linux-sg2042/drivers/gpu/drm/nouveau/nva3_copy.fuc

873 lines
20 KiB
Plaintext

/* fuc microcode for copy engine on nva3- chipsets
*
* Copyright 2011 Red Hat Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: Ben Skeggs
*/
/* To build for nva3:nvc0
* m4 -DNVA3 nva3_copy.fuc | envyas -a -w -m fuc -V nva3 -o nva3_copy.fuc.h
*
* To build for nvc0-
* m4 -DNVC0 nva3_copy.fuc | envyas -a -w -m fuc -V nva3 -o nvc0_copy.fuc.h
*/
ifdef(`NVA3',
.section #nva3_pcopy_data
,
.section #nvc0_pcopy_data
)
ctx_object: .b32 0
ifdef(`NVA3',
ctx_dma:
ctx_dma_query: .b32 0
ctx_dma_src: .b32 0
ctx_dma_dst: .b32 0
,)
.equ #ctx_dma_count 3
ctx_query_address_high: .b32 0
ctx_query_address_low: .b32 0
ctx_query_counter: .b32 0
ctx_src_address_high: .b32 0
ctx_src_address_low: .b32 0
ctx_src_pitch: .b32 0
ctx_src_tile_mode: .b32 0
ctx_src_xsize: .b32 0
ctx_src_ysize: .b32 0
ctx_src_zsize: .b32 0
ctx_src_zoff: .b32 0
ctx_src_xoff: .b32 0
ctx_src_yoff: .b32 0
ctx_src_cpp: .b32 0
ctx_dst_address_high: .b32 0
ctx_dst_address_low: .b32 0
ctx_dst_pitch: .b32 0
ctx_dst_tile_mode: .b32 0
ctx_dst_xsize: .b32 0
ctx_dst_ysize: .b32 0
ctx_dst_zsize: .b32 0
ctx_dst_zoff: .b32 0
ctx_dst_xoff: .b32 0
ctx_dst_yoff: .b32 0
ctx_dst_cpp: .b32 0
ctx_format: .b32 0
ctx_swz_const0: .b32 0
ctx_swz_const1: .b32 0
ctx_xcnt: .b32 0
ctx_ycnt: .b32 0
.align 256
dispatch_table:
// mthd 0x0000, NAME
.b16 0x000 1
.b32 #ctx_object ~0xffffffff
// mthd 0x0100, NOP
.b16 0x040 1
.b32 0x00010000 + #cmd_nop ~0xffffffff
// mthd 0x0140, PM_TRIGGER
.b16 0x050 1
.b32 0x00010000 + #cmd_pm_trigger ~0xffffffff
ifdef(`NVA3', `
// mthd 0x0180-0x018c, DMA_
.b16 0x060 #ctx_dma_count
dispatch_dma:
.b32 0x00010000 + #cmd_dma ~0xffffffff
.b32 0x00010000 + #cmd_dma ~0xffffffff
.b32 0x00010000 + #cmd_dma ~0xffffffff
',)
// mthd 0x0200-0x0218, SRC_TILE
.b16 0x80 7
.b32 #ctx_src_tile_mode ~0x00000fff
.b32 #ctx_src_xsize ~0x0007ffff
.b32 #ctx_src_ysize ~0x00001fff
.b32 #ctx_src_zsize ~0x000007ff
.b32 #ctx_src_zoff ~0x00000fff
.b32 #ctx_src_xoff ~0x0007ffff
.b32 #ctx_src_yoff ~0x00001fff
// mthd 0x0220-0x0238, DST_TILE
.b16 0x88 7
.b32 #ctx_dst_tile_mode ~0x00000fff
.b32 #ctx_dst_xsize ~0x0007ffff
.b32 #ctx_dst_ysize ~0x00001fff
.b32 #ctx_dst_zsize ~0x000007ff
.b32 #ctx_dst_zoff ~0x00000fff
.b32 #ctx_dst_xoff ~0x0007ffff
.b32 #ctx_dst_yoff ~0x00001fff
// mthd 0x0300-0x0304, EXEC, WRCACHE_FLUSH
.b16 0xc0 2
.b32 0x00010000 + #cmd_exec ~0xffffffff
.b32 0x00010000 + #cmd_wrcache_flush ~0xffffffff
// mthd 0x030c-0x0340, various stuff
.b16 0xc3 14
.b32 #ctx_src_address_high ~0x000000ff
.b32 #ctx_src_address_low ~0xffffffff
.b32 #ctx_dst_address_high ~0x000000ff
.b32 #ctx_dst_address_low ~0xffffffff
.b32 #ctx_src_pitch ~0x0007ffff
.b32 #ctx_dst_pitch ~0x0007ffff
.b32 #ctx_xcnt ~0x0000ffff
.b32 #ctx_ycnt ~0x00001fff
.b32 #ctx_format ~0x0333ffff
.b32 #ctx_swz_const0 ~0xffffffff
.b32 #ctx_swz_const1 ~0xffffffff
.b32 #ctx_query_address_high ~0x000000ff
.b32 #ctx_query_address_low ~0xffffffff
.b32 #ctx_query_counter ~0xffffffff
.b16 0x800 0
ifdef(`NVA3',
.section #nva3_pcopy_code
,
.section #nvc0_pcopy_code
)
main:
clear b32 $r0
mov $sp $r0
// setup i0 handler and route fifo and ctxswitch to it
mov $r1 #ih
mov $iv0 $r1
mov $r1 0x400
movw $r2 0xfff3
sethi $r2 0
iowr I[$r1 + 0x300] $r2
// enable interrupts
or $r2 0xc
iowr I[$r1] $r2
bset $flags ie0
// enable fifo access and context switching
mov $r1 0x1200
mov $r2 3
iowr I[$r1] $r2
// sleep forever, waking for interrupts
bset $flags $p0
spin:
sleep $p0
bra #spin
// i0 handler
ih:
iord $r1 I[$r0 + 0x200]
and $r2 $r1 0x00000008
bra e #ih_no_chsw
call #chsw
ih_no_chsw:
and $r2 $r1 0x00000004
bra e #ih_no_cmd
call #dispatch
ih_no_cmd:
and $r1 $r1 0x0000000c
iowr I[$r0 + 0x100] $r1
iret
// $p1 direction (0 = unload, 1 = load)
// $r3 channel
swctx:
mov $r4 0x7700
mov $xtargets $r4
ifdef(`NVA3', `
// target 7 hardcoded to ctx dma object
mov $xdbase $r0
', ` // NVC0
// read SCRATCH3 to decide if we are PCOPY0 or PCOPY1
mov $r4 0x2100
iord $r4 I[$r4 + 0]
and $r4 1
shl b32 $r4 4
add b32 $r4 0x30
// channel is in vram
mov $r15 0x61c
shl b32 $r15 6
mov $r5 0x114
iowrs I[$r15] $r5
// read 16-byte PCOPYn info, containing context pointer, from channel
shl b32 $r5 $r3 4
add b32 $r5 2
mov $xdbase $r5
mov $r5 $sp
// get a chunk of stack space, aligned to 256 byte boundary
sub b32 $r5 0x100
mov $r6 0xff
not b32 $r6
and $r5 $r6
sethi $r5 0x00020000
xdld $r4 $r5
xdwait
sethi $r5 0
// set context pointer, from within channel VM
mov $r14 0
iowrs I[$r15] $r14
ld b32 $r4 D[$r5 + 0]
shr b32 $r4 8
ld b32 $r6 D[$r5 + 4]
shl b32 $r6 24
or $r4 $r6
mov $xdbase $r4
')
// 256-byte context, at start of data segment
mov b32 $r4 $r0
sethi $r4 0x60000
// swap!
bra $p1 #swctx_load
xdst $r0 $r4
bra #swctx_done
swctx_load:
xdld $r0 $r4
swctx_done:
xdwait
ret
chsw:
// read current channel
mov $r2 0x1400
iord $r3 I[$r2]
// if it's active, unload it and return
xbit $r15 $r3 0x1e
bra e #chsw_no_unload
bclr $flags $p1
call #swctx
bclr $r3 0x1e
iowr I[$r2] $r3
mov $r4 1
iowr I[$r2 + 0x200] $r4
ret
// read next channel
chsw_no_unload:
iord $r3 I[$r2 + 0x100]
// is there a channel waiting to be loaded?
xbit $r13 $r3 0x1e
bra e #chsw_finish_load
bset $flags $p1
call #swctx
ifdef(`NVA3',
// load dma objects back into TARGET regs
mov $r5 #ctx_dma
mov $r6 #ctx_dma_count
chsw_load_ctx_dma:
ld b32 $r7 D[$r5 + $r6 * 4]
add b32 $r8 $r6 0x180
shl b32 $r8 8
iowr I[$r8] $r7
sub b32 $r6 1
bra nc #chsw_load_ctx_dma
,)
chsw_finish_load:
mov $r3 2
iowr I[$r2 + 0x200] $r3
ret
dispatch:
// read incoming fifo command
mov $r3 0x1900
iord $r2 I[$r3 + 0x100]
iord $r3 I[$r3 + 0x000]
and $r4 $r2 0x7ff
// $r2 will be used to store exception data
shl b32 $r2 0x10
// lookup method in the dispatch table, ILLEGAL_MTHD if not found
mov $r5 #dispatch_table
clear b32 $r6
clear b32 $r7
dispatch_loop:
ld b16 $r6 D[$r5 + 0]
ld b16 $r7 D[$r5 + 2]
add b32 $r5 4
cmpu b32 $r4 $r6
bra c #dispatch_illegal_mthd
add b32 $r7 $r6
cmpu b32 $r4 $r7
bra c #dispatch_valid_mthd
sub b32 $r7 $r6
shl b32 $r7 3
add b32 $r5 $r7
bra #dispatch_loop
// ensure no bits set in reserved fields, INVALID_BITFIELD
dispatch_valid_mthd:
sub b32 $r4 $r6
shl b32 $r4 3
add b32 $r4 $r5
ld b32 $r5 D[$r4 + 4]
and $r5 $r3
cmpu b32 $r5 0
bra ne #dispatch_invalid_bitfield
// depending on dispatch flags: execute method, or save data as state
ld b16 $r5 D[$r4 + 0]
ld b16 $r6 D[$r4 + 2]
cmpu b32 $r6 0
bra ne #dispatch_cmd
st b32 D[$r5] $r3
bra #dispatch_done
dispatch_cmd:
bclr $flags $p1
call $r5
bra $p1 #dispatch_error
bra #dispatch_done
dispatch_invalid_bitfield:
or $r2 2
dispatch_illegal_mthd:
or $r2 1
// store exception data in SCRATCH0/SCRATCH1, signal hostirq
dispatch_error:
mov $r4 0x1000
iowr I[$r4 + 0x000] $r2
iowr I[$r4 + 0x100] $r3
mov $r2 0x40
iowr I[$r0] $r2
hostirq_wait:
iord $r2 I[$r0 + 0x200]
and $r2 0x40
cmpu b32 $r2 0
bra ne #hostirq_wait
dispatch_done:
mov $r2 0x1d00
mov $r3 1
iowr I[$r2] $r3
ret
// No-operation
//
// Inputs:
// $r1: irqh state
// $r2: hostirq state
// $r3: data
// $r4: dispatch table entry
// Outputs:
// $r1: irqh state
// $p1: set on error
// $r2: hostirq state
// $r3: data
cmd_nop:
ret
// PM_TRIGGER
//
// Inputs:
// $r1: irqh state
// $r2: hostirq state
// $r3: data
// $r4: dispatch table entry
// Outputs:
// $r1: irqh state
// $p1: set on error
// $r2: hostirq state
// $r3: data
cmd_pm_trigger:
mov $r2 0x2200
clear b32 $r3
sethi $r3 0x20000
iowr I[$r2] $r3
ret
ifdef(`NVA3',
// SET_DMA_* method handler
//
// Inputs:
// $r1: irqh state
// $r2: hostirq state
// $r3: data
// $r4: dispatch table entry
// Outputs:
// $r1: irqh state
// $p1: set on error
// $r2: hostirq state
// $r3: data
cmd_dma:
sub b32 $r4 #dispatch_dma
shr b32 $r4 1
bset $r3 0x1e
st b32 D[$r4 + #ctx_dma] $r3
add b32 $r4 0x600
shl b32 $r4 6
iowr I[$r4] $r3
ret
,)
// Calculates the hw swizzle mask and adjusts the surface's xcnt to match
//
cmd_exec_set_format:
// zero out a chunk of the stack to store the swizzle into
add $sp -0x10
st b32 D[$sp + 0x00] $r0
st b32 D[$sp + 0x04] $r0
st b32 D[$sp + 0x08] $r0
st b32 D[$sp + 0x0c] $r0
// extract cpp, src_ncomp and dst_ncomp from FORMAT
ld b32 $r4 D[$r0 + #ctx_format]
extr $r5 $r4 16:17
add b32 $r5 1
extr $r6 $r4 20:21
add b32 $r6 1
extr $r7 $r4 24:25
add b32 $r7 1
// convert FORMAT swizzle mask to hw swizzle mask
bclr $flags $p2
clear b32 $r8
clear b32 $r9
ncomp_loop:
and $r10 $r4 0xf
shr b32 $r4 4
clear b32 $r11
bpc_loop:
cmpu b8 $r10 4
bra nc #cmp_c0
mulu $r12 $r10 $r5
add b32 $r12 $r11
bset $flags $p2
bra #bpc_next
cmp_c0:
bra ne #cmp_c1
mov $r12 0x10
add b32 $r12 $r11
bra #bpc_next
cmp_c1:
cmpu b8 $r10 6
bra nc #cmp_zero
mov $r12 0x14
add b32 $r12 $r11
bra #bpc_next
cmp_zero:
mov $r12 0x80
bpc_next:
st b8 D[$sp + $r8] $r12
add b32 $r8 1
add b32 $r11 1
cmpu b32 $r11 $r5
bra c #bpc_loop
add b32 $r9 1
cmpu b32 $r9 $r7
bra c #ncomp_loop
// SRC_XCNT = (xcnt * src_cpp), or 0 if no src ref in swz (hw will hang)
mulu $r6 $r5
st b32 D[$r0 + #ctx_src_cpp] $r6
ld b32 $r8 D[$r0 + #ctx_xcnt]
mulu $r6 $r8
bra $p2 #dst_xcnt
clear b32 $r6
dst_xcnt:
mulu $r7 $r5
st b32 D[$r0 + #ctx_dst_cpp] $r7
mulu $r7 $r8
mov $r5 0x810
shl b32 $r5 6
iowr I[$r5 + 0x000] $r6
iowr I[$r5 + 0x100] $r7
add b32 $r5 0x800
ld b32 $r6 D[$r0 + #ctx_dst_cpp]
sub b32 $r6 1
shl b32 $r6 8
ld b32 $r7 D[$r0 + #ctx_src_cpp]
sub b32 $r7 1
or $r6 $r7
iowr I[$r5 + 0x000] $r6
add b32 $r5 0x100
ld b32 $r6 D[$sp + 0x00]
iowr I[$r5 + 0x000] $r6
ld b32 $r6 D[$sp + 0x04]
iowr I[$r5 + 0x100] $r6
ld b32 $r6 D[$sp + 0x08]
iowr I[$r5 + 0x200] $r6
ld b32 $r6 D[$sp + 0x0c]
iowr I[$r5 + 0x300] $r6
add b32 $r5 0x400
ld b32 $r6 D[$r0 + #ctx_swz_const0]
iowr I[$r5 + 0x000] $r6
ld b32 $r6 D[$r0 + #ctx_swz_const1]
iowr I[$r5 + 0x100] $r6
add $sp 0x10
ret
// Setup to handle a tiled surface
//
// Calculates a number of parameters the hardware requires in order
// to correctly handle tiling.
//
// Offset calculation is performed as follows (Tp/Th/Td from TILE_MODE):
// nTx = round_up(w * cpp, 1 << Tp) >> Tp
// nTy = round_up(h, 1 << Th) >> Th
// Txo = (x * cpp) & ((1 << Tp) - 1)
// Tx = (x * cpp) >> Tp
// Tyo = y & ((1 << Th) - 1)
// Ty = y >> Th
// Tzo = z & ((1 << Td) - 1)
// Tz = z >> Td
//
// off = (Tzo << Tp << Th) + (Tyo << Tp) + Txo
// off += ((Tz * nTy * nTx)) + (Ty * nTx) + Tx) << Td << Th << Tp;
//
// Inputs:
// $r4: hw command (0x104800)
// $r5: ctx offset adjustment for src/dst selection
// $p2: set if dst surface
//
cmd_exec_set_surface_tiled:
// translate TILE_MODE into Tp, Th, Td shift values
ld b32 $r7 D[$r5 + #ctx_src_tile_mode]
extr $r9 $r7 8:11
extr $r8 $r7 4:7
ifdef(`NVA3',
add b32 $r8 2
,
add b32 $r8 3
)
extr $r7 $r7 0:3
cmp b32 $r7 0xe
bra ne #xtile64
mov $r7 4
bra #xtileok
xtile64:
xbit $r7 $flags $p2
add b32 $r7 17
bset $r4 $r7
mov $r7 6
xtileok:
// Op = (x * cpp) & ((1 << Tp) - 1)
// Tx = (x * cpp) >> Tp
ld b32 $r10 D[$r5 + #ctx_src_xoff]
ld b32 $r11 D[$r5 + #ctx_src_cpp]
mulu $r10 $r11
mov $r11 1
shl b32 $r11 $r7
sub b32 $r11 1
and $r12 $r10 $r11
shr b32 $r10 $r7
// Tyo = y & ((1 << Th) - 1)
// Ty = y >> Th
ld b32 $r13 D[$r5 + #ctx_src_yoff]
mov $r14 1
shl b32 $r14 $r8
sub b32 $r14 1
and $r11 $r13 $r14
shr b32 $r13 $r8
// YTILE = ((1 << Th) << 12) | ((1 << Th) - Tyo)
add b32 $r14 1
shl b32 $r15 $r14 12
sub b32 $r14 $r11
or $r15 $r14
xbit $r6 $flags $p2
add b32 $r6 0x208
shl b32 $r6 8
iowr I[$r6 + 0x000] $r15
// Op += Tyo << Tp
shl b32 $r11 $r7
add b32 $r12 $r11
// nTx = ((w * cpp) + ((1 << Tp) - 1) >> Tp)
ld b32 $r15 D[$r5 + #ctx_src_xsize]
ld b32 $r11 D[$r5 + #ctx_src_cpp]
mulu $r15 $r11
mov $r11 1
shl b32 $r11 $r7
sub b32 $r11 1
add b32 $r15 $r11
shr b32 $r15 $r7
push $r15
// nTy = (h + ((1 << Th) - 1)) >> Th
ld b32 $r15 D[$r5 + #ctx_src_ysize]
mov $r11 1
shl b32 $r11 $r8
sub b32 $r11 1
add b32 $r15 $r11
shr b32 $r15 $r8
push $r15
// Tys = Tp + Th
// CFG_YZ_TILE_SIZE = ((1 << Th) >> 2) << Td
add b32 $r7 $r8
sub b32 $r8 2
mov $r11 1
shl b32 $r11 $r8
shl b32 $r11 $r9
// Tzo = z & ((1 << Td) - 1)
// Tz = z >> Td
// Op += Tzo << Tys
// Ts = Tys + Td
ld b32 $r8 D[$r5 + #ctx_src_zoff]
mov $r14 1
shl b32 $r14 $r9
sub b32 $r14 1
and $r15 $r8 $r14
shl b32 $r15 $r7
add b32 $r12 $r15
add b32 $r7 $r9
shr b32 $r8 $r9
// Ot = ((Tz * nTy * nTx) + (Ty * nTx) + Tx) << Ts
pop $r15
pop $r9
mulu $r13 $r9
add b32 $r10 $r13
mulu $r8 $r9
mulu $r8 $r15
add b32 $r10 $r8
shl b32 $r10 $r7
// PITCH = (nTx - 1) << Ts
sub b32 $r9 1
shl b32 $r9 $r7
iowr I[$r6 + 0x200] $r9
// SRC_ADDRESS_LOW = (Ot + Op) & 0xffffffff
// CFG_ADDRESS_HIGH |= ((Ot + Op) >> 32) << 16
ld b32 $r7 D[$r5 + #ctx_src_address_low]
ld b32 $r8 D[$r5 + #ctx_src_address_high]
add b32 $r10 $r12
add b32 $r7 $r10
adc b32 $r8 0
shl b32 $r8 16
or $r8 $r11
sub b32 $r6 0x600
iowr I[$r6 + 0x000] $r7
add b32 $r6 0x400
iowr I[$r6 + 0x000] $r8
ret
// Setup to handle a linear surface
//
// Nothing to see here.. Sets ADDRESS and PITCH, pretty non-exciting
//
cmd_exec_set_surface_linear:
xbit $r6 $flags $p2
add b32 $r6 0x202
shl b32 $r6 8
ld b32 $r7 D[$r5 + #ctx_src_address_low]
iowr I[$r6 + 0x000] $r7
add b32 $r6 0x400
ld b32 $r7 D[$r5 + #ctx_src_address_high]
shl b32 $r7 16
iowr I[$r6 + 0x000] $r7
add b32 $r6 0x400
ld b32 $r7 D[$r5 + #ctx_src_pitch]
iowr I[$r6 + 0x000] $r7
ret
// wait for regs to be available for use
cmd_exec_wait:
push $r0
push $r1
mov $r0 0x800
shl b32 $r0 6
loop:
iord $r1 I[$r0]
and $r1 1
bra ne #loop
pop $r1
pop $r0
ret
cmd_exec_query:
// if QUERY_SHORT not set, write out { -, 0, TIME_LO, TIME_HI }
xbit $r4 $r3 13
bra ne #query_counter
call #cmd_exec_wait
mov $r4 0x80c
shl b32 $r4 6
ld b32 $r5 D[$r0 + #ctx_query_address_low]
add b32 $r5 4
iowr I[$r4 + 0x000] $r5
iowr I[$r4 + 0x100] $r0
mov $r5 0xc
iowr I[$r4 + 0x200] $r5
add b32 $r4 0x400
ld b32 $r5 D[$r0 + #ctx_query_address_high]
shl b32 $r5 16
iowr I[$r4 + 0x000] $r5
add b32 $r4 0x500
mov $r5 0x00000b00
sethi $r5 0x00010000
iowr I[$r4 + 0x000] $r5
mov $r5 0x00004040
shl b32 $r5 1
sethi $r5 0x80800000
iowr I[$r4 + 0x100] $r5
mov $r5 0x00001110
sethi $r5 0x13120000
iowr I[$r4 + 0x200] $r5
mov $r5 0x00001514
sethi $r5 0x17160000
iowr I[$r4 + 0x300] $r5
mov $r5 0x00002601
sethi $r5 0x00010000
mov $r4 0x800
shl b32 $r4 6
iowr I[$r4 + 0x000] $r5
// write COUNTER
query_counter:
call #cmd_exec_wait
mov $r4 0x80c
shl b32 $r4 6
ld b32 $r5 D[$r0 + #ctx_query_address_low]
iowr I[$r4 + 0x000] $r5
iowr I[$r4 + 0x100] $r0
mov $r5 0x4
iowr I[$r4 + 0x200] $r5
add b32 $r4 0x400
ld b32 $r5 D[$r0 + #ctx_query_address_high]
shl b32 $r5 16
iowr I[$r4 + 0x000] $r5
add b32 $r4 0x500
mov $r5 0x00000300
iowr I[$r4 + 0x000] $r5
mov $r5 0x00001110
sethi $r5 0x13120000
iowr I[$r4 + 0x100] $r5
ld b32 $r5 D[$r0 + #ctx_query_counter]
add b32 $r4 0x500
iowr I[$r4 + 0x000] $r5
mov $r5 0x00002601
sethi $r5 0x00010000
mov $r4 0x800
shl b32 $r4 6
iowr I[$r4 + 0x000] $r5
ret
// Execute a copy operation
//
// Inputs:
// $r1: irqh state
// $r2: hostirq state
// $r3: data
// 000002000 QUERY_SHORT
// 000001000 QUERY
// 000000100 DST_LINEAR
// 000000010 SRC_LINEAR
// 000000001 FORMAT
// $r4: dispatch table entry
// Outputs:
// $r1: irqh state
// $p1: set on error
// $r2: hostirq state
// $r3: data
cmd_exec:
call #cmd_exec_wait
// if format requested, call function to calculate it, otherwise
// fill in cpp/xcnt for both surfaces as if (cpp == 1)
xbit $r15 $r3 0
bra e #cmd_exec_no_format
call #cmd_exec_set_format
mov $r4 0x200
bra #cmd_exec_init_src_surface
cmd_exec_no_format:
mov $r6 0x810
shl b32 $r6 6
mov $r7 1
st b32 D[$r0 + #ctx_src_cpp] $r7
st b32 D[$r0 + #ctx_dst_cpp] $r7
ld b32 $r7 D[$r0 + #ctx_xcnt]
iowr I[$r6 + 0x000] $r7
iowr I[$r6 + 0x100] $r7
clear b32 $r4
cmd_exec_init_src_surface:
bclr $flags $p2
clear b32 $r5
xbit $r15 $r3 4
bra e #src_tiled
call #cmd_exec_set_surface_linear
bra #cmd_exec_init_dst_surface
src_tiled:
call #cmd_exec_set_surface_tiled
bset $r4 7
cmd_exec_init_dst_surface:
bset $flags $p2
mov $r5 #ctx_dst_address_high - #ctx_src_address_high
xbit $r15 $r3 8
bra e #dst_tiled
call #cmd_exec_set_surface_linear
bra #cmd_exec_kick
dst_tiled:
call #cmd_exec_set_surface_tiled
bset $r4 8
cmd_exec_kick:
mov $r5 0x800
shl b32 $r5 6
ld b32 $r6 D[$r0 + #ctx_ycnt]
iowr I[$r5 + 0x100] $r6
mov $r6 0x0041
// SRC_TARGET = 1, DST_TARGET = 2
sethi $r6 0x44000000
or $r4 $r6
iowr I[$r5] $r4
// if requested, queue up a QUERY write after the copy has completed
xbit $r15 $r3 12
bra e #cmd_exec_done
call #cmd_exec_query
cmd_exec_done:
ret
// Flush write cache
//
// Inputs:
// $r1: irqh state
// $r2: hostirq state
// $r3: data
// $r4: dispatch table entry
// Outputs:
// $r1: irqh state
// $p1: set on error
// $r2: hostirq state
// $r3: data
cmd_wrcache_flush:
mov $r2 0x2200
clear b32 $r3
sethi $r3 0x10000
iowr I[$r2] $r3
ret
.align 0x100