->num_rd_buffers - 1))
|
|
channel->rd_host_buf_idx = 0;
|
|
else
|
|
channel->rd_host_buf_idx++;
|
|
|
|
channel->endpoint->ephw->hw_sync_sgl_for_device(
|
|
channel->endpoint,
|
|
channel->rd_buffers[bufidx]->dma_addr,
|
|
channel->rd_buf_size,
|
|
DMA_TO_DEVICE);
|
|
|
|
mutex_lock(&channel->endpoint->register_mutex);
|
|
|
|
iowrite32(end_offset_plus1 - 1,
|
|
channel->endpoint->registers + fpga_buf_offset_reg);
|
|
|
|
iowrite32((channel->chan_num << 1) | /* Channel ID */
|
|
(2 << 24) | /* Opcode 2, submit buffer */
|
|
(bufidx << 12),
|
|
channel->endpoint->registers + fpga_buf_ctrl_reg);
|
|
|
|
mutex_unlock(&channel->endpoint->register_mutex);
|
|
} else if (bufidx == 0) {
|
|
bufidx = channel->num_rd_buffers - 1;
|
|
} else {
|
|
bufidx--;
|
|
}
|
|
|
|
channel->rd_host_buf_pos = new_rd_host_buf_pos;
|
|
|
|
if (timeout < 0)
|
|
goto done; /* Autoflush */
|
|
|
|
/*
|
|
* bufidx is now the last buffer written to (or equal to
|
|
* rd_fpga_buf_idx if buffer was never written to), and
|
|
* channel->rd_host_buf_idx the one after it.
|
|
*
|
|
* If bufidx == channel->rd_fpga_buf_idx we're either empty or full.
|
|
*/
|
|
|
|
while (1) { /* Loop waiting for draining of buffers */
|
|
spin_lock_irqsave(&channel->rd_spinlock, flags);
|
|
|
|
if (bufidx != channel->rd_fpga_buf_idx)
|
|
channel->rd_full = 1; /*
|
|
* Not really full,
|
|
* but needs waiting.
|
|
*/
|
|
|
|
empty = !channel->rd_full;
|
|
|
|
spin_unlock_irqrestore(&channel->rd_spinlock, flags);
|
|
|
|
if (empty)
|
|
break;
|
|
|
|
/*
|
|
* Indefinite sleep with mutex taken. With data waiting for
|
|
* flushing user should not be surprised if open() for write
|
|
* sleeps.
|
|
*/
|
|
if (timeout == 0)
|
|
wait_event_interruptible(channel->rd_wait,
|
|
(!channel->rd_full));
|
|
|
|
else if (wait_event_interruptible_timeout(
|
|
channel->rd_wait,
|
|
(!channel->rd_full),
|
|
timeout) == 0) {
|
|
dev_warn(channel->endpoint->dev,
|
|
"Timed out while flushing. Output data may be lost.\n");
|
|
|
|
rc = -ETIMEDOUT;
|
|
break;
|
|
}
|
|
|
|
if (channel->rd_full) {
|
|
rc = -EINTR;
|
|
break;
|
|
}
|
|
}
|
|
|
|
done:
|
|
mutex_unlock(&channel->rd_mutex);
|
|
|
|
if (channel->endpoint->fatal_error)
|
|
return -EIO;
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int xillybus_flush(struct file *filp, fl_owner_t id)
|
|
{
|
|
if (!(filp->f_mode & FMODE_WRITE))
|
|
return 0;
|
|
|
|
return xillybus_myflush(filp->private_data, HZ); /* 1 second timeout */
|
|
}
|
|
|
|
static void xillybus_autoflush(struct work_struct *work)
|
|
{
|
|
struct delayed_work *workitem = container_of(
|
|
work, struct delayed_work, work);
|
|
struct xilly_channel *channel = container_of(
|
|
workitem, struct xilly_channel, rd_workitem);
|
|
int rc;
|
|
|
|
rc = xillybus_myflush(channel, -1);
|
|
if (rc == -EINTR)
|
|
dev_warn(channel->endpoint->dev,
|
|
"Autoflush failed because work queue thread got a signal.\n");
|
|
else if (rc)
|
|
dev_err(channel->endpoint->dev,
|
|
"Autoflush failed under weird circumstances.\n");
|
|
}
|
|
|
|
static ssize_t xillybus_write(struct file *filp, const char __user *userbuf,
|
|
size_t count, loff_t *f_pos)
|
|
{
|
|
ssize_t rc;
|
|
unsigned long flags;
|
|
int bytes_done = 0;
|
|
struct xilly_channel *channel = filp->private_data;
|
|
|
|
int full, exhausted;
|
|
/* Initializations are there only to silence warnings */
|
|
|
|
int howmany = 0, bufpos = 0, bufidx = 0, bufferdone = 0;
|
|
int end_offset_plus1 = 0;
|
|
|
|
if (channel->endpoint->fatal_error)
|
|
return -EIO;
|
|
|
|
rc = mutex_lock_interruptible(&channel->rd_mutex);
|
|
if (rc)
|
|
return rc;
|
|
|
|
while (1) {
|
|
int bytes_to_do = count - bytes_done;
|
|
|
|
spin_lock_irqsave(&channel->rd_spinlock, flags);
|
|
|
|
full = channel->rd_full;
|
|
|
|
if (!full) {
|
|
bufidx = channel->rd_host_buf_idx;
|
|
bufpos = channel->rd_host_buf_pos;
|
|
howmany = channel->rd_buf_size - bufpos;
|
|
|
|
/*
|
|
* Update rd_host_* to its state after this operation.
|
|
* count=0 means committing the buffer immediately,
|
|
* which is like flushing, but not necessarily block.
|
|
*/
|
|
|
|
if ((howmany > bytes_to_do) &&
|
|
(count ||
|
|
((bufpos >> channel->log2_element_size) == 0))) {
|
|
bufferdone = 0;
|
|
|
|
howmany = bytes_to_do;
|
|
channel->rd_host_buf_pos += howmany;
|
|
} else {
|
|
bufferdone = 1;
|
|
|
|
if (count) {
|
|
end_offset_plus1 =
|
|
channel->rd_buf_size >>
|
|
channel->log2_element_size;
|
|
channel->rd_host_buf_pos = 0;
|
|
} else {
|
|
unsigned char *tail;
|
|
int i;
|
|
|
|
howmany = 0;
|
|
|
|
end_offset_plus1 = bufpos >>
|
|
channel->log2_element_size;
|
|
|
|
channel->rd_host_buf_pos -=
|
|
end_offset_plus1 <<
|
|
channel->log2_element_size;
|
|
|
|
tail = channel->
|
|
rd_buffers[bufidx]->addr +
|
|
(end_offset_plus1 <<
|
|
channel->log2_element_size);
|
|
|
|
for (i = 0;
|
|
i < channel->rd_host_buf_pos;
|
|
i++)
|
|
channel->rd_leftovers[i] =
|
|
*tail++;
|
|
}
|
|
|
|
if (bufidx == channel->rd_fpga_buf_idx)
|
|
channel->rd_full = 1;
|
|
|
|
if (bufidx >= (channel->num_rd_buffers - 1))
|
|
channel->rd_host_buf_idx = 0;
|
|
else
|
|
channel->rd_host_buf_idx++;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Marking our situation after the possible changes above,
|
|
* for use after releasing the spinlock.
|
|
*
|
|
* full = full before change
|
|
* exhasted = full after possible change
|
|
*/
|
|
|
|
exhausted = channel->rd_full;
|
|
|
|
spin_unlock_irqrestore(&channel->rd_spinlock, flags);
|
|
|
|
if (!full) { /* Go on, now without the spinlock */
|
|
unsigned char *head =
|
|
channel->rd_buffers[bufidx]->addr;
|
|
int i;
|
|
|
|
if ((bufpos == 0) || /* Zero means it's virgin */
|
|
(channel->rd_leftovers[3] != 0)) {
|
|
channel->endpoint->ephw->hw_sync_sgl_for_cpu(
|
|
channel->endpoint,
|
|
channel->rd_buffers[bufidx]->dma_addr,
|
|
channel->rd_buf_size,
|
|
DMA_TO_DEVICE);
|
|
|
|
/* Virgin, but leftovers are due */
|
|
for (i = 0; i < bufpos; i++)
|
|
*head++ = channel->rd_leftovers[i];
|
|
|
|
channel->rd_leftovers[3] = 0; /* Clear flag */
|
|
}
|
|
|
|
if (copy_from_user(
|
|
channel->rd_buffers[bufidx]->addr + bufpos,
|
|
userbuf, howmany))
|
|
rc = -EFAULT;
|
|
|
|
userbuf += howmany;
|
|
bytes_done += howmany;
|
|
|
|
if (bufferdone) {
|
|
channel->endpoint->ephw->hw_sync_sgl_for_device(
|
|
channel->endpoint,
|
|
channel->rd_buffers[bufidx]->dma_addr,
|
|
channel->rd_buf_size,
|
|
DMA_TO_DEVICE);
|
|
|
|
mutex_lock(&channel->endpoint->register_mutex);
|
|
|
|
iowrite32(end_offset_plus1 - 1,
|
|
channel->endpoint->registers +
|
|
fpga_buf_offset_reg);
|
|
|
|
iowrite32((channel->chan_num << 1) |
|
|
(2 << 24) | /* 2 = submit buffer */
|
|
(bufidx << 12),
|
|
channel->endpoint->registers +
|
|
fpga_buf_ctrl_reg);
|
|
|
|
mutex_unlock(&channel->endpoint->
|
|
register_mutex);
|
|
|
|
channel->rd_leftovers[3] =
|
|
(channel->rd_host_buf_pos != 0);
|
|
}
|
|
|
|
if (rc) {
|
|
mutex_unlock(&channel->rd_mutex);
|
|
|
|
if (channel->endpoint->fatal_error)
|
|
return -EIO;
|
|
|
|
if (!channel->rd_synchronous)
|
|
queue_delayed_work(
|
|
xillybus_wq,
|
|
&channel->rd_workitem,
|
|
XILLY_RX_TIMEOUT);
|
|
|
|
return rc;
|
|
}
|
|
}
|
|
|
|
if (bytes_done >= count)
|
|
break;
|
|
|
|
if (!exhausted)
|
|
continue; /* If there's more space, just go on */
|
|
|
|
if ((bytes_done > 0) && channel->rd_allow_partial)
|
|
break;
|
|
|
|
/*
|
|
* Indefinite sleep with mutex taken. With data waiting for
|
|
* flushing, user should not be surprised if open() for write
|
|
* sleeps.
|
|
*/
|
|
|
|
if (filp->f_flags & O_NONBLOCK) {
|
|
rc = -EAGAIN;
|
|
break;
|
|
}
|
|
|
|
if (wait_event_interruptible(channel->rd_wait,
|
|
(!channel->rd_full))) {
|
|
mutex_unlock(&channel->rd_mutex);
|
|
|
|
if (channel->endpoint->fatal_error)
|
|
return -EIO;
|
|
|
|
if (bytes_done)
|
|
return bytes_done;
|
|
return -EINTR;
|
|
}
|
|
}
|
|
|
|
mutex_unlock(&channel->rd_mutex);
|
|
|
|
if (!channel->rd_synchronous)
|
|
queue_delayed_work(xillybus_wq,
|
|
&channel->rd_workitem,
|
|
XILLY_RX_TIMEOUT);
|
|
|
|
if (channel->endpoint->fatal_error)
|
|
return -EIO;
|
|
|
|
if (rc)
|
|
return rc;
|
|
|
|
if ((channel->rd_synchronous) && (bytes_done > 0)) {
|
|
rc = xillybus_myflush(filp->private_data, 0); /* No timeout */
|
|
|
|
if (rc && (rc != -EINTR))
|
|
return rc;
|
|
}
|
|
|
|
return bytes_done;
|
|
}
|
|
|
|
static int xillybus_open(struct inode *inode, struct file *filp)
|
|
{
|
|
int rc = 0;
|
|
unsigned long flags;
|
|
int minor = iminor(inode);
|
|
int major = imajor(inode);
|
|
struct xilly_endpoint *ep_iter, *endpoint = NULL;
|
|
struct xilly_channel *channel;
|
|
|
|
mutex_lock(&ep_list_lock);
|
|
|
|
list_for_each_entry(ep_iter, &list_of_endpoints, ep_list) {
|
|
if ((ep_iter->major == major) &&
|
|
(minor >= ep_iter->lowest_minor) &&
|
|
(minor < (ep_iter->lowest_minor +
|
|
ep_iter->num_channels))) {
|
|
endpoint = ep_iter;
|
|
break;
|
|
}
|
|
}
|
|
mutex_unlock(&ep_list_lock);
|
|
|
|
if (!endpoint) {
|
|
pr_err("xillybus: open() failed to find a device for major=%d and minor=%d\n",
|
|
major, minor);
|
|
return -ENODEV;
|
|
}
|
|
|
|
if (endpoint->fatal_error)
|
|
return -EIO;
|
|
|
|
channel = endpoint->channels[1 + minor - endpoint->lowest_minor];
|
|
filp->private_data = channel;
|
|
|
|
/*
|
|
* It gets complicated because:
|
|
* 1. We don't want to take a mutex we don't have to
|
|
* 2. We don't want to open one direction if the other will fail.
|
|
*/
|
|
|
|
if ((filp->f_mode & FMODE_READ) && (!channel->num_wr_buffers))
|
|
return -ENODEV;
|
|
|
|
if ((filp->f_mode & FMODE_WRITE) && (!channel->num_rd_buffers))
|
|
return -ENODEV;
|
|
|
|
if ((filp->f_mode & FMODE_READ) && (filp->f_flags & O_NONBLOCK) &&
|
|
(channel->wr_synchronous || !channel->wr_allow_partial ||
|
|
!channel->wr_supports_nonempty)) {
|
|
dev_err(endpoint->dev,
|
|
"open() failed: O_NONBLOCK not allowed for read on this device\n");
|
|
return -ENODEV;
|
|
}
|
|
|
|
if ((filp->f_mode & FMODE_WRITE) && (filp->f_flags & O_NONBLOCK) &&
|
|
(channel->rd_synchronous || !channel->rd_allow_partial)) {
|
|
dev_err(endpoint->dev,
|
|
"open() failed: O_NONBLOCK not allowed for write on this device\n");
|
|
return -ENODEV;
|
|
}
|
|
|
|
/*
|
|
* Note: open() may block on getting mutexes despite O_NONBLOCK.
|
|
* This shouldn't occur normally, since multiple open of the same
|
|
* file descriptor is almost always prohibited anyhow
|
|
* (*_exclusive_open is normally set in real-life systems).
|
|
*/
|
|
|
|
if (filp->f_mode & FMODE_READ) {
|
|
rc = mutex_lock_interruptible(&channel->wr_mutex);
|
|
if (rc)
|
|
return rc;
|
|
}
|
|
|
|
if (filp->f_mode & FMODE_WRITE) {
|
|
rc = mutex_lock_interruptible(&channel->rd_mutex);
|
|
if (rc)
|
|
goto unlock_wr;
|
|
}
|
|
|
|
if ((filp->f_mode & FMODE_READ) &&
|
|
(channel->wr_ref_count != 0) &&
|
|
(channel->wr_exclusive_open)) {
|
|
rc = -EBUSY;
|
|
goto unlock;
|
|
}
|
|
|
|
if ((filp->f_mode & FMODE_WRITE) &&
|
|
(channel->rd_ref_count != 0) &&
|
|
(channel->rd_exclusive_open)) {
|
|
rc = -EBUSY;
|
|
goto unlock;
|
|
}
|
|
|
|
if (filp->f_mode & FMODE_READ) {
|
|
if (channel->wr_ref_count == 0) { /* First open of file */
|
|
/* Move the host to first buffer */
|
|
spin_lock_irqsave(&channel->wr_spinlock, flags);
|
|
channel->wr_host_buf_idx = 0;
|
|
channel->wr_host_buf_pos = 0;
|
|
channel->wr_fpga_buf_idx = -1;
|
|
channel->wr_empty = 1;
|
|
channel->wr_ready = 0;
|
|
channel->wr_sleepy = 1;
|
|
channel->wr_eof = -1;
|
|
channel->wr_hangup = 0;
|
|
|
|
spin_unlock_irqrestore(&channel->wr_spinlock, flags);
|
|
|
|
iowrite32(1 | (channel->chan_num << 1) |
|
|
(4 << 24) | /* Opcode 4, open channel */
|
|
((channel->wr_synchronous & 1) << 23),
|
|
channel->endpoint->registers +
|
|
fpga_buf_ctrl_reg);
|
|
}
|
|
|
|
channel->wr_ref_count++;
|
|
}
|
|
|
|
if (filp->f_mode & FMODE_WRITE) {
|
|
if (channel->rd_ref_count == 0) { /* First open of file */
|
|
/* Move the host to first buffer */
|
|
spin_lock_irqsave(&channel->rd_spinlock, flags);
|
|
channel->rd_host_buf_idx = 0;
|
|
channel->rd_host_buf_pos = 0;
|
|
channel->rd_leftovers[3] = 0; /* No leftovers. */
|
|
channel->rd_fpga_buf_idx = channel->num_rd_buffers - 1;
|
|
channel->rd_full = 0;
|
|
|
|
spin_unlock_irqrestore(&channel->rd_spinlock, flags);
|
|
|
|
iowrite32((channel->chan_num << 1) |
|
|
(4 << 24), /* Opcode 4, open channel */
|
|
channel->endpoint->registers +
|
|
fpga_buf_ctrl_reg);
|
|
}
|
|
|
|
channel->rd_ref_count++;
|
|
}
|
|
|
|
unlock:
|
|
if (filp->f_mode & FMODE_WRITE)
|
|
mutex_unlock(&channel->rd_mutex);
|
|
unlock_wr:
|
|
if (filp->f_mode & FMODE_READ)
|
|
mutex_unlock(&channel->wr_mutex);
|
|
|
|
if (!rc && (!channel->seekable))
|
|
return nonseekable_open(inode, filp);
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int xillybus_release(struct inode *inode, struct file *filp)
|
|
{
|
|
unsigned long flags;
|
|
struct xilly_channel *channel = filp->private_data;
|
|
|
|
int buf_idx;
|
|
int eof;
|
|
|
|
if (channel->endpoint->fatal_error)
|
|
return -EIO;
|
|
|
|
if (filp->f_mode & FMODE_WRITE) {
|
|
mutex_lock(&channel->rd_mutex);
|
|
|
|
channel->rd_ref_count--;
|
|
|
|
if (channel->rd_ref_count == 0) {
|
|
/*
|
|
* We rely on the kernel calling flush()
|
|
* before we get here.
|
|
*/
|
|
|
|
iowrite32((channel->chan_num << 1) | /* Channel ID */
|
|
(5 << 24), /* Opcode 5, close channel */
|
|
channel->endpoint->registers +
|
|
fpga_buf_ctrl_reg);
|
|
}
|
|
mutex_unlock(&channel->rd_mutex);
|
|
}
|
|
|
|
if (filp->f_mode & FMODE_READ) {
|
|
mutex_lock(&channel->wr_mutex);
|
|
|
|
channel->wr_ref_count--;
|
|
|
|
if (channel->wr_ref_count == 0) {
|
|
iowrite32(1 | (channel->chan_num << 1) |
|
|
(5 << 24), /* Opcode 5, close channel */
|
|
channel->endpoint->registers +
|
|
fpga_buf_ctrl_reg);
|
|
|
|
/*
|
|
* This is crazily cautious: We make sure that not
|
|
* only that we got an EOF (be it because we closed
|
|
* the channel or because of a user's EOF), but verify
|
|
* that it's one beyond the last buffer arrived, so
|
|
* we have no leftover buffers pending before wrapping
|
|
* up (which can only happen in asynchronous channels,
|
|
* BTW)
|
|
*/
|
|
|
|
while (1) {
|
|
spin_lock_irqsave(&channel->wr_spinlock,
|
|
flags);
|
|
buf_idx = channel->wr_fpga_buf_idx;
|
|
eof = channel->wr_eof;
|
|
channel->wr_sleepy = 1;
|
|
spin_unlock_irqrestore(&channel->wr_spinlock,
|
|
flags);
|
|
|
|
/*
|
|
* Check if eof points at the buffer after
|
|
* the last one the FPGA submitted. Note that
|
|
* no EOF is marked by negative eof.
|
|
*/
|
|
|
|
buf_idx++;
|
|
if (buf_idx == channel->num_wr_buffers)
|
|
buf_idx = 0;
|
|
|
|
if (buf_idx == eof)
|
|
break;
|
|
|
|
/*
|
|
* Steal extra 100 ms if awaken by interrupt.
|
|
* This is a simple workaround for an
|
|
* interrupt pending when entering, which would
|
|
* otherwise result in declaring the hardware
|
|
* non-responsive.
|
|
*/
|
|
|
|
if (wait_event_interruptible(
|
|
channel->wr_wait,
|
|
(!channel->wr_sleepy)))
|
|
msleep(100);
|
|
|
|
if (channel->wr_sleepy) {
|
|
mutex_unlock(&channel->wr_mutex);
|
|
dev_warn(channel->endpoint->dev,
|
|
"Hardware failed to respond to close command, therefore left in messy state.\n");
|
|
return -EINTR;
|
|
}
|
|
}
|
|
}
|
|
|
|
mutex_unlock(&channel->wr_mutex);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static loff_t xillybus_llseek(struct file *filp, loff_t offset, int whence)
|
|
{
|
|
struct xilly_channel *channel = filp->private_data;
|
|
loff_t pos = filp->f_pos;
|
|
int rc = 0;
|
|
|
|
/*
|
|
* Take both mutexes not allowing interrupts, since it seems like
|
|
* common applications don't expect an -EINTR here. Besides, multiple
|
|
* access to a single file descriptor on seekable devices is a mess
|
|
* anyhow.
|
|
*/
|
|
|
|
if (channel->endpoint->fatal_error)
|
|
return -EIO;
|
|
|
|
mutex_lock(&channel->wr_mutex);
|
|
mutex_lock(&channel->rd_mutex);
|
|
|
|
switch (whence) {
|
|
case SEEK_SET:
|
|
pos = offset;
|
|
break;
|
|
case SEEK_CUR:
|
|
pos += offset;
|
|
break;
|
|
case SEEK_END:
|
|
pos = offset; /* Going to the end => to the beginning */
|
|
break;
|
|
default:
|
|
rc = -EINVAL;
|
|
goto end;
|
|
}
|
|
|
|
/* In any case, we must finish on an element boundary */
|
|
if (pos & ((1 << channel->log2_element_size) - 1)) {
|
|
rc = -EINVAL;
|
|
goto end;
|
|
}
|
|
|
|
mutex_lock(&channel->endpoint->register_mutex);
|
|
|
|
iowrite32(pos >> channel->log2_element_size,
|
|
channel->endpoint->registers + fpga_buf_offset_reg);
|
|
|
|
iowrite32((channel->chan_num << 1) |
|
|
(6 << 24), /* Opcode 6, set address */
|
|
channel->endpoint->registers + fpga_buf_ctrl_reg);
|
|
|
|
mutex_unlock(&channel->endpoint->register_mutex);
|
|
|
|
end:
|
|
mutex_unlock(&channel->rd_mutex);
|
|
mutex_unlock(&channel->wr_mutex);
|
|
|
|
if (rc) /* Return error after releasing mutexes */
|
|
return rc;
|
|
|
|
filp->f_pos = pos;
|
|
|
|
/*
|
|
* Since seekable devices are allowed only when the channel is
|
|
* synchronous, we assume that there is no data pending in either
|
|
* direction (which holds true as long as no concurrent access on the
|
|
* file descriptor takes place).
|
|
* The only thing we may need to throw away is leftovers from partial
|
|
* write() flush.
|
|
*/
|
|
|
|
channel->rd_leftovers[3] = 0;
|
|
|
|
return pos;
|
|
}
|
|
|
|
static unsigned int xillybus_poll(struct file *filp, poll_table *wait)
|
|
{
|
|
struct xilly_channel *channel = filp->private_data;
|
|
unsigned int mask = 0;
|
|
unsigned long flags;
|
|
|
|
poll_wait(filp, &channel->endpoint->ep_wait, wait);
|
|
|
|
/*
|
|
* poll() won't play ball regarding read() channels which
|
|
* aren't asynchronous and support the nonempty message. Allowing
|
|
* that will create situations where data has been delivered at
|
|
* the FPGA, and users expecting select() to wake up, which it may
|
|
* not.
|
|
*/
|
|
|
|
if (!channel->wr_synchronous && channel->wr_supports_nonempty) {
|
|
poll_wait(filp, &channel->wr_wait, wait);
|
|
poll_wait(filp, &channel->wr_ready_wait, wait);
|
|
|
|
spin_lock_irqsave(&channel->wr_spinlock, flags);
|
|
if (!channel->wr_empty || channel->wr_ready)
|
|
mask |= POLLIN | POLLRDNORM;
|
|
|
|
if (channel->wr_hangup)
|
|
/*
|
|
* Not POLLHUP, because its behavior is in the
|
|
* mist, and POLLIN does what we want: Wake up
|
|
* the read file descriptor so it sees EOF.
|
|
*/
|
|
mask |= POLLIN | POLLRDNORM;
|
|
spin_unlock_irqrestore(&channel->wr_spinlock, flags);
|
|
}
|
|
|
|
/*
|
|
* If partial data write is disallowed on a write() channel,
|
|
* it's pointless to ever signal OK to write, because is could
|
|
* block despite some space being available.
|
|
*/
|
|
|
|
if (channel->rd_allow_partial) {
|
|
poll_wait(filp, &channel->rd_wait, wait);
|
|
|
|
spin_lock_irqsave(&channel->rd_spinlock, flags);
|
|
if (!channel->rd_full)
|
|
mask |= POLLOUT | POLLWRNORM;
|
|
spin_unlock_irqrestore(&channel->rd_spinlock, flags);
|
|
}
|
|
|
|
if (channel->endpoint->fatal_error)
|
|
mask |= POLLERR;
|
|
|
|
return mask;
|
|
}
|
|
|
|
static const struct file_operations xillybus_fops = {
|
|
.owner = THIS_MODULE,
|
|
.read = xillybus_read,
|
|
.write = xillybus_write,
|
|
.open = xillybus_open,
|
|
.flush = xillybus_flush,
|
|
.release = xillybus_release,
|
|
.llseek = xillybus_llseek,
|
|
.poll = xillybus_poll,
|
|
};
|
|
|
|
static int xillybus_init_chrdev(struct xilly_endpoint *endpoint,
|
|
const unsigned char *idt)
|
|
{
|
|
int rc;
|
|
dev_t dev;
|
|
int devnum, i, minor, major;
|
|
char devname[48];
|
|
struct device *device;
|
|
|
|
rc = alloc_chrdev_region(&dev, 0, /* minor start */
|
|
endpoint->num_channels,
|
|
xillyname);
|
|
if (rc) {
|
|
dev_warn(endpoint->dev, "Failed to obtain major/minors");
|
|
return rc;
|
|
}
|
|
|
|
endpoint->major = major = MAJOR(dev);
|
|
endpoint->lowest_minor = minor = MINOR(dev);
|
|
|
|
cdev_init(&endpoint->cdev, &xillybus_fops);
|
|
endpoint->cdev.owner = endpoint->ephw->owner;
|
|
rc = cdev_add(&endpoint->cdev, MKDEV(major, minor),
|
|
endpoint->num_channels);
|
|
if (rc) {
|
|
dev_warn(endpoint->dev, "Failed to add cdev. Aborting.\n");
|
|
goto unregister_chrdev;
|
|
}
|
|
|
|
idt++;
|
|
|
|
for (i = minor, devnum = 0;
|
|
devnum < endpoint->num_channels;
|
|
devnum++, i++) {
|
|
snprintf(devname, sizeof(devname)-1, "xillybus_%s", idt);
|
|
|
|
devname[sizeof(devname)-1] = 0; /* Should never matter */
|
|
|
|
while (*idt++)
|
|
/* Skip to next */;
|
|
|
|
device = device_create(xillybus_class,
|
|
NULL,
|
|
MKDEV(major, i),
|
|
NULL,
|
|
"%s", devname);
|
|
|
|
if (IS_ERR(device)) {
|
|
dev_warn(endpoint->dev,
|
|
"Failed to create %s device. Aborting.\n",
|
|
devname);
|
|
rc = -ENODEV;
|
|
goto unroll_device_create;
|
|
}
|
|
}
|
|
|
|
dev_info(endpoint->dev, "Created %d device files.\n",
|
|
endpoint->num_channels);
|
|
return 0; /* succeed */
|
|
|
|
unroll_device_create:
|
|
devnum--; i--;
|
|
for (; devnum >= 0; devnum--, i--)
|
|
device_destroy(xillybus_class, MKDEV(major, i));
|
|
|
|
cdev_del(&endpoint->cdev);
|
|
unregister_chrdev:
|
|
unregister_chrdev_region(MKDEV(major, minor), endpoint->num_channels);
|
|
|
|
return rc;
|
|
}
|
|
|
|
static void xillybus_cleanup_chrdev(struct xilly_endpoint *endpoint)
|
|
{
|
|
int minor;
|
|
|
|
for (minor = endpoint->lowest_minor;
|
|
minor < (endpoint->lowest_minor + endpoint->num_channels);
|
|
minor++)
|
|
device_destroy(xillybus_class, MKDEV(endpoint->major, minor));
|
|
cdev_del(&endpoint->cdev);
|
|
unregister_chrdev_region(MKDEV(endpoint->major,
|
|
endpoint->lowest_minor),
|
|
endpoint->num_channels);
|
|
|
|
dev_info(endpoint->dev, "Removed %d device files.\n",
|
|
endpoint->num_channels);
|
|
}
|
|
|
|
struct xilly_endpoint *xillybus_init_endpoint(struct pci_dev *pdev,
|
|
struct device *dev,
|
|
struct xilly_endpoint_hardware
|
|
*ephw)
|
|
{
|
|
struct xilly_endpoint *endpoint;
|
|
|
|
endpoint = devm_kzalloc(dev, sizeof(*endpoint), GFP_KERNEL);
|
|
if (!endpoint)
|
|
return NULL;
|
|
|
|
endpoint->pdev = pdev;
|
|
endpoint->dev = dev;
|
|
endpoint->ephw = ephw;
|
|
endpoint->msg_counter = 0x0b;
|
|
endpoint->failed_messages = 0;
|
|
endpoint->fatal_error = 0;
|
|
|
|
init_waitqueue_head(&endpoint->ep_wait);
|
|
mutex_init(&endpoint->register_mutex);
|
|
|
|
return endpoint;
|
|
}
|
|
EXPORT_SYMBOL(xillybus_init_endpoint);
|
|
|
|
static int xilly_quiesce(struct xilly_endpoint *endpoint)
|
|
{
|
|
long t;
|
|
|
|
endpoint->idtlen = -1;
|
|
|
|
iowrite32((u32) (endpoint->dma_using_dac & 0x0001),
|
|
endpoint->registers + fpga_dma_control_reg);
|
|
|
|
t = wait_event_interruptible_timeout(endpoint->ep_wait,
|
|
(endpoint->idtlen >= 0),
|
|
XILLY_TIMEOUT);
|
|
if (t <= 0) {
|
|
dev_err(endpoint->dev,
|
|
"Failed to quiesce the device on exit.\n");
|
|
return -ENODEV;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int xillybus_endpoint_discovery(struct xilly_endpoint *endpoint)
|
|
{
|
|
int rc;
|
|
long t;
|
|
|
|
void *bootstrap_resources;
|
|
int idtbuffersize = (1 << PAGE_SHIFT);
|
|
struct device *dev = endpoint->dev;
|
|
|
|
/*
|
|
* The bogus IDT is used during bootstrap for allocating the initial
|
|
* message buffer, and then the message buffer and space for the IDT
|
|
* itself. The initial message buffer is of a single page's size, but
|
|
* it's soon replaced with a more modest one (and memory is freed).
|
|
*/
|
|
|
|
unsigned char bogus_idt[8] = { 1, 224, (PAGE_SHIFT)-2, 0,
|
|
3, 192, PAGE_SHIFT, 0 };
|
|
struct xilly_idt_handle idt_handle;
|
|
|
|
/*
|
|
* Writing the value 0x00000001 to Endianness register signals which
|
|
* endianness this processor is using, so the FPGA can swap words as
|
|
* necessary.
|
|
*/
|
|
|
|
iowrite32(1, endpoint->registers + fpga_endian_reg);
|
|
|
|
/* Bootstrap phase I: Allocate temporary message buffer */
|
|
|
|
bootstrap_resources = devres_open_group(dev, NULL, GFP_KERNEL);
|
|
if (!bootstrap_resources)
|
|
return -ENOMEM;
|
|
|
|
endpoint->num_channels = 0;
|
|
|
|
rc = xilly_setupchannels(endpoint, bogus_idt, 1);
|
|
if (rc)
|
|
return rc;
|
|
|
|
/* Clear the message subsystem (and counter in particular) */
|
|
iowrite32(0x04, endpoint->registers + fpga_msg_ctrl_reg);
|
|
|
|
endpoint->idtlen = -1;
|
|
|
|
/*
|
|
* Set DMA 32/64 bit mode, quiesce the device (?!) and get IDT
|
|
* buffer size.
|
|
*/
|
|
iowrite32((u32) (endpoint->dma_using_dac & 0x0001),
|
|
endpoint->registers + fpga_dma_control_reg);
|
|
|
|
t = wait_event_interruptible_timeout(endpoint->ep_wait,
|
|
(endpoint->idtlen >= 0),
|
|
XILLY_TIMEOUT);
|
|
if (t <= 0) {
|
|
dev_err(endpoint->dev, "No response from FPGA. Aborting.\n");
|
|
return -ENODEV;
|
|
}
|
|
|
|
/* Enable DMA */
|
|
iowrite32((u32) (0x0002 | (endpoint->dma_using_dac & 0x0001)),
|
|
endpoint->registers + fpga_dma_control_reg);
|
|
|
|
/* Bootstrap phase II: Allocate buffer for IDT and obtain it */
|
|
while (endpoint->idtlen >= idtbuffersize) {
|
|
idtbuffersize *= 2;
|
|
bogus_idt[6]++;
|
|
}
|
|
|
|
endpoint->num_channels = 1;
|
|
|
|
rc = xilly_setupchannels(endpoint, bogus_idt, 2);
|
|
if (rc)
|
|
goto failed_idt;
|
|
|
|
rc = xilly_obtain_idt(endpoint);
|
|
if (rc)
|
|
goto failed_idt;
|
|
|
|
rc = xilly_scan_idt(endpoint, &idt_handle);
|
|
if (rc)
|
|
goto failed_idt;
|
|
|
|
devres_close_group(dev, bootstrap_resources);
|
|
|
|
/* Bootstrap phase III: Allocate buffers according to IDT */
|
|
|
|
rc = xilly_setupchannels(endpoint,
|
|
idt_handle.chandesc,
|
|
idt_handle.entries);
|
|
if (rc)
|
|
goto failed_idt;
|
|
|
|
/*
|
|
* endpoint is now completely configured. We put it on the list
|
|
* available to open() before registering the char device(s)
|
|
*/
|
|
|
|
mutex_lock(&ep_list_lock);
|
|
list_add_tail(&endpoint->ep_list, &list_of_endpoints);
|
|
mutex_unlock(&ep_list_lock);
|
|
|
|
rc = xillybus_init_chrdev(endpoint, idt_handle.idt);
|
|
if (rc)
|
|
goto failed_chrdevs;
|
|
|
|
devres_release_group(dev, bootstrap_resources);
|
|
|
|
return 0;
|
|
|
|
failed_chrdevs:
|
|
mutex_lock(&ep_list_lock);
|
|
list_del(&endpoint->ep_list);
|
|
mutex_unlock(&ep_list_lock);
|
|
|
|
failed_idt:
|
|
xilly_quiesce(endpoint);
|
|
flush_workqueue(xillybus_wq);
|
|
|
|
return rc;
|
|
}
|
|
EXPORT_SYMBOL(xillybus_endpoint_discovery);
|
|
|
|
void xillybus_endpoint_remove(struct xilly_endpoint *endpoint)
|
|
{
|
|
xillybus_cleanup_chrdev(endpoint);
|
|
|
|
mutex_lock(&ep_list_lock);
|
|
list_del(&endpoint->ep_list);
|
|
mutex_unlock(&ep_list_lock);
|
|
|
|
xilly_quiesce(endpoint);
|
|
|
|
/*
|
|
* Flushing is done upon endpoint release to prevent access to memory
|
|
* just about to be released. This makes the quiesce complete.
|
|
*/
|
|
flush_workqueue(xillybus_wq);
|
|
}
|
|
EXPORT_SYMBOL(xillybus_endpoint_remove);
|
|
|
|
static int __init xillybus_init(void)
|
|
{
|
|
mutex_init(&ep_list_lock);
|
|
|
|
xillybus_class = class_create(THIS_MODULE, xillyname);
|
|
if (IS_ERR(xillybus_class))
|
|
return PTR_ERR(xillybus_class);
|
|
|
|
xillybus_wq = alloc_workqueue(xillyname, 0, 0);
|
|
if (!xillybus_wq) {
|
|
class_destroy(xillybus_class);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void __exit xillybus_exit(void)
|
|
{
|
|
/* flush_workqueue() was called for each endpoint released */
|
|
destroy_workqueue(xillybus_wq);
|
|
|
|
class_destroy(xillybus_class);
|
|
}
|
|
|
|
module_init(xillybus_init);
|
|
module_exit(xillybus_exit);
|