linux-sg2042/drivers/input/rmi4/rmi_driver.c

1275 lines
31 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2011-2016 Synaptics Incorporated
* Copyright (c) 2011 Unixphere
*
* This driver provides the core support for a single RMI4-based device.
*
* The RMI4 specification can be found here (URL split for line length):
*
* http://www.synaptics.com/sites/default/files/
* 511-000136-01-Rev-E-RMI4-Interfacing-Guide.pdf
*/
#include <linux/bitmap.h>
#include <linux/delay.h>
#include <linux/fs.h>
#include <linux/irq.h>
#include <linux/pm.h>
#include <linux/slab.h>
#include <linux/of.h>
#include <linux/irqdomain.h>
#include <uapi/linux/input.h>
#include <linux/rmi.h>
#include "rmi_bus.h"
#include "rmi_driver.h"
#define HAS_NONSTANDARD_PDT_MASK 0x40
#define RMI4_MAX_PAGE 0xff
#define RMI4_PAGE_SIZE 0x100
#define RMI4_PAGE_MASK 0xFF00
#define RMI_DEVICE_RESET_CMD 0x01
#define DEFAULT_RESET_DELAY_MS 100
void rmi_free_function_list(struct rmi_device *rmi_dev)
{
struct rmi_function *fn, *tmp;
struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
rmi_dbg(RMI_DEBUG_CORE, &rmi_dev->dev, "Freeing function list\n");
/* Doing it in the reverse order so F01 will be removed last */
list_for_each_entry_safe_reverse(fn, tmp,
&data->function_list, node) {
list_del(&fn->node);
rmi_unregister_function(fn);
}
devm_kfree(&rmi_dev->dev, data->irq_memory);
data->irq_memory = NULL;
data->irq_status = NULL;
data->fn_irq_bits = NULL;
data->current_irq_mask = NULL;
data->new_irq_mask = NULL;
data->f01_container = NULL;
data->f34_container = NULL;
}
static int reset_one_function(struct rmi_function *fn)
{
struct rmi_function_handler *fh;
int retval = 0;
if (!fn || !fn->dev.driver)
return 0;
fh = to_rmi_function_handler(fn->dev.driver);
if (fh->reset) {
retval = fh->reset(fn);
if (retval < 0)
dev_err(&fn->dev, "Reset failed with code %d.\n",
retval);
}
return retval;
}
static int configure_one_function(struct rmi_function *fn)
{
struct rmi_function_handler *fh;
int retval = 0;
if (!fn || !fn->dev.driver)
return 0;
fh = to_rmi_function_handler(fn->dev.driver);
if (fh->config) {
retval = fh->config(fn);
if (retval < 0)
dev_err(&fn->dev, "Config failed with code %d.\n",
retval);
}
return retval;
}
static int rmi_driver_process_reset_requests(struct rmi_device *rmi_dev)
{
struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
struct rmi_function *entry;
int retval;
list_for_each_entry(entry, &data->function_list, node) {
retval = reset_one_function(entry);
if (retval < 0)
return retval;
}
return 0;
}
static int rmi_driver_process_config_requests(struct rmi_device *rmi_dev)
{
struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
struct rmi_function *entry;
int retval;
list_for_each_entry(entry, &data->function_list, node) {
retval = configure_one_function(entry);
if (retval < 0)
return retval;
}
return 0;
}
static int rmi_process_interrupt_requests(struct rmi_device *rmi_dev)
{
struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
struct device *dev = &rmi_dev->dev;
int i;
int error;
if (!data)
return 0;
if (!data->attn_data.data) {
error = rmi_read_block(rmi_dev,
data->f01_container->fd.data_base_addr + 1,
data->irq_status, data->num_of_irq_regs);
if (error < 0) {
dev_err(dev, "Failed to read irqs, code=%d\n", error);
return error;
}
}
mutex_lock(&data->irq_mutex);
bitmap_and(data->irq_status, data->irq_status, data->current_irq_mask,
data->irq_count);
/*
* At this point, irq_status has all bits that are set in the
* interrupt status register and are enabled.
*/
mutex_unlock(&data->irq_mutex);
for_each_set_bit(i, data->irq_status, data->irq_count)
handle_nested_irq(irq_find_mapping(data->irqdomain, i));
if (data->input)
input_sync(data->input);
return 0;
}
void rmi_set_attn_data(struct rmi_device *rmi_dev, unsigned long irq_status,
void *data, size_t size)
{
struct rmi_driver_data *drvdata = dev_get_drvdata(&rmi_dev->dev);
struct rmi4_attn_data attn_data;
void *fifo_data;
if (!drvdata->enabled)
return;
fifo_data = kmemdup(data, size, GFP_ATOMIC);
if (!fifo_data)
return;
attn_data.irq_status = irq_status;
attn_data.size = size;
attn_data.data = fifo_data;
kfifo_put(&drvdata->attn_fifo, attn_data);
}
EXPORT_SYMBOL_GPL(rmi_set_attn_data);
static irqreturn_t rmi_irq_fn(int irq, void *dev_id)
{
struct rmi_device *rmi_dev = dev_id;
struct rmi_driver_data *drvdata = dev_get_drvdata(&rmi_dev->dev);
struct rmi4_attn_data attn_data = {0};
int ret, count;
count = kfifo_get(&drvdata->attn_fifo, &attn_data);
if (count) {
*(drvdata->irq_status) = attn_data.irq_status;
drvdata->attn_data = attn_data;
}
ret = rmi_process_interrupt_requests(rmi_dev);
if (ret)
rmi_dbg(RMI_DEBUG_CORE, &rmi_dev->dev,
"Failed to process interrupt request: %d\n", ret);
if (count) {
kfree(attn_data.data);
attn_data.data = NULL;
}
if (!kfifo_is_empty(&drvdata->attn_fifo))
return rmi_irq_fn(irq, dev_id);
return IRQ_HANDLED;
}
static int rmi_irq_init(struct rmi_device *rmi_dev)
{
struct rmi_device_platform_data *pdata = rmi_get_platform_data(rmi_dev);
struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
int irq_flags = irq_get_trigger_type(pdata->irq);
int ret;
if (!irq_flags)
irq_flags = IRQF_TRIGGER_LOW;
ret = devm_request_threaded_irq(&rmi_dev->dev, pdata->irq, NULL,
rmi_irq_fn, irq_flags | IRQF_ONESHOT,
dev_driver_string(rmi_dev->xport->dev),
rmi_dev);
if (ret < 0) {
dev_err(&rmi_dev->dev, "Failed to register interrupt %d\n",
pdata->irq);
return ret;
}
data->enabled = true;
return 0;
}
struct rmi_function *rmi_find_function(struct rmi_device *rmi_dev, u8 number)
{
struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
struct rmi_function *entry;
list_for_each_entry(entry, &data->function_list, node) {
if (entry->fd.function_number == number)
return entry;
}
return NULL;
}
static int suspend_one_function(struct rmi_function *fn)
{
struct rmi_function_handler *fh;
int retval = 0;
if (!fn || !fn->dev.driver)
return 0;
fh = to_rmi_function_handler(fn->dev.driver);
if (fh->suspend) {
retval = fh->suspend(fn);
if (retval < 0)
dev_err(&fn->dev, "Suspend failed with code %d.\n",
retval);
}
return retval;
}
static int rmi_suspend_functions(struct rmi_device *rmi_dev)
{
struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
struct rmi_function *entry;
int retval;
list_for_each_entry(entry, &data->function_list, node) {
retval = suspend_one_function(entry);
if (retval < 0)
return retval;
}
return 0;
}
static int resume_one_function(struct rmi_function *fn)
{
struct rmi_function_handler *fh;
int retval = 0;
if (!fn || !fn->dev.driver)
return 0;
fh = to_rmi_function_handler(fn->dev.driver);
if (fh->resume) {
retval = fh->resume(fn);
if (retval < 0)
dev_err(&fn->dev, "Resume failed with code %d.\n",
retval);
}
return retval;
}
static int rmi_resume_functions(struct rmi_device *rmi_dev)
{
struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
struct rmi_function *entry;
int retval;
list_for_each_entry(entry, &data->function_list, node) {
retval = resume_one_function(entry);
if (retval < 0)
return retval;
}
return 0;
}
int rmi_enable_sensor(struct rmi_device *rmi_dev)
{
int retval = 0;
retval = rmi_driver_process_config_requests(rmi_dev);
if (retval < 0)
return retval;
return rmi_process_interrupt_requests(rmi_dev);
}
/**
* rmi_driver_set_input_params - set input device id and other data.
*
* @rmi_dev: Pointer to an RMI device
* @input: Pointer to input device
*
*/
static int rmi_driver_set_input_params(struct rmi_device *rmi_dev,
struct input_dev *input)
{
input->name = SYNAPTICS_INPUT_DEVICE_NAME;
input->id.vendor = SYNAPTICS_VENDOR_ID;
input->id.bustype = BUS_RMI;
return 0;
}
static void rmi_driver_set_input_name(struct rmi_device *rmi_dev,
struct input_dev *input)
{
struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
const char *device_name = rmi_f01_get_product_ID(data->f01_container);
char *name;
name = devm_kasprintf(&rmi_dev->dev, GFP_KERNEL,
"Synaptics %s", device_name);
if (!name)
return;
input->name = name;
}
static int rmi_driver_set_irq_bits(struct rmi_device *rmi_dev,
unsigned long *mask)
{
int error = 0;
struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
struct device *dev = &rmi_dev->dev;
mutex_lock(&data->irq_mutex);
bitmap_or(data->new_irq_mask,
data->current_irq_mask, mask, data->irq_count);
error = rmi_write_block(rmi_dev,
data->f01_container->fd.control_base_addr + 1,
data->new_irq_mask, data->num_of_irq_regs);
if (error < 0) {
dev_err(dev, "%s: Failed to change enabled interrupts!",
__func__);
goto error_unlock;
}
bitmap_copy(data->current_irq_mask, data->new_irq_mask,
data->num_of_irq_regs);
error_unlock:
mutex_unlock(&data->irq_mutex);
return error;
}
static int rmi_driver_clear_irq_bits(struct rmi_device *rmi_dev,
unsigned long *mask)
{
int error = 0;
struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
struct device *dev = &rmi_dev->dev;
mutex_lock(&data->irq_mutex);
bitmap_andnot(data->new_irq_mask,
data->current_irq_mask, mask, data->irq_count);
error = rmi_write_block(rmi_dev,
data->f01_container->fd.control_base_addr + 1,
data->new_irq_mask, data->num_of_irq_regs);
if (error < 0) {
dev_err(dev, "%s: Failed to change enabled interrupts!",
__func__);
goto error_unlock;
}
bitmap_copy(data->current_irq_mask, data->new_irq_mask,
data->num_of_irq_regs);
error_unlock:
mutex_unlock(&data->irq_mutex);
return error;
}
static int rmi_driver_reset_handler(struct rmi_device *rmi_dev)
{
struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
int error;
/*
* Can get called before the driver is fully ready to deal with
* this situation.
*/
if (!data || !data->f01_container) {
dev_warn(&rmi_dev->dev,
"Not ready to handle reset yet!\n");
return 0;
}
error = rmi_read_block(rmi_dev,
data->f01_container->fd.control_base_addr + 1,
data->current_irq_mask, data->num_of_irq_regs);
if (error < 0) {
dev_err(&rmi_dev->dev, "%s: Failed to read current IRQ mask.\n",
__func__);
return error;
}
error = rmi_driver_process_reset_requests(rmi_dev);
if (error < 0)
return error;
error = rmi_driver_process_config_requests(rmi_dev);
if (error < 0)
return error;
return 0;
}
static int rmi_read_pdt_entry(struct rmi_device *rmi_dev,
struct pdt_entry *entry, u16 pdt_address)
{
u8 buf[RMI_PDT_ENTRY_SIZE];
int error;
error = rmi_read_block(rmi_dev, pdt_address, buf, RMI_PDT_ENTRY_SIZE);
if (error) {
dev_err(&rmi_dev->dev, "Read PDT entry at %#06x failed, code: %d.\n",
pdt_address, error);
return error;
}
entry->page_start = pdt_address & RMI4_PAGE_MASK;
entry->query_base_addr = buf[0];
entry->command_base_addr = buf[1];
entry->control_base_addr = buf[2];
entry->data_base_addr = buf[3];
entry->interrupt_source_count = buf[4] & RMI_PDT_INT_SOURCE_COUNT_MASK;
entry->function_version = (buf[4] & RMI_PDT_FUNCTION_VERSION_MASK) >> 5;
entry->function_number = buf[5];
return 0;
}
static void rmi_driver_copy_pdt_to_fd(const struct pdt_entry *pdt,
struct rmi_function_descriptor *fd)
{
fd->query_base_addr = pdt->query_base_addr + pdt->page_start;
fd->command_base_addr = pdt->command_base_addr + pdt->page_start;
fd->control_base_addr = pdt->control_base_addr + pdt->page_start;
fd->data_base_addr = pdt->data_base_addr + pdt->page_start;
fd->function_number = pdt->function_number;
fd->interrupt_source_count = pdt->interrupt_source_count;
fd->function_version = pdt->function_version;
}
#define RMI_SCAN_CONTINUE 0
#define RMI_SCAN_DONE 1
static int rmi_scan_pdt_page(struct rmi_device *rmi_dev,
int page,
int *empty_pages,
void *ctx,
int (*callback)(struct rmi_device *rmi_dev,
void *ctx,
const struct pdt_entry *entry))
{
struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
struct pdt_entry pdt_entry;
u16 page_start = RMI4_PAGE_SIZE * page;
u16 pdt_start = page_start + PDT_START_SCAN_LOCATION;
u16 pdt_end = page_start + PDT_END_SCAN_LOCATION;
u16 addr;
int error;
int retval;
for (addr = pdt_start; addr >= pdt_end; addr -= RMI_PDT_ENTRY_SIZE) {
error = rmi_read_pdt_entry(rmi_dev, &pdt_entry, addr);
if (error)
return error;
if (RMI4_END_OF_PDT(pdt_entry.function_number))
break;
retval = callback(rmi_dev, ctx, &pdt_entry);
if (retval != RMI_SCAN_CONTINUE)
return retval;
}
/*
* Count number of empty PDT pages. If a gap of two pages
* or more is found, stop scanning.
*/
if (addr == pdt_start)
++*empty_pages;
else
*empty_pages = 0;
return (data->bootloader_mode || *empty_pages >= 2) ?
RMI_SCAN_DONE : RMI_SCAN_CONTINUE;
}
int rmi_scan_pdt(struct rmi_device *rmi_dev, void *ctx,
int (*callback)(struct rmi_device *rmi_dev,
void *ctx, const struct pdt_entry *entry))
{
int page;
int empty_pages = 0;
int retval = RMI_SCAN_DONE;
for (page = 0; page <= RMI4_MAX_PAGE; page++) {
retval = rmi_scan_pdt_page(rmi_dev, page, &empty_pages,
ctx, callback);
if (retval != RMI_SCAN_CONTINUE)
break;
}
return retval < 0 ? retval : 0;
}
int rmi_read_register_desc(struct rmi_device *d, u16 addr,
struct rmi_register_descriptor *rdesc)
{
int ret;
u8 size_presence_reg;
u8 buf[35];
int presense_offset = 1;
u8 *struct_buf;
int reg;
int offset = 0;
int map_offset = 0;
int i;
int b;
/*
* The first register of the register descriptor is the size of
* the register descriptor's presense register.
*/
ret = rmi_read(d, addr, &size_presence_reg);
if (ret)
return ret;
++addr;
if (size_presence_reg < 0 || size_presence_reg > 35)
return -EIO;
memset(buf, 0, sizeof(buf));
/*
* The presence register contains the size of the register structure
* and a bitmap which identified which packet registers are present
* for this particular register type (ie query, control, or data).
*/
ret = rmi_read_block(d, addr, buf, size_presence_reg);
if (ret)
return ret;
++addr;
if (buf[0] == 0) {
presense_offset = 3;
rdesc->struct_size = buf[1] | (buf[2] << 8);
} else {
rdesc->struct_size = buf[0];
}
for (i = presense_offset; i < size_presence_reg; i++) {
for (b = 0; b < 8; b++) {
if (buf[i] & (0x1 << b))
bitmap_set(rdesc->presense_map, map_offset, 1);
++map_offset;
}
}
rdesc->num_registers = bitmap_weight(rdesc->presense_map,
RMI_REG_DESC_PRESENSE_BITS);
rdesc->registers = devm_kcalloc(&d->dev,
rdesc->num_registers,
sizeof(struct rmi_register_desc_item),
GFP_KERNEL);
if (!rdesc->registers)
return -ENOMEM;
/*
* Allocate a temporary buffer to hold the register structure.
* I'm not using devm_kzalloc here since it will not be retained
* after exiting this function
*/
struct_buf = kzalloc(rdesc->struct_size, GFP_KERNEL);
if (!struct_buf)
return -ENOMEM;
/*
* The register structure contains information about every packet
* register of this type. This includes the size of the packet
* register and a bitmap of all subpackets contained in the packet
* register.
*/
ret = rmi_read_block(d, addr, struct_buf, rdesc->struct_size);
if (ret)
goto free_struct_buff;
reg = find_first_bit(rdesc->presense_map, RMI_REG_DESC_PRESENSE_BITS);
for (i = 0; i < rdesc->num_registers; i++) {
struct rmi_register_desc_item *item = &rdesc->registers[i];
int reg_size = struct_buf[offset];
++offset;
if (reg_size == 0) {
reg_size = struct_buf[offset] |
(struct_buf[offset + 1] << 8);
offset += 2;
}
if (reg_size == 0) {
reg_size = struct_buf[offset] |
(struct_buf[offset + 1] << 8) |
(struct_buf[offset + 2] << 16) |
(struct_buf[offset + 3] << 24);
offset += 4;
}
item->reg = reg;
item->reg_size = reg_size;
map_offset = 0;
do {
for (b = 0; b < 7; b++) {
if (struct_buf[offset] & (0x1 << b))
bitmap_set(item->subpacket_map,
map_offset, 1);
++map_offset;
}
} while (struct_buf[offset++] & 0x80);
item->num_subpackets = bitmap_weight(item->subpacket_map,
RMI_REG_DESC_SUBPACKET_BITS);
rmi_dbg(RMI_DEBUG_CORE, &d->dev,
"%s: reg: %d reg size: %ld subpackets: %d\n", __func__,
item->reg, item->reg_size, item->num_subpackets);
reg = find_next_bit(rdesc->presense_map,
RMI_REG_DESC_PRESENSE_BITS, reg + 1);
}
free_struct_buff:
kfree(struct_buf);
return ret;
}
const struct rmi_register_desc_item *rmi_get_register_desc_item(
struct rmi_register_descriptor *rdesc, u16 reg)
{
const struct rmi_register_desc_item *item;
int i;
for (i = 0; i < rdesc->num_registers; i++) {
item = &rdesc->registers[i];
if (item->reg == reg)
return item;
}
return NULL;
}
size_t rmi_register_desc_calc_size(struct rmi_register_descriptor *rdesc)
{
const struct rmi_register_desc_item *item;
int i;
size_t size = 0;
for (i = 0; i < rdesc->num_registers; i++) {
item = &rdesc->registers[i];
size += item->reg_size;
}
return size;
}
/* Compute the register offset relative to the base address */
int rmi_register_desc_calc_reg_offset(
struct rmi_register_descriptor *rdesc, u16 reg)
{
const struct rmi_register_desc_item *item;
int offset = 0;
int i;
for (i = 0; i < rdesc->num_registers; i++) {
item = &rdesc->registers[i];
if (item->reg == reg)
return offset;
++offset;
}
return -1;
}
bool rmi_register_desc_has_subpacket(const struct rmi_register_desc_item *item,
u8 subpacket)
{
return find_next_bit(item->subpacket_map, RMI_REG_DESC_PRESENSE_BITS,
subpacket) == subpacket;
}
static int rmi_check_bootloader_mode(struct rmi_device *rmi_dev,
const struct pdt_entry *pdt)
{
struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
int ret;
u8 status;
if (pdt->function_number == 0x34 && pdt->function_version > 1) {
ret = rmi_read(rmi_dev, pdt->data_base_addr, &status);
if (ret) {
dev_err(&rmi_dev->dev,
"Failed to read F34 status: %d.\n", ret);
return ret;
}
if (status & BIT(7))
data->bootloader_mode = true;
} else if (pdt->function_number == 0x01) {
ret = rmi_read(rmi_dev, pdt->data_base_addr, &status);
if (ret) {
dev_err(&rmi_dev->dev,
"Failed to read F01 status: %d.\n", ret);
return ret;
}
if (status & BIT(6))
data->bootloader_mode = true;
}
return 0;
}
static int rmi_count_irqs(struct rmi_device *rmi_dev,
void *ctx, const struct pdt_entry *pdt)
{
int *irq_count = ctx;
int ret;
*irq_count += pdt->interrupt_source_count;
ret = rmi_check_bootloader_mode(rmi_dev, pdt);
if (ret < 0)
return ret;
return RMI_SCAN_CONTINUE;
}
int rmi_initial_reset(struct rmi_device *rmi_dev, void *ctx,
const struct pdt_entry *pdt)
{
int error;
if (pdt->function_number == 0x01) {
u16 cmd_addr = pdt->page_start + pdt->command_base_addr;
u8 cmd_buf = RMI_DEVICE_RESET_CMD;
const struct rmi_device_platform_data *pdata =
rmi_get_platform_data(rmi_dev);
if (rmi_dev->xport->ops->reset) {
error = rmi_dev->xport->ops->reset(rmi_dev->xport,
cmd_addr);
if (error)
return error;
return RMI_SCAN_DONE;
}
rmi_dbg(RMI_DEBUG_CORE, &rmi_dev->dev, "Sending reset\n");
error = rmi_write_block(rmi_dev, cmd_addr, &cmd_buf, 1);
if (error) {
dev_err(&rmi_dev->dev,
"Initial reset failed. Code = %d.\n", error);
return error;
}
mdelay(pdata->reset_delay_ms ?: DEFAULT_RESET_DELAY_MS);
return RMI_SCAN_DONE;
}
/* F01 should always be on page 0. If we don't find it there, fail. */
return pdt->page_start == 0 ? RMI_SCAN_CONTINUE : -ENODEV;
}
static int rmi_create_function(struct rmi_device *rmi_dev,
void *ctx, const struct pdt_entry *pdt)
{
struct device *dev = &rmi_dev->dev;
struct rmi_driver_data *data = dev_get_drvdata(dev);
int *current_irq_count = ctx;
struct rmi_function *fn;
int i;
int error;
rmi_dbg(RMI_DEBUG_CORE, dev, "Initializing F%02X.\n",
pdt->function_number);
fn = kzalloc(sizeof(struct rmi_function) +
BITS_TO_LONGS(data->irq_count) * sizeof(unsigned long),
GFP_KERNEL);
if (!fn) {
dev_err(dev, "Failed to allocate memory for F%02X\n",
pdt->function_number);
return -ENOMEM;
}
INIT_LIST_HEAD(&fn->node);
rmi_driver_copy_pdt_to_fd(pdt, &fn->fd);
fn->rmi_dev = rmi_dev;
fn->num_of_irqs = pdt->interrupt_source_count;
fn->irq_pos = *current_irq_count;
*current_irq_count += fn->num_of_irqs;
for (i = 0; i < fn->num_of_irqs; i++)
set_bit(fn->irq_pos + i, fn->irq_mask);
error = rmi_register_function(fn);
if (error)
return error;
if (pdt->function_number == 0x01)
data->f01_container = fn;
else if (pdt->function_number == 0x34)
data->f34_container = fn;
list_add_tail(&fn->node, &data->function_list);
return RMI_SCAN_CONTINUE;
}
void rmi_enable_irq(struct rmi_device *rmi_dev, bool clear_wake)
{
struct rmi_device_platform_data *pdata = rmi_get_platform_data(rmi_dev);
struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
int irq = pdata->irq;
int irq_flags;
int retval;
mutex_lock(&data->enabled_mutex);
if (data->enabled)
goto out;
enable_irq(irq);
data->enabled = true;
if (clear_wake && device_may_wakeup(rmi_dev->xport->dev)) {
retval = disable_irq_wake(irq);
if (retval)
dev_warn(&rmi_dev->dev,
"Failed to disable irq for wake: %d\n",
retval);
}
/*
* Call rmi_process_interrupt_requests() after enabling irq,
* otherwise we may lose interrupt on edge-triggered systems.
*/
irq_flags = irq_get_trigger_type(pdata->irq);
if (irq_flags & IRQ_TYPE_EDGE_BOTH)
rmi_process_interrupt_requests(rmi_dev);
out:
mutex_unlock(&data->enabled_mutex);
}
void rmi_disable_irq(struct rmi_device *rmi_dev, bool enable_wake)
{
struct rmi_device_platform_data *pdata = rmi_get_platform_data(rmi_dev);
struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
struct rmi4_attn_data attn_data = {0};
int irq = pdata->irq;
int retval, count;
mutex_lock(&data->enabled_mutex);
if (!data->enabled)
goto out;
data->enabled = false;
disable_irq(irq);
if (enable_wake && device_may_wakeup(rmi_dev->xport->dev)) {
retval = enable_irq_wake(irq);
if (retval)
dev_warn(&rmi_dev->dev,
"Failed to enable irq for wake: %d\n",
retval);
}
/* make sure the fifo is clean */
while (!kfifo_is_empty(&data->attn_fifo)) {
count = kfifo_get(&data->attn_fifo, &attn_data);
if (count)
kfree(attn_data.data);
}
out:
mutex_unlock(&data->enabled_mutex);
}
int rmi_driver_suspend(struct rmi_device *rmi_dev, bool enable_wake)
{
int retval;
retval = rmi_suspend_functions(rmi_dev);
if (retval)
dev_warn(&rmi_dev->dev, "Failed to suspend functions: %d\n",
retval);
rmi_disable_irq(rmi_dev, enable_wake);
return retval;
}
EXPORT_SYMBOL_GPL(rmi_driver_suspend);
int rmi_driver_resume(struct rmi_device *rmi_dev, bool clear_wake)
{
int retval;
rmi_enable_irq(rmi_dev, clear_wake);
retval = rmi_resume_functions(rmi_dev);
if (retval)
dev_warn(&rmi_dev->dev, "Failed to suspend functions: %d\n",
retval);
return retval;
}
EXPORT_SYMBOL_GPL(rmi_driver_resume);
static int rmi_driver_remove(struct device *dev)
{
struct rmi_device *rmi_dev = to_rmi_device(dev);
struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
rmi_disable_irq(rmi_dev, false);
irq_domain_remove(data->irqdomain);
data->irqdomain = NULL;
rmi_f34_remove_sysfs(rmi_dev);
rmi_free_function_list(rmi_dev);
return 0;
}
#ifdef CONFIG_OF
static int rmi_driver_of_probe(struct device *dev,
struct rmi_device_platform_data *pdata)
{
int retval;
retval = rmi_of_property_read_u32(dev, &pdata->reset_delay_ms,
"syna,reset-delay-ms", 1);
if (retval)
return retval;
return 0;
}
#else
static inline int rmi_driver_of_probe(struct device *dev,
struct rmi_device_platform_data *pdata)
{
return -ENODEV;
}
#endif
int rmi_probe_interrupts(struct rmi_driver_data *data)
{
struct rmi_device *rmi_dev = data->rmi_dev;
struct device *dev = &rmi_dev->dev;
struct fwnode_handle *fwnode = rmi_dev->xport->dev->fwnode;
int irq_count = 0;
size_t size;
int retval;
/*
* We need to count the IRQs and allocate their storage before scanning
* the PDT and creating the function entries, because adding a new
* function can trigger events that result in the IRQ related storage
* being accessed.
*/
rmi_dbg(RMI_DEBUG_CORE, dev, "%s: Counting IRQs.\n", __func__);
data->bootloader_mode = false;
retval = rmi_scan_pdt(rmi_dev, &irq_count, rmi_count_irqs);
if (retval < 0) {
dev_err(dev, "IRQ counting failed with code %d.\n", retval);
return retval;
}
if (data->bootloader_mode)
dev_warn(dev, "Device in bootloader mode.\n");
/* Allocate and register a linear revmap irq_domain */
data->irqdomain = irq_domain_create_linear(fwnode, irq_count,
&irq_domain_simple_ops,
data);
if (!data->irqdomain) {
dev_err(&rmi_dev->dev, "Failed to create IRQ domain\n");
return -ENOMEM;
}
data->irq_count = irq_count;
data->num_of_irq_regs = (data->irq_count + 7) / 8;
size = BITS_TO_LONGS(data->irq_count) * sizeof(unsigned long);
data->irq_memory = devm_kcalloc(dev, size, 4, GFP_KERNEL);
if (!data->irq_memory) {
dev_err(dev, "Failed to allocate memory for irq masks.\n");
return -ENOMEM;
}
data->irq_status = data->irq_memory + size * 0;
data->fn_irq_bits = data->irq_memory + size * 1;
data->current_irq_mask = data->irq_memory + size * 2;
data->new_irq_mask = data->irq_memory + size * 3;
return retval;
}
int rmi_init_functions(struct rmi_driver_data *data)
{
struct rmi_device *rmi_dev = data->rmi_dev;
struct device *dev = &rmi_dev->dev;
int irq_count = 0;
int retval;
rmi_dbg(RMI_DEBUG_CORE, dev, "%s: Creating functions.\n", __func__);
retval = rmi_scan_pdt(rmi_dev, &irq_count, rmi_create_function);
if (retval < 0) {
dev_err(dev, "Function creation failed with code %d.\n",
retval);
goto err_destroy_functions;
}
if (!data->f01_container) {
dev_err(dev, "Missing F01 container!\n");
retval = -EINVAL;
goto err_destroy_functions;
}
retval = rmi_read_block(rmi_dev,
data->f01_container->fd.control_base_addr + 1,
data->current_irq_mask, data->num_of_irq_regs);
if (retval < 0) {
dev_err(dev, "%s: Failed to read current IRQ mask.\n",
__func__);
goto err_destroy_functions;
}
return 0;
err_destroy_functions:
rmi_free_function_list(rmi_dev);
return retval;
}
static int rmi_driver_probe(struct device *dev)
{
struct rmi_driver *rmi_driver;
struct rmi_driver_data *data;
struct rmi_device_platform_data *pdata;
struct rmi_device *rmi_dev;
int retval;
rmi_dbg(RMI_DEBUG_CORE, dev, "%s: Starting probe.\n",
__func__);
if (!rmi_is_physical_device(dev)) {
rmi_dbg(RMI_DEBUG_CORE, dev, "Not a physical device.\n");
return -ENODEV;
}
rmi_dev = to_rmi_device(dev);
rmi_driver = to_rmi_driver(dev->driver);
rmi_dev->driver = rmi_driver;
pdata = rmi_get_platform_data(rmi_dev);
if (rmi_dev->xport->dev->of_node) {
retval = rmi_driver_of_probe(rmi_dev->xport->dev, pdata);
if (retval)
return retval;
}
data = devm_kzalloc(dev, sizeof(struct rmi_driver_data), GFP_KERNEL);
if (!data)
return -ENOMEM;
INIT_LIST_HEAD(&data->function_list);
data->rmi_dev = rmi_dev;
dev_set_drvdata(&rmi_dev->dev, data);
/*
* Right before a warm boot, the sensor might be in some unusual state,
* such as F54 diagnostics, or F34 bootloader mode after a firmware
* or configuration update. In order to clear the sensor to a known
* state and/or apply any updates, we issue a initial reset to clear any
* previous settings and force it into normal operation.
*
* We have to do this before actually building the PDT because
* the reflash updates (if any) might cause various registers to move
* around.
*
* For a number of reasons, this initial reset may fail to return
* within the specified time, but we'll still be able to bring up the
* driver normally after that failure. This occurs most commonly in
* a cold boot situation (where then firmware takes longer to come up
* than from a warm boot) and the reset_delay_ms in the platform data
* has been set too short to accommodate that. Since the sensor will
* eventually come up and be usable, we don't want to just fail here
* and leave the customer's device unusable. So we warn them, and
* continue processing.
*/
retval = rmi_scan_pdt(rmi_dev, NULL, rmi_initial_reset);
if (retval < 0)
dev_warn(dev, "RMI initial reset failed! Continuing in spite of this.\n");
retval = rmi_read(rmi_dev, PDT_PROPERTIES_LOCATION, &data->pdt_props);
if (retval < 0) {
/*
* we'll print out a warning and continue since
* failure to get the PDT properties is not a cause to fail
*/
dev_warn(dev, "Could not read PDT properties from %#06x (code %d). Assuming 0x00.\n",
PDT_PROPERTIES_LOCATION, retval);
}
mutex_init(&data->irq_mutex);
mutex_init(&data->enabled_mutex);
retval = rmi_probe_interrupts(data);
if (retval)
goto err;
if (rmi_dev->xport->input) {
/*
* The transport driver already has an input device.
* In some cases it is preferable to reuse the transport
* devices input device instead of creating a new one here.
* One example is some HID touchpads report "pass-through"
* button events are not reported by rmi registers.
*/
data->input = rmi_dev->xport->input;
} else {
data->input = devm_input_allocate_device(dev);
if (!data->input) {
dev_err(dev, "%s: Failed to allocate input device.\n",
__func__);
retval = -ENOMEM;
goto err;
}
rmi_driver_set_input_params(rmi_dev, data->input);
data->input->phys = devm_kasprintf(dev, GFP_KERNEL,
"%s/input0", dev_name(dev));
}
retval = rmi_init_functions(data);
if (retval)
goto err;
retval = rmi_f34_create_sysfs(rmi_dev);
if (retval)
goto err;
if (data->input) {
rmi_driver_set_input_name(rmi_dev, data->input);
if (!rmi_dev->xport->input) {
if (input_register_device(data->input)) {
dev_err(dev, "%s: Failed to register input device.\n",
__func__);
goto err_destroy_functions;
}
}
}
retval = rmi_irq_init(rmi_dev);
if (retval < 0)
goto err_destroy_functions;
if (data->f01_container->dev.driver) {
/* Driver already bound, so enable ATTN now. */
retval = rmi_enable_sensor(rmi_dev);
if (retval)
goto err_disable_irq;
}
return 0;
err_disable_irq:
rmi_disable_irq(rmi_dev, false);
err_destroy_functions:
rmi_free_function_list(rmi_dev);
err:
return retval;
}
static struct rmi_driver rmi_physical_driver = {
.driver = {
.owner = THIS_MODULE,
.name = "rmi4_physical",
.bus = &rmi_bus_type,
.probe = rmi_driver_probe,
.remove = rmi_driver_remove,
},
.reset_handler = rmi_driver_reset_handler,
.clear_irq_bits = rmi_driver_clear_irq_bits,
.set_irq_bits = rmi_driver_set_irq_bits,
.set_input_params = rmi_driver_set_input_params,
};
bool rmi_is_physical_driver(struct device_driver *drv)
{
return drv == &rmi_physical_driver.driver;
}
int __init rmi_register_physical_driver(void)
{
int error;
error = driver_register(&rmi_physical_driver.driver);
if (error) {
pr_err("%s: driver register failed, code=%d.\n", __func__,
error);
return error;
}
return 0;
}
void __exit rmi_unregister_physical_driver(void)
{
driver_unregister(&rmi_physical_driver.driver);
}