2412 lines
63 KiB
C
2412 lines
63 KiB
C
/*
|
|
* linux/arch/arm/mm/dma-mapping.c
|
|
*
|
|
* Copyright (C) 2000-2004 Russell King
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* DMA uncached mapping support.
|
|
*/
|
|
#include <linux/bootmem.h>
|
|
#include <linux/module.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/genalloc.h>
|
|
#include <linux/gfp.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/list.h>
|
|
#include <linux/init.h>
|
|
#include <linux/device.h>
|
|
#include <linux/dma-mapping.h>
|
|
#include <linux/dma-contiguous.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/memblock.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/iommu.h>
|
|
#include <linux/io.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/sizes.h>
|
|
#include <linux/cma.h>
|
|
|
|
#include <asm/memory.h>
|
|
#include <asm/highmem.h>
|
|
#include <asm/cacheflush.h>
|
|
#include <asm/tlbflush.h>
|
|
#include <asm/mach/arch.h>
|
|
#include <asm/dma-iommu.h>
|
|
#include <asm/mach/map.h>
|
|
#include <asm/system_info.h>
|
|
#include <asm/dma-contiguous.h>
|
|
|
|
#include "dma.h"
|
|
#include "mm.h"
|
|
|
|
struct arm_dma_alloc_args {
|
|
struct device *dev;
|
|
size_t size;
|
|
gfp_t gfp;
|
|
pgprot_t prot;
|
|
const void *caller;
|
|
bool want_vaddr;
|
|
int coherent_flag;
|
|
};
|
|
|
|
struct arm_dma_free_args {
|
|
struct device *dev;
|
|
size_t size;
|
|
void *cpu_addr;
|
|
struct page *page;
|
|
bool want_vaddr;
|
|
};
|
|
|
|
#define NORMAL 0
|
|
#define COHERENT 1
|
|
|
|
struct arm_dma_allocator {
|
|
void *(*alloc)(struct arm_dma_alloc_args *args,
|
|
struct page **ret_page);
|
|
void (*free)(struct arm_dma_free_args *args);
|
|
};
|
|
|
|
struct arm_dma_buffer {
|
|
struct list_head list;
|
|
void *virt;
|
|
struct arm_dma_allocator *allocator;
|
|
};
|
|
|
|
static LIST_HEAD(arm_dma_bufs);
|
|
static DEFINE_SPINLOCK(arm_dma_bufs_lock);
|
|
|
|
static struct arm_dma_buffer *arm_dma_buffer_find(void *virt)
|
|
{
|
|
struct arm_dma_buffer *buf, *found = NULL;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&arm_dma_bufs_lock, flags);
|
|
list_for_each_entry(buf, &arm_dma_bufs, list) {
|
|
if (buf->virt == virt) {
|
|
list_del(&buf->list);
|
|
found = buf;
|
|
break;
|
|
}
|
|
}
|
|
spin_unlock_irqrestore(&arm_dma_bufs_lock, flags);
|
|
return found;
|
|
}
|
|
|
|
/*
|
|
* The DMA API is built upon the notion of "buffer ownership". A buffer
|
|
* is either exclusively owned by the CPU (and therefore may be accessed
|
|
* by it) or exclusively owned by the DMA device. These helper functions
|
|
* represent the transitions between these two ownership states.
|
|
*
|
|
* Note, however, that on later ARMs, this notion does not work due to
|
|
* speculative prefetches. We model our approach on the assumption that
|
|
* the CPU does do speculative prefetches, which means we clean caches
|
|
* before transfers and delay cache invalidation until transfer completion.
|
|
*
|
|
*/
|
|
static void __dma_page_cpu_to_dev(struct page *, unsigned long,
|
|
size_t, enum dma_data_direction);
|
|
static void __dma_page_dev_to_cpu(struct page *, unsigned long,
|
|
size_t, enum dma_data_direction);
|
|
|
|
/**
|
|
* arm_dma_map_page - map a portion of a page for streaming DMA
|
|
* @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
|
|
* @page: page that buffer resides in
|
|
* @offset: offset into page for start of buffer
|
|
* @size: size of buffer to map
|
|
* @dir: DMA transfer direction
|
|
*
|
|
* Ensure that any data held in the cache is appropriately discarded
|
|
* or written back.
|
|
*
|
|
* The device owns this memory once this call has completed. The CPU
|
|
* can regain ownership by calling dma_unmap_page().
|
|
*/
|
|
static dma_addr_t arm_dma_map_page(struct device *dev, struct page *page,
|
|
unsigned long offset, size_t size, enum dma_data_direction dir,
|
|
unsigned long attrs)
|
|
{
|
|
if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
|
|
__dma_page_cpu_to_dev(page, offset, size, dir);
|
|
return pfn_to_dma(dev, page_to_pfn(page)) + offset;
|
|
}
|
|
|
|
static dma_addr_t arm_coherent_dma_map_page(struct device *dev, struct page *page,
|
|
unsigned long offset, size_t size, enum dma_data_direction dir,
|
|
unsigned long attrs)
|
|
{
|
|
return pfn_to_dma(dev, page_to_pfn(page)) + offset;
|
|
}
|
|
|
|
/**
|
|
* arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page()
|
|
* @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
|
|
* @handle: DMA address of buffer
|
|
* @size: size of buffer (same as passed to dma_map_page)
|
|
* @dir: DMA transfer direction (same as passed to dma_map_page)
|
|
*
|
|
* Unmap a page streaming mode DMA translation. The handle and size
|
|
* must match what was provided in the previous dma_map_page() call.
|
|
* All other usages are undefined.
|
|
*
|
|
* After this call, reads by the CPU to the buffer are guaranteed to see
|
|
* whatever the device wrote there.
|
|
*/
|
|
static void arm_dma_unmap_page(struct device *dev, dma_addr_t handle,
|
|
size_t size, enum dma_data_direction dir, unsigned long attrs)
|
|
{
|
|
if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
|
|
__dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev, handle)),
|
|
handle & ~PAGE_MASK, size, dir);
|
|
}
|
|
|
|
static void arm_dma_sync_single_for_cpu(struct device *dev,
|
|
dma_addr_t handle, size_t size, enum dma_data_direction dir)
|
|
{
|
|
unsigned int offset = handle & (PAGE_SIZE - 1);
|
|
struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
|
|
__dma_page_dev_to_cpu(page, offset, size, dir);
|
|
}
|
|
|
|
static void arm_dma_sync_single_for_device(struct device *dev,
|
|
dma_addr_t handle, size_t size, enum dma_data_direction dir)
|
|
{
|
|
unsigned int offset = handle & (PAGE_SIZE - 1);
|
|
struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
|
|
__dma_page_cpu_to_dev(page, offset, size, dir);
|
|
}
|
|
|
|
static int arm_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
|
|
{
|
|
return dma_addr == ARM_MAPPING_ERROR;
|
|
}
|
|
|
|
const struct dma_map_ops arm_dma_ops = {
|
|
.alloc = arm_dma_alloc,
|
|
.free = arm_dma_free,
|
|
.mmap = arm_dma_mmap,
|
|
.get_sgtable = arm_dma_get_sgtable,
|
|
.map_page = arm_dma_map_page,
|
|
.unmap_page = arm_dma_unmap_page,
|
|
.map_sg = arm_dma_map_sg,
|
|
.unmap_sg = arm_dma_unmap_sg,
|
|
.sync_single_for_cpu = arm_dma_sync_single_for_cpu,
|
|
.sync_single_for_device = arm_dma_sync_single_for_device,
|
|
.sync_sg_for_cpu = arm_dma_sync_sg_for_cpu,
|
|
.sync_sg_for_device = arm_dma_sync_sg_for_device,
|
|
.mapping_error = arm_dma_mapping_error,
|
|
.dma_supported = arm_dma_supported,
|
|
};
|
|
EXPORT_SYMBOL(arm_dma_ops);
|
|
|
|
static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
|
|
dma_addr_t *handle, gfp_t gfp, unsigned long attrs);
|
|
static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
|
|
dma_addr_t handle, unsigned long attrs);
|
|
static int arm_coherent_dma_mmap(struct device *dev, struct vm_area_struct *vma,
|
|
void *cpu_addr, dma_addr_t dma_addr, size_t size,
|
|
unsigned long attrs);
|
|
|
|
const struct dma_map_ops arm_coherent_dma_ops = {
|
|
.alloc = arm_coherent_dma_alloc,
|
|
.free = arm_coherent_dma_free,
|
|
.mmap = arm_coherent_dma_mmap,
|
|
.get_sgtable = arm_dma_get_sgtable,
|
|
.map_page = arm_coherent_dma_map_page,
|
|
.map_sg = arm_dma_map_sg,
|
|
.mapping_error = arm_dma_mapping_error,
|
|
.dma_supported = arm_dma_supported,
|
|
};
|
|
EXPORT_SYMBOL(arm_coherent_dma_ops);
|
|
|
|
static int __dma_supported(struct device *dev, u64 mask, bool warn)
|
|
{
|
|
unsigned long max_dma_pfn;
|
|
|
|
/*
|
|
* If the mask allows for more memory than we can address,
|
|
* and we actually have that much memory, then we must
|
|
* indicate that DMA to this device is not supported.
|
|
*/
|
|
if (sizeof(mask) != sizeof(dma_addr_t) &&
|
|
mask > (dma_addr_t)~0 &&
|
|
dma_to_pfn(dev, ~0) < max_pfn - 1) {
|
|
if (warn) {
|
|
dev_warn(dev, "Coherent DMA mask %#llx is larger than dma_addr_t allows\n",
|
|
mask);
|
|
dev_warn(dev, "Driver did not use or check the return value from dma_set_coherent_mask()?\n");
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
max_dma_pfn = min(max_pfn, arm_dma_pfn_limit);
|
|
|
|
/*
|
|
* Translate the device's DMA mask to a PFN limit. This
|
|
* PFN number includes the page which we can DMA to.
|
|
*/
|
|
if (dma_to_pfn(dev, mask) < max_dma_pfn) {
|
|
if (warn)
|
|
dev_warn(dev, "Coherent DMA mask %#llx (pfn %#lx-%#lx) covers a smaller range of system memory than the DMA zone pfn 0x0-%#lx\n",
|
|
mask,
|
|
dma_to_pfn(dev, 0), dma_to_pfn(dev, mask) + 1,
|
|
max_dma_pfn + 1);
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
static u64 get_coherent_dma_mask(struct device *dev)
|
|
{
|
|
u64 mask = (u64)DMA_BIT_MASK(32);
|
|
|
|
if (dev) {
|
|
mask = dev->coherent_dma_mask;
|
|
|
|
/*
|
|
* Sanity check the DMA mask - it must be non-zero, and
|
|
* must be able to be satisfied by a DMA allocation.
|
|
*/
|
|
if (mask == 0) {
|
|
dev_warn(dev, "coherent DMA mask is unset\n");
|
|
return 0;
|
|
}
|
|
|
|
if (!__dma_supported(dev, mask, true))
|
|
return 0;
|
|
}
|
|
|
|
return mask;
|
|
}
|
|
|
|
static void __dma_clear_buffer(struct page *page, size_t size, int coherent_flag)
|
|
{
|
|
/*
|
|
* Ensure that the allocated pages are zeroed, and that any data
|
|
* lurking in the kernel direct-mapped region is invalidated.
|
|
*/
|
|
if (PageHighMem(page)) {
|
|
phys_addr_t base = __pfn_to_phys(page_to_pfn(page));
|
|
phys_addr_t end = base + size;
|
|
while (size > 0) {
|
|
void *ptr = kmap_atomic(page);
|
|
memset(ptr, 0, PAGE_SIZE);
|
|
if (coherent_flag != COHERENT)
|
|
dmac_flush_range(ptr, ptr + PAGE_SIZE);
|
|
kunmap_atomic(ptr);
|
|
page++;
|
|
size -= PAGE_SIZE;
|
|
}
|
|
if (coherent_flag != COHERENT)
|
|
outer_flush_range(base, end);
|
|
} else {
|
|
void *ptr = page_address(page);
|
|
memset(ptr, 0, size);
|
|
if (coherent_flag != COHERENT) {
|
|
dmac_flush_range(ptr, ptr + size);
|
|
outer_flush_range(__pa(ptr), __pa(ptr) + size);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Allocate a DMA buffer for 'dev' of size 'size' using the
|
|
* specified gfp mask. Note that 'size' must be page aligned.
|
|
*/
|
|
static struct page *__dma_alloc_buffer(struct device *dev, size_t size,
|
|
gfp_t gfp, int coherent_flag)
|
|
{
|
|
unsigned long order = get_order(size);
|
|
struct page *page, *p, *e;
|
|
|
|
page = alloc_pages(gfp, order);
|
|
if (!page)
|
|
return NULL;
|
|
|
|
/*
|
|
* Now split the huge page and free the excess pages
|
|
*/
|
|
split_page(page, order);
|
|
for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
|
|
__free_page(p);
|
|
|
|
__dma_clear_buffer(page, size, coherent_flag);
|
|
|
|
return page;
|
|
}
|
|
|
|
/*
|
|
* Free a DMA buffer. 'size' must be page aligned.
|
|
*/
|
|
static void __dma_free_buffer(struct page *page, size_t size)
|
|
{
|
|
struct page *e = page + (size >> PAGE_SHIFT);
|
|
|
|
while (page < e) {
|
|
__free_page(page);
|
|
page++;
|
|
}
|
|
}
|
|
|
|
static void *__alloc_from_contiguous(struct device *dev, size_t size,
|
|
pgprot_t prot, struct page **ret_page,
|
|
const void *caller, bool want_vaddr,
|
|
int coherent_flag, gfp_t gfp);
|
|
|
|
static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
|
|
pgprot_t prot, struct page **ret_page,
|
|
const void *caller, bool want_vaddr);
|
|
|
|
static void *
|
|
__dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot,
|
|
const void *caller)
|
|
{
|
|
/*
|
|
* DMA allocation can be mapped to user space, so lets
|
|
* set VM_USERMAP flags too.
|
|
*/
|
|
return dma_common_contiguous_remap(page, size,
|
|
VM_ARM_DMA_CONSISTENT | VM_USERMAP,
|
|
prot, caller);
|
|
}
|
|
|
|
static void __dma_free_remap(void *cpu_addr, size_t size)
|
|
{
|
|
dma_common_free_remap(cpu_addr, size,
|
|
VM_ARM_DMA_CONSISTENT | VM_USERMAP);
|
|
}
|
|
|
|
#define DEFAULT_DMA_COHERENT_POOL_SIZE SZ_256K
|
|
static struct gen_pool *atomic_pool __ro_after_init;
|
|
|
|
static size_t atomic_pool_size __initdata = DEFAULT_DMA_COHERENT_POOL_SIZE;
|
|
|
|
static int __init early_coherent_pool(char *p)
|
|
{
|
|
atomic_pool_size = memparse(p, &p);
|
|
return 0;
|
|
}
|
|
early_param("coherent_pool", early_coherent_pool);
|
|
|
|
/*
|
|
* Initialise the coherent pool for atomic allocations.
|
|
*/
|
|
static int __init atomic_pool_init(void)
|
|
{
|
|
pgprot_t prot = pgprot_dmacoherent(PAGE_KERNEL);
|
|
gfp_t gfp = GFP_KERNEL | GFP_DMA;
|
|
struct page *page;
|
|
void *ptr;
|
|
|
|
atomic_pool = gen_pool_create(PAGE_SHIFT, -1);
|
|
if (!atomic_pool)
|
|
goto out;
|
|
/*
|
|
* The atomic pool is only used for non-coherent allocations
|
|
* so we must pass NORMAL for coherent_flag.
|
|
*/
|
|
if (dev_get_cma_area(NULL))
|
|
ptr = __alloc_from_contiguous(NULL, atomic_pool_size, prot,
|
|
&page, atomic_pool_init, true, NORMAL,
|
|
GFP_KERNEL);
|
|
else
|
|
ptr = __alloc_remap_buffer(NULL, atomic_pool_size, gfp, prot,
|
|
&page, atomic_pool_init, true);
|
|
if (ptr) {
|
|
int ret;
|
|
|
|
ret = gen_pool_add_virt(atomic_pool, (unsigned long)ptr,
|
|
page_to_phys(page),
|
|
atomic_pool_size, -1);
|
|
if (ret)
|
|
goto destroy_genpool;
|
|
|
|
gen_pool_set_algo(atomic_pool,
|
|
gen_pool_first_fit_order_align,
|
|
NULL);
|
|
pr_info("DMA: preallocated %zu KiB pool for atomic coherent allocations\n",
|
|
atomic_pool_size / 1024);
|
|
return 0;
|
|
}
|
|
|
|
destroy_genpool:
|
|
gen_pool_destroy(atomic_pool);
|
|
atomic_pool = NULL;
|
|
out:
|
|
pr_err("DMA: failed to allocate %zu KiB pool for atomic coherent allocation\n",
|
|
atomic_pool_size / 1024);
|
|
return -ENOMEM;
|
|
}
|
|
/*
|
|
* CMA is activated by core_initcall, so we must be called after it.
|
|
*/
|
|
postcore_initcall(atomic_pool_init);
|
|
|
|
struct dma_contig_early_reserve {
|
|
phys_addr_t base;
|
|
unsigned long size;
|
|
};
|
|
|
|
static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata;
|
|
|
|
static int dma_mmu_remap_num __initdata;
|
|
|
|
void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size)
|
|
{
|
|
dma_mmu_remap[dma_mmu_remap_num].base = base;
|
|
dma_mmu_remap[dma_mmu_remap_num].size = size;
|
|
dma_mmu_remap_num++;
|
|
}
|
|
|
|
void __init dma_contiguous_remap(void)
|
|
{
|
|
int i;
|
|
for (i = 0; i < dma_mmu_remap_num; i++) {
|
|
phys_addr_t start = dma_mmu_remap[i].base;
|
|
phys_addr_t end = start + dma_mmu_remap[i].size;
|
|
struct map_desc map;
|
|
unsigned long addr;
|
|
|
|
if (end > arm_lowmem_limit)
|
|
end = arm_lowmem_limit;
|
|
if (start >= end)
|
|
continue;
|
|
|
|
map.pfn = __phys_to_pfn(start);
|
|
map.virtual = __phys_to_virt(start);
|
|
map.length = end - start;
|
|
map.type = MT_MEMORY_DMA_READY;
|
|
|
|
/*
|
|
* Clear previous low-memory mapping to ensure that the
|
|
* TLB does not see any conflicting entries, then flush
|
|
* the TLB of the old entries before creating new mappings.
|
|
*
|
|
* This ensures that any speculatively loaded TLB entries
|
|
* (even though they may be rare) can not cause any problems,
|
|
* and ensures that this code is architecturally compliant.
|
|
*/
|
|
for (addr = __phys_to_virt(start); addr < __phys_to_virt(end);
|
|
addr += PMD_SIZE)
|
|
pmd_clear(pmd_off_k(addr));
|
|
|
|
flush_tlb_kernel_range(__phys_to_virt(start),
|
|
__phys_to_virt(end));
|
|
|
|
iotable_init(&map, 1);
|
|
}
|
|
}
|
|
|
|
static int __dma_update_pte(pte_t *pte, pgtable_t token, unsigned long addr,
|
|
void *data)
|
|
{
|
|
struct page *page = virt_to_page(addr);
|
|
pgprot_t prot = *(pgprot_t *)data;
|
|
|
|
set_pte_ext(pte, mk_pte(page, prot), 0);
|
|
return 0;
|
|
}
|
|
|
|
static void __dma_remap(struct page *page, size_t size, pgprot_t prot)
|
|
{
|
|
unsigned long start = (unsigned long) page_address(page);
|
|
unsigned end = start + size;
|
|
|
|
apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot);
|
|
flush_tlb_kernel_range(start, end);
|
|
}
|
|
|
|
static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
|
|
pgprot_t prot, struct page **ret_page,
|
|
const void *caller, bool want_vaddr)
|
|
{
|
|
struct page *page;
|
|
void *ptr = NULL;
|
|
/*
|
|
* __alloc_remap_buffer is only called when the device is
|
|
* non-coherent
|
|
*/
|
|
page = __dma_alloc_buffer(dev, size, gfp, NORMAL);
|
|
if (!page)
|
|
return NULL;
|
|
if (!want_vaddr)
|
|
goto out;
|
|
|
|
ptr = __dma_alloc_remap(page, size, gfp, prot, caller);
|
|
if (!ptr) {
|
|
__dma_free_buffer(page, size);
|
|
return NULL;
|
|
}
|
|
|
|
out:
|
|
*ret_page = page;
|
|
return ptr;
|
|
}
|
|
|
|
static void *__alloc_from_pool(size_t size, struct page **ret_page)
|
|
{
|
|
unsigned long val;
|
|
void *ptr = NULL;
|
|
|
|
if (!atomic_pool) {
|
|
WARN(1, "coherent pool not initialised!\n");
|
|
return NULL;
|
|
}
|
|
|
|
val = gen_pool_alloc(atomic_pool, size);
|
|
if (val) {
|
|
phys_addr_t phys = gen_pool_virt_to_phys(atomic_pool, val);
|
|
|
|
*ret_page = phys_to_page(phys);
|
|
ptr = (void *)val;
|
|
}
|
|
|
|
return ptr;
|
|
}
|
|
|
|
static bool __in_atomic_pool(void *start, size_t size)
|
|
{
|
|
return addr_in_gen_pool(atomic_pool, (unsigned long)start, size);
|
|
}
|
|
|
|
static int __free_from_pool(void *start, size_t size)
|
|
{
|
|
if (!__in_atomic_pool(start, size))
|
|
return 0;
|
|
|
|
gen_pool_free(atomic_pool, (unsigned long)start, size);
|
|
|
|
return 1;
|
|
}
|
|
|
|
static void *__alloc_from_contiguous(struct device *dev, size_t size,
|
|
pgprot_t prot, struct page **ret_page,
|
|
const void *caller, bool want_vaddr,
|
|
int coherent_flag, gfp_t gfp)
|
|
{
|
|
unsigned long order = get_order(size);
|
|
size_t count = size >> PAGE_SHIFT;
|
|
struct page *page;
|
|
void *ptr = NULL;
|
|
|
|
page = dma_alloc_from_contiguous(dev, count, order, gfp);
|
|
if (!page)
|
|
return NULL;
|
|
|
|
__dma_clear_buffer(page, size, coherent_flag);
|
|
|
|
if (!want_vaddr)
|
|
goto out;
|
|
|
|
if (PageHighMem(page)) {
|
|
ptr = __dma_alloc_remap(page, size, GFP_KERNEL, prot, caller);
|
|
if (!ptr) {
|
|
dma_release_from_contiguous(dev, page, count);
|
|
return NULL;
|
|
}
|
|
} else {
|
|
__dma_remap(page, size, prot);
|
|
ptr = page_address(page);
|
|
}
|
|
|
|
out:
|
|
*ret_page = page;
|
|
return ptr;
|
|
}
|
|
|
|
static void __free_from_contiguous(struct device *dev, struct page *page,
|
|
void *cpu_addr, size_t size, bool want_vaddr)
|
|
{
|
|
if (want_vaddr) {
|
|
if (PageHighMem(page))
|
|
__dma_free_remap(cpu_addr, size);
|
|
else
|
|
__dma_remap(page, size, PAGE_KERNEL);
|
|
}
|
|
dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
|
|
}
|
|
|
|
static inline pgprot_t __get_dma_pgprot(unsigned long attrs, pgprot_t prot)
|
|
{
|
|
prot = (attrs & DMA_ATTR_WRITE_COMBINE) ?
|
|
pgprot_writecombine(prot) :
|
|
pgprot_dmacoherent(prot);
|
|
return prot;
|
|
}
|
|
|
|
static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp,
|
|
struct page **ret_page)
|
|
{
|
|
struct page *page;
|
|
/* __alloc_simple_buffer is only called when the device is coherent */
|
|
page = __dma_alloc_buffer(dev, size, gfp, COHERENT);
|
|
if (!page)
|
|
return NULL;
|
|
|
|
*ret_page = page;
|
|
return page_address(page);
|
|
}
|
|
|
|
static void *simple_allocator_alloc(struct arm_dma_alloc_args *args,
|
|
struct page **ret_page)
|
|
{
|
|
return __alloc_simple_buffer(args->dev, args->size, args->gfp,
|
|
ret_page);
|
|
}
|
|
|
|
static void simple_allocator_free(struct arm_dma_free_args *args)
|
|
{
|
|
__dma_free_buffer(args->page, args->size);
|
|
}
|
|
|
|
static struct arm_dma_allocator simple_allocator = {
|
|
.alloc = simple_allocator_alloc,
|
|
.free = simple_allocator_free,
|
|
};
|
|
|
|
static void *cma_allocator_alloc(struct arm_dma_alloc_args *args,
|
|
struct page **ret_page)
|
|
{
|
|
return __alloc_from_contiguous(args->dev, args->size, args->prot,
|
|
ret_page, args->caller,
|
|
args->want_vaddr, args->coherent_flag,
|
|
args->gfp);
|
|
}
|
|
|
|
static void cma_allocator_free(struct arm_dma_free_args *args)
|
|
{
|
|
__free_from_contiguous(args->dev, args->page, args->cpu_addr,
|
|
args->size, args->want_vaddr);
|
|
}
|
|
|
|
static struct arm_dma_allocator cma_allocator = {
|
|
.alloc = cma_allocator_alloc,
|
|
.free = cma_allocator_free,
|
|
};
|
|
|
|
static void *pool_allocator_alloc(struct arm_dma_alloc_args *args,
|
|
struct page **ret_page)
|
|
{
|
|
return __alloc_from_pool(args->size, ret_page);
|
|
}
|
|
|
|
static void pool_allocator_free(struct arm_dma_free_args *args)
|
|
{
|
|
__free_from_pool(args->cpu_addr, args->size);
|
|
}
|
|
|
|
static struct arm_dma_allocator pool_allocator = {
|
|
.alloc = pool_allocator_alloc,
|
|
.free = pool_allocator_free,
|
|
};
|
|
|
|
static void *remap_allocator_alloc(struct arm_dma_alloc_args *args,
|
|
struct page **ret_page)
|
|
{
|
|
return __alloc_remap_buffer(args->dev, args->size, args->gfp,
|
|
args->prot, ret_page, args->caller,
|
|
args->want_vaddr);
|
|
}
|
|
|
|
static void remap_allocator_free(struct arm_dma_free_args *args)
|
|
{
|
|
if (args->want_vaddr)
|
|
__dma_free_remap(args->cpu_addr, args->size);
|
|
|
|
__dma_free_buffer(args->page, args->size);
|
|
}
|
|
|
|
static struct arm_dma_allocator remap_allocator = {
|
|
.alloc = remap_allocator_alloc,
|
|
.free = remap_allocator_free,
|
|
};
|
|
|
|
static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
|
|
gfp_t gfp, pgprot_t prot, bool is_coherent,
|
|
unsigned long attrs, const void *caller)
|
|
{
|
|
u64 mask = get_coherent_dma_mask(dev);
|
|
struct page *page = NULL;
|
|
void *addr;
|
|
bool allowblock, cma;
|
|
struct arm_dma_buffer *buf;
|
|
struct arm_dma_alloc_args args = {
|
|
.dev = dev,
|
|
.size = PAGE_ALIGN(size),
|
|
.gfp = gfp,
|
|
.prot = prot,
|
|
.caller = caller,
|
|
.want_vaddr = ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0),
|
|
.coherent_flag = is_coherent ? COHERENT : NORMAL,
|
|
};
|
|
|
|
#ifdef CONFIG_DMA_API_DEBUG
|
|
u64 limit = (mask + 1) & ~mask;
|
|
if (limit && size >= limit) {
|
|
dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
|
|
size, mask);
|
|
return NULL;
|
|
}
|
|
#endif
|
|
|
|
if (!mask)
|
|
return NULL;
|
|
|
|
buf = kzalloc(sizeof(*buf),
|
|
gfp & ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM));
|
|
if (!buf)
|
|
return NULL;
|
|
|
|
if (mask < 0xffffffffULL)
|
|
gfp |= GFP_DMA;
|
|
|
|
/*
|
|
* Following is a work-around (a.k.a. hack) to prevent pages
|
|
* with __GFP_COMP being passed to split_page() which cannot
|
|
* handle them. The real problem is that this flag probably
|
|
* should be 0 on ARM as it is not supported on this
|
|
* platform; see CONFIG_HUGETLBFS.
|
|
*/
|
|
gfp &= ~(__GFP_COMP);
|
|
args.gfp = gfp;
|
|
|
|
*handle = ARM_MAPPING_ERROR;
|
|
allowblock = gfpflags_allow_blocking(gfp);
|
|
cma = allowblock ? dev_get_cma_area(dev) : false;
|
|
|
|
if (cma)
|
|
buf->allocator = &cma_allocator;
|
|
else if (is_coherent)
|
|
buf->allocator = &simple_allocator;
|
|
else if (allowblock)
|
|
buf->allocator = &remap_allocator;
|
|
else
|
|
buf->allocator = &pool_allocator;
|
|
|
|
addr = buf->allocator->alloc(&args, &page);
|
|
|
|
if (page) {
|
|
unsigned long flags;
|
|
|
|
*handle = pfn_to_dma(dev, page_to_pfn(page));
|
|
buf->virt = args.want_vaddr ? addr : page;
|
|
|
|
spin_lock_irqsave(&arm_dma_bufs_lock, flags);
|
|
list_add(&buf->list, &arm_dma_bufs);
|
|
spin_unlock_irqrestore(&arm_dma_bufs_lock, flags);
|
|
} else {
|
|
kfree(buf);
|
|
}
|
|
|
|
return args.want_vaddr ? addr : page;
|
|
}
|
|
|
|
/*
|
|
* Allocate DMA-coherent memory space and return both the kernel remapped
|
|
* virtual and bus address for that space.
|
|
*/
|
|
void *arm_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
|
|
gfp_t gfp, unsigned long attrs)
|
|
{
|
|
pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
|
|
|
|
return __dma_alloc(dev, size, handle, gfp, prot, false,
|
|
attrs, __builtin_return_address(0));
|
|
}
|
|
|
|
static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
|
|
dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
|
|
{
|
|
return __dma_alloc(dev, size, handle, gfp, PAGE_KERNEL, true,
|
|
attrs, __builtin_return_address(0));
|
|
}
|
|
|
|
static int __arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
|
|
void *cpu_addr, dma_addr_t dma_addr, size_t size,
|
|
unsigned long attrs)
|
|
{
|
|
int ret;
|
|
unsigned long nr_vma_pages = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
|
|
unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
|
|
unsigned long pfn = dma_to_pfn(dev, dma_addr);
|
|
unsigned long off = vma->vm_pgoff;
|
|
|
|
if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
|
|
return ret;
|
|
|
|
if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) {
|
|
ret = remap_pfn_range(vma, vma->vm_start,
|
|
pfn + off,
|
|
vma->vm_end - vma->vm_start,
|
|
vma->vm_page_prot);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Create userspace mapping for the DMA-coherent memory.
|
|
*/
|
|
static int arm_coherent_dma_mmap(struct device *dev, struct vm_area_struct *vma,
|
|
void *cpu_addr, dma_addr_t dma_addr, size_t size,
|
|
unsigned long attrs)
|
|
{
|
|
return __arm_dma_mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
|
|
}
|
|
|
|
int arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
|
|
void *cpu_addr, dma_addr_t dma_addr, size_t size,
|
|
unsigned long attrs)
|
|
{
|
|
vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
|
|
return __arm_dma_mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
|
|
}
|
|
|
|
/*
|
|
* Free a buffer as defined by the above mapping.
|
|
*/
|
|
static void __arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
|
|
dma_addr_t handle, unsigned long attrs,
|
|
bool is_coherent)
|
|
{
|
|
struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
|
|
struct arm_dma_buffer *buf;
|
|
struct arm_dma_free_args args = {
|
|
.dev = dev,
|
|
.size = PAGE_ALIGN(size),
|
|
.cpu_addr = cpu_addr,
|
|
.page = page,
|
|
.want_vaddr = ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0),
|
|
};
|
|
|
|
buf = arm_dma_buffer_find(cpu_addr);
|
|
if (WARN(!buf, "Freeing invalid buffer %p\n", cpu_addr))
|
|
return;
|
|
|
|
buf->allocator->free(&args);
|
|
kfree(buf);
|
|
}
|
|
|
|
void arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
|
|
dma_addr_t handle, unsigned long attrs)
|
|
{
|
|
__arm_dma_free(dev, size, cpu_addr, handle, attrs, false);
|
|
}
|
|
|
|
static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
|
|
dma_addr_t handle, unsigned long attrs)
|
|
{
|
|
__arm_dma_free(dev, size, cpu_addr, handle, attrs, true);
|
|
}
|
|
|
|
/*
|
|
* The whole dma_get_sgtable() idea is fundamentally unsafe - it seems
|
|
* that the intention is to allow exporting memory allocated via the
|
|
* coherent DMA APIs through the dma_buf API, which only accepts a
|
|
* scattertable. This presents a couple of problems:
|
|
* 1. Not all memory allocated via the coherent DMA APIs is backed by
|
|
* a struct page
|
|
* 2. Passing coherent DMA memory into the streaming APIs is not allowed
|
|
* as we will try to flush the memory through a different alias to that
|
|
* actually being used (and the flushes are redundant.)
|
|
*/
|
|
int arm_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
|
|
void *cpu_addr, dma_addr_t handle, size_t size,
|
|
unsigned long attrs)
|
|
{
|
|
unsigned long pfn = dma_to_pfn(dev, handle);
|
|
struct page *page;
|
|
int ret;
|
|
|
|
/* If the PFN is not valid, we do not have a struct page */
|
|
if (!pfn_valid(pfn))
|
|
return -ENXIO;
|
|
|
|
page = pfn_to_page(pfn);
|
|
|
|
ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
|
|
if (unlikely(ret))
|
|
return ret;
|
|
|
|
sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
|
|
return 0;
|
|
}
|
|
|
|
static void dma_cache_maint_page(struct page *page, unsigned long offset,
|
|
size_t size, enum dma_data_direction dir,
|
|
void (*op)(const void *, size_t, int))
|
|
{
|
|
unsigned long pfn;
|
|
size_t left = size;
|
|
|
|
pfn = page_to_pfn(page) + offset / PAGE_SIZE;
|
|
offset %= PAGE_SIZE;
|
|
|
|
/*
|
|
* A single sg entry may refer to multiple physically contiguous
|
|
* pages. But we still need to process highmem pages individually.
|
|
* If highmem is not configured then the bulk of this loop gets
|
|
* optimized out.
|
|
*/
|
|
do {
|
|
size_t len = left;
|
|
void *vaddr;
|
|
|
|
page = pfn_to_page(pfn);
|
|
|
|
if (PageHighMem(page)) {
|
|
if (len + offset > PAGE_SIZE)
|
|
len = PAGE_SIZE - offset;
|
|
|
|
if (cache_is_vipt_nonaliasing()) {
|
|
vaddr = kmap_atomic(page);
|
|
op(vaddr + offset, len, dir);
|
|
kunmap_atomic(vaddr);
|
|
} else {
|
|
vaddr = kmap_high_get(page);
|
|
if (vaddr) {
|
|
op(vaddr + offset, len, dir);
|
|
kunmap_high(page);
|
|
}
|
|
}
|
|
} else {
|
|
vaddr = page_address(page) + offset;
|
|
op(vaddr, len, dir);
|
|
}
|
|
offset = 0;
|
|
pfn++;
|
|
left -= len;
|
|
} while (left);
|
|
}
|
|
|
|
/*
|
|
* Make an area consistent for devices.
|
|
* Note: Drivers should NOT use this function directly, as it will break
|
|
* platforms with CONFIG_DMABOUNCE.
|
|
* Use the driver DMA support - see dma-mapping.h (dma_sync_*)
|
|
*/
|
|
static void __dma_page_cpu_to_dev(struct page *page, unsigned long off,
|
|
size_t size, enum dma_data_direction dir)
|
|
{
|
|
phys_addr_t paddr;
|
|
|
|
dma_cache_maint_page(page, off, size, dir, dmac_map_area);
|
|
|
|
paddr = page_to_phys(page) + off;
|
|
if (dir == DMA_FROM_DEVICE) {
|
|
outer_inv_range(paddr, paddr + size);
|
|
} else {
|
|
outer_clean_range(paddr, paddr + size);
|
|
}
|
|
/* FIXME: non-speculating: flush on bidirectional mappings? */
|
|
}
|
|
|
|
static void __dma_page_dev_to_cpu(struct page *page, unsigned long off,
|
|
size_t size, enum dma_data_direction dir)
|
|
{
|
|
phys_addr_t paddr = page_to_phys(page) + off;
|
|
|
|
/* FIXME: non-speculating: not required */
|
|
/* in any case, don't bother invalidating if DMA to device */
|
|
if (dir != DMA_TO_DEVICE) {
|
|
outer_inv_range(paddr, paddr + size);
|
|
|
|
dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
|
|
}
|
|
|
|
/*
|
|
* Mark the D-cache clean for these pages to avoid extra flushing.
|
|
*/
|
|
if (dir != DMA_TO_DEVICE && size >= PAGE_SIZE) {
|
|
unsigned long pfn;
|
|
size_t left = size;
|
|
|
|
pfn = page_to_pfn(page) + off / PAGE_SIZE;
|
|
off %= PAGE_SIZE;
|
|
if (off) {
|
|
pfn++;
|
|
left -= PAGE_SIZE - off;
|
|
}
|
|
while (left >= PAGE_SIZE) {
|
|
page = pfn_to_page(pfn++);
|
|
set_bit(PG_dcache_clean, &page->flags);
|
|
left -= PAGE_SIZE;
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* arm_dma_map_sg - map a set of SG buffers for streaming mode DMA
|
|
* @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
|
|
* @sg: list of buffers
|
|
* @nents: number of buffers to map
|
|
* @dir: DMA transfer direction
|
|
*
|
|
* Map a set of buffers described by scatterlist in streaming mode for DMA.
|
|
* This is the scatter-gather version of the dma_map_single interface.
|
|
* Here the scatter gather list elements are each tagged with the
|
|
* appropriate dma address and length. They are obtained via
|
|
* sg_dma_{address,length}.
|
|
*
|
|
* Device ownership issues as mentioned for dma_map_single are the same
|
|
* here.
|
|
*/
|
|
int arm_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
|
|
enum dma_data_direction dir, unsigned long attrs)
|
|
{
|
|
const struct dma_map_ops *ops = get_dma_ops(dev);
|
|
struct scatterlist *s;
|
|
int i, j;
|
|
|
|
for_each_sg(sg, s, nents, i) {
|
|
#ifdef CONFIG_NEED_SG_DMA_LENGTH
|
|
s->dma_length = s->length;
|
|
#endif
|
|
s->dma_address = ops->map_page(dev, sg_page(s), s->offset,
|
|
s->length, dir, attrs);
|
|
if (dma_mapping_error(dev, s->dma_address))
|
|
goto bad_mapping;
|
|
}
|
|
return nents;
|
|
|
|
bad_mapping:
|
|
for_each_sg(sg, s, i, j)
|
|
ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
|
|
* @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
|
|
* @sg: list of buffers
|
|
* @nents: number of buffers to unmap (same as was passed to dma_map_sg)
|
|
* @dir: DMA transfer direction (same as was passed to dma_map_sg)
|
|
*
|
|
* Unmap a set of streaming mode DMA translations. Again, CPU access
|
|
* rules concerning calls here are the same as for dma_unmap_single().
|
|
*/
|
|
void arm_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
|
|
enum dma_data_direction dir, unsigned long attrs)
|
|
{
|
|
const struct dma_map_ops *ops = get_dma_ops(dev);
|
|
struct scatterlist *s;
|
|
|
|
int i;
|
|
|
|
for_each_sg(sg, s, nents, i)
|
|
ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
|
|
}
|
|
|
|
/**
|
|
* arm_dma_sync_sg_for_cpu
|
|
* @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
|
|
* @sg: list of buffers
|
|
* @nents: number of buffers to map (returned from dma_map_sg)
|
|
* @dir: DMA transfer direction (same as was passed to dma_map_sg)
|
|
*/
|
|
void arm_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
|
|
int nents, enum dma_data_direction dir)
|
|
{
|
|
const struct dma_map_ops *ops = get_dma_ops(dev);
|
|
struct scatterlist *s;
|
|
int i;
|
|
|
|
for_each_sg(sg, s, nents, i)
|
|
ops->sync_single_for_cpu(dev, sg_dma_address(s), s->length,
|
|
dir);
|
|
}
|
|
|
|
/**
|
|
* arm_dma_sync_sg_for_device
|
|
* @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
|
|
* @sg: list of buffers
|
|
* @nents: number of buffers to map (returned from dma_map_sg)
|
|
* @dir: DMA transfer direction (same as was passed to dma_map_sg)
|
|
*/
|
|
void arm_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
|
|
int nents, enum dma_data_direction dir)
|
|
{
|
|
const struct dma_map_ops *ops = get_dma_ops(dev);
|
|
struct scatterlist *s;
|
|
int i;
|
|
|
|
for_each_sg(sg, s, nents, i)
|
|
ops->sync_single_for_device(dev, sg_dma_address(s), s->length,
|
|
dir);
|
|
}
|
|
|
|
/*
|
|
* Return whether the given device DMA address mask can be supported
|
|
* properly. For example, if your device can only drive the low 24-bits
|
|
* during bus mastering, then you would pass 0x00ffffff as the mask
|
|
* to this function.
|
|
*/
|
|
int arm_dma_supported(struct device *dev, u64 mask)
|
|
{
|
|
return __dma_supported(dev, mask, false);
|
|
}
|
|
|
|
#define PREALLOC_DMA_DEBUG_ENTRIES 4096
|
|
|
|
static int __init dma_debug_do_init(void)
|
|
{
|
|
dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
|
|
return 0;
|
|
}
|
|
core_initcall(dma_debug_do_init);
|
|
|
|
#ifdef CONFIG_ARM_DMA_USE_IOMMU
|
|
|
|
static int __dma_info_to_prot(enum dma_data_direction dir, unsigned long attrs)
|
|
{
|
|
int prot = 0;
|
|
|
|
if (attrs & DMA_ATTR_PRIVILEGED)
|
|
prot |= IOMMU_PRIV;
|
|
|
|
switch (dir) {
|
|
case DMA_BIDIRECTIONAL:
|
|
return prot | IOMMU_READ | IOMMU_WRITE;
|
|
case DMA_TO_DEVICE:
|
|
return prot | IOMMU_READ;
|
|
case DMA_FROM_DEVICE:
|
|
return prot | IOMMU_WRITE;
|
|
default:
|
|
return prot;
|
|
}
|
|
}
|
|
|
|
/* IOMMU */
|
|
|
|
static int extend_iommu_mapping(struct dma_iommu_mapping *mapping);
|
|
|
|
static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping,
|
|
size_t size)
|
|
{
|
|
unsigned int order = get_order(size);
|
|
unsigned int align = 0;
|
|
unsigned int count, start;
|
|
size_t mapping_size = mapping->bits << PAGE_SHIFT;
|
|
unsigned long flags;
|
|
dma_addr_t iova;
|
|
int i;
|
|
|
|
if (order > CONFIG_ARM_DMA_IOMMU_ALIGNMENT)
|
|
order = CONFIG_ARM_DMA_IOMMU_ALIGNMENT;
|
|
|
|
count = PAGE_ALIGN(size) >> PAGE_SHIFT;
|
|
align = (1 << order) - 1;
|
|
|
|
spin_lock_irqsave(&mapping->lock, flags);
|
|
for (i = 0; i < mapping->nr_bitmaps; i++) {
|
|
start = bitmap_find_next_zero_area(mapping->bitmaps[i],
|
|
mapping->bits, 0, count, align);
|
|
|
|
if (start > mapping->bits)
|
|
continue;
|
|
|
|
bitmap_set(mapping->bitmaps[i], start, count);
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* No unused range found. Try to extend the existing mapping
|
|
* and perform a second attempt to reserve an IO virtual
|
|
* address range of size bytes.
|
|
*/
|
|
if (i == mapping->nr_bitmaps) {
|
|
if (extend_iommu_mapping(mapping)) {
|
|
spin_unlock_irqrestore(&mapping->lock, flags);
|
|
return ARM_MAPPING_ERROR;
|
|
}
|
|
|
|
start = bitmap_find_next_zero_area(mapping->bitmaps[i],
|
|
mapping->bits, 0, count, align);
|
|
|
|
if (start > mapping->bits) {
|
|
spin_unlock_irqrestore(&mapping->lock, flags);
|
|
return ARM_MAPPING_ERROR;
|
|
}
|
|
|
|
bitmap_set(mapping->bitmaps[i], start, count);
|
|
}
|
|
spin_unlock_irqrestore(&mapping->lock, flags);
|
|
|
|
iova = mapping->base + (mapping_size * i);
|
|
iova += start << PAGE_SHIFT;
|
|
|
|
return iova;
|
|
}
|
|
|
|
static inline void __free_iova(struct dma_iommu_mapping *mapping,
|
|
dma_addr_t addr, size_t size)
|
|
{
|
|
unsigned int start, count;
|
|
size_t mapping_size = mapping->bits << PAGE_SHIFT;
|
|
unsigned long flags;
|
|
dma_addr_t bitmap_base;
|
|
u32 bitmap_index;
|
|
|
|
if (!size)
|
|
return;
|
|
|
|
bitmap_index = (u32) (addr - mapping->base) / (u32) mapping_size;
|
|
BUG_ON(addr < mapping->base || bitmap_index > mapping->extensions);
|
|
|
|
bitmap_base = mapping->base + mapping_size * bitmap_index;
|
|
|
|
start = (addr - bitmap_base) >> PAGE_SHIFT;
|
|
|
|
if (addr + size > bitmap_base + mapping_size) {
|
|
/*
|
|
* The address range to be freed reaches into the iova
|
|
* range of the next bitmap. This should not happen as
|
|
* we don't allow this in __alloc_iova (at the
|
|
* moment).
|
|
*/
|
|
BUG();
|
|
} else
|
|
count = size >> PAGE_SHIFT;
|
|
|
|
spin_lock_irqsave(&mapping->lock, flags);
|
|
bitmap_clear(mapping->bitmaps[bitmap_index], start, count);
|
|
spin_unlock_irqrestore(&mapping->lock, flags);
|
|
}
|
|
|
|
/* We'll try 2M, 1M, 64K, and finally 4K; array must end with 0! */
|
|
static const int iommu_order_array[] = { 9, 8, 4, 0 };
|
|
|
|
static struct page **__iommu_alloc_buffer(struct device *dev, size_t size,
|
|
gfp_t gfp, unsigned long attrs,
|
|
int coherent_flag)
|
|
{
|
|
struct page **pages;
|
|
int count = size >> PAGE_SHIFT;
|
|
int array_size = count * sizeof(struct page *);
|
|
int i = 0;
|
|
int order_idx = 0;
|
|
|
|
if (array_size <= PAGE_SIZE)
|
|
pages = kzalloc(array_size, GFP_KERNEL);
|
|
else
|
|
pages = vzalloc(array_size);
|
|
if (!pages)
|
|
return NULL;
|
|
|
|
if (attrs & DMA_ATTR_FORCE_CONTIGUOUS)
|
|
{
|
|
unsigned long order = get_order(size);
|
|
struct page *page;
|
|
|
|
page = dma_alloc_from_contiguous(dev, count, order, gfp);
|
|
if (!page)
|
|
goto error;
|
|
|
|
__dma_clear_buffer(page, size, coherent_flag);
|
|
|
|
for (i = 0; i < count; i++)
|
|
pages[i] = page + i;
|
|
|
|
return pages;
|
|
}
|
|
|
|
/* Go straight to 4K chunks if caller says it's OK. */
|
|
if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES)
|
|
order_idx = ARRAY_SIZE(iommu_order_array) - 1;
|
|
|
|
/*
|
|
* IOMMU can map any pages, so himem can also be used here
|
|
*/
|
|
gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
|
|
|
|
while (count) {
|
|
int j, order;
|
|
|
|
order = iommu_order_array[order_idx];
|
|
|
|
/* Drop down when we get small */
|
|
if (__fls(count) < order) {
|
|
order_idx++;
|
|
continue;
|
|
}
|
|
|
|
if (order) {
|
|
/* See if it's easy to allocate a high-order chunk */
|
|
pages[i] = alloc_pages(gfp | __GFP_NORETRY, order);
|
|
|
|
/* Go down a notch at first sign of pressure */
|
|
if (!pages[i]) {
|
|
order_idx++;
|
|
continue;
|
|
}
|
|
} else {
|
|
pages[i] = alloc_pages(gfp, 0);
|
|
if (!pages[i])
|
|
goto error;
|
|
}
|
|
|
|
if (order) {
|
|
split_page(pages[i], order);
|
|
j = 1 << order;
|
|
while (--j)
|
|
pages[i + j] = pages[i] + j;
|
|
}
|
|
|
|
__dma_clear_buffer(pages[i], PAGE_SIZE << order, coherent_flag);
|
|
i += 1 << order;
|
|
count -= 1 << order;
|
|
}
|
|
|
|
return pages;
|
|
error:
|
|
while (i--)
|
|
if (pages[i])
|
|
__free_pages(pages[i], 0);
|
|
kvfree(pages);
|
|
return NULL;
|
|
}
|
|
|
|
static int __iommu_free_buffer(struct device *dev, struct page **pages,
|
|
size_t size, unsigned long attrs)
|
|
{
|
|
int count = size >> PAGE_SHIFT;
|
|
int i;
|
|
|
|
if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) {
|
|
dma_release_from_contiguous(dev, pages[0], count);
|
|
} else {
|
|
for (i = 0; i < count; i++)
|
|
if (pages[i])
|
|
__free_pages(pages[i], 0);
|
|
}
|
|
|
|
kvfree(pages);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Create a CPU mapping for a specified pages
|
|
*/
|
|
static void *
|
|
__iommu_alloc_remap(struct page **pages, size_t size, gfp_t gfp, pgprot_t prot,
|
|
const void *caller)
|
|
{
|
|
return dma_common_pages_remap(pages, size,
|
|
VM_ARM_DMA_CONSISTENT | VM_USERMAP, prot, caller);
|
|
}
|
|
|
|
/*
|
|
* Create a mapping in device IO address space for specified pages
|
|
*/
|
|
static dma_addr_t
|
|
__iommu_create_mapping(struct device *dev, struct page **pages, size_t size,
|
|
unsigned long attrs)
|
|
{
|
|
struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
|
|
unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
|
|
dma_addr_t dma_addr, iova;
|
|
int i;
|
|
|
|
dma_addr = __alloc_iova(mapping, size);
|
|
if (dma_addr == ARM_MAPPING_ERROR)
|
|
return dma_addr;
|
|
|
|
iova = dma_addr;
|
|
for (i = 0; i < count; ) {
|
|
int ret;
|
|
|
|
unsigned int next_pfn = page_to_pfn(pages[i]) + 1;
|
|
phys_addr_t phys = page_to_phys(pages[i]);
|
|
unsigned int len, j;
|
|
|
|
for (j = i + 1; j < count; j++, next_pfn++)
|
|
if (page_to_pfn(pages[j]) != next_pfn)
|
|
break;
|
|
|
|
len = (j - i) << PAGE_SHIFT;
|
|
ret = iommu_map(mapping->domain, iova, phys, len,
|
|
__dma_info_to_prot(DMA_BIDIRECTIONAL, attrs));
|
|
if (ret < 0)
|
|
goto fail;
|
|
iova += len;
|
|
i = j;
|
|
}
|
|
return dma_addr;
|
|
fail:
|
|
iommu_unmap(mapping->domain, dma_addr, iova-dma_addr);
|
|
__free_iova(mapping, dma_addr, size);
|
|
return ARM_MAPPING_ERROR;
|
|
}
|
|
|
|
static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size)
|
|
{
|
|
struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
|
|
|
|
/*
|
|
* add optional in-page offset from iova to size and align
|
|
* result to page size
|
|
*/
|
|
size = PAGE_ALIGN((iova & ~PAGE_MASK) + size);
|
|
iova &= PAGE_MASK;
|
|
|
|
iommu_unmap(mapping->domain, iova, size);
|
|
__free_iova(mapping, iova, size);
|
|
return 0;
|
|
}
|
|
|
|
static struct page **__atomic_get_pages(void *addr)
|
|
{
|
|
struct page *page;
|
|
phys_addr_t phys;
|
|
|
|
phys = gen_pool_virt_to_phys(atomic_pool, (unsigned long)addr);
|
|
page = phys_to_page(phys);
|
|
|
|
return (struct page **)page;
|
|
}
|
|
|
|
static struct page **__iommu_get_pages(void *cpu_addr, unsigned long attrs)
|
|
{
|
|
struct vm_struct *area;
|
|
|
|
if (__in_atomic_pool(cpu_addr, PAGE_SIZE))
|
|
return __atomic_get_pages(cpu_addr);
|
|
|
|
if (attrs & DMA_ATTR_NO_KERNEL_MAPPING)
|
|
return cpu_addr;
|
|
|
|
area = find_vm_area(cpu_addr);
|
|
if (area && (area->flags & VM_ARM_DMA_CONSISTENT))
|
|
return area->pages;
|
|
return NULL;
|
|
}
|
|
|
|
static void *__iommu_alloc_simple(struct device *dev, size_t size, gfp_t gfp,
|
|
dma_addr_t *handle, int coherent_flag,
|
|
unsigned long attrs)
|
|
{
|
|
struct page *page;
|
|
void *addr;
|
|
|
|
if (coherent_flag == COHERENT)
|
|
addr = __alloc_simple_buffer(dev, size, gfp, &page);
|
|
else
|
|
addr = __alloc_from_pool(size, &page);
|
|
if (!addr)
|
|
return NULL;
|
|
|
|
*handle = __iommu_create_mapping(dev, &page, size, attrs);
|
|
if (*handle == ARM_MAPPING_ERROR)
|
|
goto err_mapping;
|
|
|
|
return addr;
|
|
|
|
err_mapping:
|
|
__free_from_pool(addr, size);
|
|
return NULL;
|
|
}
|
|
|
|
static void __iommu_free_atomic(struct device *dev, void *cpu_addr,
|
|
dma_addr_t handle, size_t size, int coherent_flag)
|
|
{
|
|
__iommu_remove_mapping(dev, handle, size);
|
|
if (coherent_flag == COHERENT)
|
|
__dma_free_buffer(virt_to_page(cpu_addr), size);
|
|
else
|
|
__free_from_pool(cpu_addr, size);
|
|
}
|
|
|
|
static void *__arm_iommu_alloc_attrs(struct device *dev, size_t size,
|
|
dma_addr_t *handle, gfp_t gfp, unsigned long attrs,
|
|
int coherent_flag)
|
|
{
|
|
pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
|
|
struct page **pages;
|
|
void *addr = NULL;
|
|
|
|
*handle = ARM_MAPPING_ERROR;
|
|
size = PAGE_ALIGN(size);
|
|
|
|
if (coherent_flag == COHERENT || !gfpflags_allow_blocking(gfp))
|
|
return __iommu_alloc_simple(dev, size, gfp, handle,
|
|
coherent_flag, attrs);
|
|
|
|
/*
|
|
* Following is a work-around (a.k.a. hack) to prevent pages
|
|
* with __GFP_COMP being passed to split_page() which cannot
|
|
* handle them. The real problem is that this flag probably
|
|
* should be 0 on ARM as it is not supported on this
|
|
* platform; see CONFIG_HUGETLBFS.
|
|
*/
|
|
gfp &= ~(__GFP_COMP);
|
|
|
|
pages = __iommu_alloc_buffer(dev, size, gfp, attrs, coherent_flag);
|
|
if (!pages)
|
|
return NULL;
|
|
|
|
*handle = __iommu_create_mapping(dev, pages, size, attrs);
|
|
if (*handle == ARM_MAPPING_ERROR)
|
|
goto err_buffer;
|
|
|
|
if (attrs & DMA_ATTR_NO_KERNEL_MAPPING)
|
|
return pages;
|
|
|
|
addr = __iommu_alloc_remap(pages, size, gfp, prot,
|
|
__builtin_return_address(0));
|
|
if (!addr)
|
|
goto err_mapping;
|
|
|
|
return addr;
|
|
|
|
err_mapping:
|
|
__iommu_remove_mapping(dev, *handle, size);
|
|
err_buffer:
|
|
__iommu_free_buffer(dev, pages, size, attrs);
|
|
return NULL;
|
|
}
|
|
|
|
static void *arm_iommu_alloc_attrs(struct device *dev, size_t size,
|
|
dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
|
|
{
|
|
return __arm_iommu_alloc_attrs(dev, size, handle, gfp, attrs, NORMAL);
|
|
}
|
|
|
|
static void *arm_coherent_iommu_alloc_attrs(struct device *dev, size_t size,
|
|
dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
|
|
{
|
|
return __arm_iommu_alloc_attrs(dev, size, handle, gfp, attrs, COHERENT);
|
|
}
|
|
|
|
static int __arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
|
|
void *cpu_addr, dma_addr_t dma_addr, size_t size,
|
|
unsigned long attrs)
|
|
{
|
|
unsigned long uaddr = vma->vm_start;
|
|
unsigned long usize = vma->vm_end - vma->vm_start;
|
|
struct page **pages = __iommu_get_pages(cpu_addr, attrs);
|
|
unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
|
|
unsigned long off = vma->vm_pgoff;
|
|
|
|
if (!pages)
|
|
return -ENXIO;
|
|
|
|
if (off >= nr_pages || (usize >> PAGE_SHIFT) > nr_pages - off)
|
|
return -ENXIO;
|
|
|
|
pages += off;
|
|
|
|
do {
|
|
int ret = vm_insert_page(vma, uaddr, *pages++);
|
|
if (ret) {
|
|
pr_err("Remapping memory failed: %d\n", ret);
|
|
return ret;
|
|
}
|
|
uaddr += PAGE_SIZE;
|
|
usize -= PAGE_SIZE;
|
|
} while (usize > 0);
|
|
|
|
return 0;
|
|
}
|
|
static int arm_iommu_mmap_attrs(struct device *dev,
|
|
struct vm_area_struct *vma, void *cpu_addr,
|
|
dma_addr_t dma_addr, size_t size, unsigned long attrs)
|
|
{
|
|
vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
|
|
|
|
return __arm_iommu_mmap_attrs(dev, vma, cpu_addr, dma_addr, size, attrs);
|
|
}
|
|
|
|
static int arm_coherent_iommu_mmap_attrs(struct device *dev,
|
|
struct vm_area_struct *vma, void *cpu_addr,
|
|
dma_addr_t dma_addr, size_t size, unsigned long attrs)
|
|
{
|
|
return __arm_iommu_mmap_attrs(dev, vma, cpu_addr, dma_addr, size, attrs);
|
|
}
|
|
|
|
/*
|
|
* free a page as defined by the above mapping.
|
|
* Must not be called with IRQs disabled.
|
|
*/
|
|
void __arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
|
|
dma_addr_t handle, unsigned long attrs, int coherent_flag)
|
|
{
|
|
struct page **pages;
|
|
size = PAGE_ALIGN(size);
|
|
|
|
if (coherent_flag == COHERENT || __in_atomic_pool(cpu_addr, size)) {
|
|
__iommu_free_atomic(dev, cpu_addr, handle, size, coherent_flag);
|
|
return;
|
|
}
|
|
|
|
pages = __iommu_get_pages(cpu_addr, attrs);
|
|
if (!pages) {
|
|
WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
|
|
return;
|
|
}
|
|
|
|
if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0) {
|
|
dma_common_free_remap(cpu_addr, size,
|
|
VM_ARM_DMA_CONSISTENT | VM_USERMAP);
|
|
}
|
|
|
|
__iommu_remove_mapping(dev, handle, size);
|
|
__iommu_free_buffer(dev, pages, size, attrs);
|
|
}
|
|
|
|
void arm_iommu_free_attrs(struct device *dev, size_t size,
|
|
void *cpu_addr, dma_addr_t handle, unsigned long attrs)
|
|
{
|
|
__arm_iommu_free_attrs(dev, size, cpu_addr, handle, attrs, NORMAL);
|
|
}
|
|
|
|
void arm_coherent_iommu_free_attrs(struct device *dev, size_t size,
|
|
void *cpu_addr, dma_addr_t handle, unsigned long attrs)
|
|
{
|
|
__arm_iommu_free_attrs(dev, size, cpu_addr, handle, attrs, COHERENT);
|
|
}
|
|
|
|
static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt,
|
|
void *cpu_addr, dma_addr_t dma_addr,
|
|
size_t size, unsigned long attrs)
|
|
{
|
|
unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
|
|
struct page **pages = __iommu_get_pages(cpu_addr, attrs);
|
|
|
|
if (!pages)
|
|
return -ENXIO;
|
|
|
|
return sg_alloc_table_from_pages(sgt, pages, count, 0, size,
|
|
GFP_KERNEL);
|
|
}
|
|
|
|
/*
|
|
* Map a part of the scatter-gather list into contiguous io address space
|
|
*/
|
|
static int __map_sg_chunk(struct device *dev, struct scatterlist *sg,
|
|
size_t size, dma_addr_t *handle,
|
|
enum dma_data_direction dir, unsigned long attrs,
|
|
bool is_coherent)
|
|
{
|
|
struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
|
|
dma_addr_t iova, iova_base;
|
|
int ret = 0;
|
|
unsigned int count;
|
|
struct scatterlist *s;
|
|
int prot;
|
|
|
|
size = PAGE_ALIGN(size);
|
|
*handle = ARM_MAPPING_ERROR;
|
|
|
|
iova_base = iova = __alloc_iova(mapping, size);
|
|
if (iova == ARM_MAPPING_ERROR)
|
|
return -ENOMEM;
|
|
|
|
for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) {
|
|
phys_addr_t phys = page_to_phys(sg_page(s));
|
|
unsigned int len = PAGE_ALIGN(s->offset + s->length);
|
|
|
|
if (!is_coherent && (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
|
|
__dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
|
|
|
|
prot = __dma_info_to_prot(dir, attrs);
|
|
|
|
ret = iommu_map(mapping->domain, iova, phys, len, prot);
|
|
if (ret < 0)
|
|
goto fail;
|
|
count += len >> PAGE_SHIFT;
|
|
iova += len;
|
|
}
|
|
*handle = iova_base;
|
|
|
|
return 0;
|
|
fail:
|
|
iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE);
|
|
__free_iova(mapping, iova_base, size);
|
|
return ret;
|
|
}
|
|
|
|
static int __iommu_map_sg(struct device *dev, struct scatterlist *sg, int nents,
|
|
enum dma_data_direction dir, unsigned long attrs,
|
|
bool is_coherent)
|
|
{
|
|
struct scatterlist *s = sg, *dma = sg, *start = sg;
|
|
int i, count = 0;
|
|
unsigned int offset = s->offset;
|
|
unsigned int size = s->offset + s->length;
|
|
unsigned int max = dma_get_max_seg_size(dev);
|
|
|
|
for (i = 1; i < nents; i++) {
|
|
s = sg_next(s);
|
|
|
|
s->dma_address = ARM_MAPPING_ERROR;
|
|
s->dma_length = 0;
|
|
|
|
if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) {
|
|
if (__map_sg_chunk(dev, start, size, &dma->dma_address,
|
|
dir, attrs, is_coherent) < 0)
|
|
goto bad_mapping;
|
|
|
|
dma->dma_address += offset;
|
|
dma->dma_length = size - offset;
|
|
|
|
size = offset = s->offset;
|
|
start = s;
|
|
dma = sg_next(dma);
|
|
count += 1;
|
|
}
|
|
size += s->length;
|
|
}
|
|
if (__map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs,
|
|
is_coherent) < 0)
|
|
goto bad_mapping;
|
|
|
|
dma->dma_address += offset;
|
|
dma->dma_length = size - offset;
|
|
|
|
return count+1;
|
|
|
|
bad_mapping:
|
|
for_each_sg(sg, s, count, i)
|
|
__iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s));
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* arm_coherent_iommu_map_sg - map a set of SG buffers for streaming mode DMA
|
|
* @dev: valid struct device pointer
|
|
* @sg: list of buffers
|
|
* @nents: number of buffers to map
|
|
* @dir: DMA transfer direction
|
|
*
|
|
* Map a set of i/o coherent buffers described by scatterlist in streaming
|
|
* mode for DMA. The scatter gather list elements are merged together (if
|
|
* possible) and tagged with the appropriate dma address and length. They are
|
|
* obtained via sg_dma_{address,length}.
|
|
*/
|
|
int arm_coherent_iommu_map_sg(struct device *dev, struct scatterlist *sg,
|
|
int nents, enum dma_data_direction dir, unsigned long attrs)
|
|
{
|
|
return __iommu_map_sg(dev, sg, nents, dir, attrs, true);
|
|
}
|
|
|
|
/**
|
|
* arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA
|
|
* @dev: valid struct device pointer
|
|
* @sg: list of buffers
|
|
* @nents: number of buffers to map
|
|
* @dir: DMA transfer direction
|
|
*
|
|
* Map a set of buffers described by scatterlist in streaming mode for DMA.
|
|
* The scatter gather list elements are merged together (if possible) and
|
|
* tagged with the appropriate dma address and length. They are obtained via
|
|
* sg_dma_{address,length}.
|
|
*/
|
|
int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg,
|
|
int nents, enum dma_data_direction dir, unsigned long attrs)
|
|
{
|
|
return __iommu_map_sg(dev, sg, nents, dir, attrs, false);
|
|
}
|
|
|
|
static void __iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
|
|
int nents, enum dma_data_direction dir,
|
|
unsigned long attrs, bool is_coherent)
|
|
{
|
|
struct scatterlist *s;
|
|
int i;
|
|
|
|
for_each_sg(sg, s, nents, i) {
|
|
if (sg_dma_len(s))
|
|
__iommu_remove_mapping(dev, sg_dma_address(s),
|
|
sg_dma_len(s));
|
|
if (!is_coherent && (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
|
|
__dma_page_dev_to_cpu(sg_page(s), s->offset,
|
|
s->length, dir);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* arm_coherent_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
|
|
* @dev: valid struct device pointer
|
|
* @sg: list of buffers
|
|
* @nents: number of buffers to unmap (same as was passed to dma_map_sg)
|
|
* @dir: DMA transfer direction (same as was passed to dma_map_sg)
|
|
*
|
|
* Unmap a set of streaming mode DMA translations. Again, CPU access
|
|
* rules concerning calls here are the same as for dma_unmap_single().
|
|
*/
|
|
void arm_coherent_iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
|
|
int nents, enum dma_data_direction dir,
|
|
unsigned long attrs)
|
|
{
|
|
__iommu_unmap_sg(dev, sg, nents, dir, attrs, true);
|
|
}
|
|
|
|
/**
|
|
* arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
|
|
* @dev: valid struct device pointer
|
|
* @sg: list of buffers
|
|
* @nents: number of buffers to unmap (same as was passed to dma_map_sg)
|
|
* @dir: DMA transfer direction (same as was passed to dma_map_sg)
|
|
*
|
|
* Unmap a set of streaming mode DMA translations. Again, CPU access
|
|
* rules concerning calls here are the same as for dma_unmap_single().
|
|
*/
|
|
void arm_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
|
|
enum dma_data_direction dir,
|
|
unsigned long attrs)
|
|
{
|
|
__iommu_unmap_sg(dev, sg, nents, dir, attrs, false);
|
|
}
|
|
|
|
/**
|
|
* arm_iommu_sync_sg_for_cpu
|
|
* @dev: valid struct device pointer
|
|
* @sg: list of buffers
|
|
* @nents: number of buffers to map (returned from dma_map_sg)
|
|
* @dir: DMA transfer direction (same as was passed to dma_map_sg)
|
|
*/
|
|
void arm_iommu_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
|
|
int nents, enum dma_data_direction dir)
|
|
{
|
|
struct scatterlist *s;
|
|
int i;
|
|
|
|
for_each_sg(sg, s, nents, i)
|
|
__dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir);
|
|
|
|
}
|
|
|
|
/**
|
|
* arm_iommu_sync_sg_for_device
|
|
* @dev: valid struct device pointer
|
|
* @sg: list of buffers
|
|
* @nents: number of buffers to map (returned from dma_map_sg)
|
|
* @dir: DMA transfer direction (same as was passed to dma_map_sg)
|
|
*/
|
|
void arm_iommu_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
|
|
int nents, enum dma_data_direction dir)
|
|
{
|
|
struct scatterlist *s;
|
|
int i;
|
|
|
|
for_each_sg(sg, s, nents, i)
|
|
__dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
|
|
}
|
|
|
|
|
|
/**
|
|
* arm_coherent_iommu_map_page
|
|
* @dev: valid struct device pointer
|
|
* @page: page that buffer resides in
|
|
* @offset: offset into page for start of buffer
|
|
* @size: size of buffer to map
|
|
* @dir: DMA transfer direction
|
|
*
|
|
* Coherent IOMMU aware version of arm_dma_map_page()
|
|
*/
|
|
static dma_addr_t arm_coherent_iommu_map_page(struct device *dev, struct page *page,
|
|
unsigned long offset, size_t size, enum dma_data_direction dir,
|
|
unsigned long attrs)
|
|
{
|
|
struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
|
|
dma_addr_t dma_addr;
|
|
int ret, prot, len = PAGE_ALIGN(size + offset);
|
|
|
|
dma_addr = __alloc_iova(mapping, len);
|
|
if (dma_addr == ARM_MAPPING_ERROR)
|
|
return dma_addr;
|
|
|
|
prot = __dma_info_to_prot(dir, attrs);
|
|
|
|
ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, prot);
|
|
if (ret < 0)
|
|
goto fail;
|
|
|
|
return dma_addr + offset;
|
|
fail:
|
|
__free_iova(mapping, dma_addr, len);
|
|
return ARM_MAPPING_ERROR;
|
|
}
|
|
|
|
/**
|
|
* arm_iommu_map_page
|
|
* @dev: valid struct device pointer
|
|
* @page: page that buffer resides in
|
|
* @offset: offset into page for start of buffer
|
|
* @size: size of buffer to map
|
|
* @dir: DMA transfer direction
|
|
*
|
|
* IOMMU aware version of arm_dma_map_page()
|
|
*/
|
|
static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page,
|
|
unsigned long offset, size_t size, enum dma_data_direction dir,
|
|
unsigned long attrs)
|
|
{
|
|
if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
|
|
__dma_page_cpu_to_dev(page, offset, size, dir);
|
|
|
|
return arm_coherent_iommu_map_page(dev, page, offset, size, dir, attrs);
|
|
}
|
|
|
|
/**
|
|
* arm_coherent_iommu_unmap_page
|
|
* @dev: valid struct device pointer
|
|
* @handle: DMA address of buffer
|
|
* @size: size of buffer (same as passed to dma_map_page)
|
|
* @dir: DMA transfer direction (same as passed to dma_map_page)
|
|
*
|
|
* Coherent IOMMU aware version of arm_dma_unmap_page()
|
|
*/
|
|
static void arm_coherent_iommu_unmap_page(struct device *dev, dma_addr_t handle,
|
|
size_t size, enum dma_data_direction dir, unsigned long attrs)
|
|
{
|
|
struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
|
|
dma_addr_t iova = handle & PAGE_MASK;
|
|
int offset = handle & ~PAGE_MASK;
|
|
int len = PAGE_ALIGN(size + offset);
|
|
|
|
if (!iova)
|
|
return;
|
|
|
|
iommu_unmap(mapping->domain, iova, len);
|
|
__free_iova(mapping, iova, len);
|
|
}
|
|
|
|
/**
|
|
* arm_iommu_unmap_page
|
|
* @dev: valid struct device pointer
|
|
* @handle: DMA address of buffer
|
|
* @size: size of buffer (same as passed to dma_map_page)
|
|
* @dir: DMA transfer direction (same as passed to dma_map_page)
|
|
*
|
|
* IOMMU aware version of arm_dma_unmap_page()
|
|
*/
|
|
static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle,
|
|
size_t size, enum dma_data_direction dir, unsigned long attrs)
|
|
{
|
|
struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
|
|
dma_addr_t iova = handle & PAGE_MASK;
|
|
struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
|
|
int offset = handle & ~PAGE_MASK;
|
|
int len = PAGE_ALIGN(size + offset);
|
|
|
|
if (!iova)
|
|
return;
|
|
|
|
if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
|
|
__dma_page_dev_to_cpu(page, offset, size, dir);
|
|
|
|
iommu_unmap(mapping->domain, iova, len);
|
|
__free_iova(mapping, iova, len);
|
|
}
|
|
|
|
/**
|
|
* arm_iommu_map_resource - map a device resource for DMA
|
|
* @dev: valid struct device pointer
|
|
* @phys_addr: physical address of resource
|
|
* @size: size of resource to map
|
|
* @dir: DMA transfer direction
|
|
*/
|
|
static dma_addr_t arm_iommu_map_resource(struct device *dev,
|
|
phys_addr_t phys_addr, size_t size,
|
|
enum dma_data_direction dir, unsigned long attrs)
|
|
{
|
|
struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
|
|
dma_addr_t dma_addr;
|
|
int ret, prot;
|
|
phys_addr_t addr = phys_addr & PAGE_MASK;
|
|
unsigned int offset = phys_addr & ~PAGE_MASK;
|
|
size_t len = PAGE_ALIGN(size + offset);
|
|
|
|
dma_addr = __alloc_iova(mapping, len);
|
|
if (dma_addr == ARM_MAPPING_ERROR)
|
|
return dma_addr;
|
|
|
|
prot = __dma_info_to_prot(dir, attrs) | IOMMU_MMIO;
|
|
|
|
ret = iommu_map(mapping->domain, dma_addr, addr, len, prot);
|
|
if (ret < 0)
|
|
goto fail;
|
|
|
|
return dma_addr + offset;
|
|
fail:
|
|
__free_iova(mapping, dma_addr, len);
|
|
return ARM_MAPPING_ERROR;
|
|
}
|
|
|
|
/**
|
|
* arm_iommu_unmap_resource - unmap a device DMA resource
|
|
* @dev: valid struct device pointer
|
|
* @dma_handle: DMA address to resource
|
|
* @size: size of resource to map
|
|
* @dir: DMA transfer direction
|
|
*/
|
|
static void arm_iommu_unmap_resource(struct device *dev, dma_addr_t dma_handle,
|
|
size_t size, enum dma_data_direction dir,
|
|
unsigned long attrs)
|
|
{
|
|
struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
|
|
dma_addr_t iova = dma_handle & PAGE_MASK;
|
|
unsigned int offset = dma_handle & ~PAGE_MASK;
|
|
size_t len = PAGE_ALIGN(size + offset);
|
|
|
|
if (!iova)
|
|
return;
|
|
|
|
iommu_unmap(mapping->domain, iova, len);
|
|
__free_iova(mapping, iova, len);
|
|
}
|
|
|
|
static void arm_iommu_sync_single_for_cpu(struct device *dev,
|
|
dma_addr_t handle, size_t size, enum dma_data_direction dir)
|
|
{
|
|
struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
|
|
dma_addr_t iova = handle & PAGE_MASK;
|
|
struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
|
|
unsigned int offset = handle & ~PAGE_MASK;
|
|
|
|
if (!iova)
|
|
return;
|
|
|
|
__dma_page_dev_to_cpu(page, offset, size, dir);
|
|
}
|
|
|
|
static void arm_iommu_sync_single_for_device(struct device *dev,
|
|
dma_addr_t handle, size_t size, enum dma_data_direction dir)
|
|
{
|
|
struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
|
|
dma_addr_t iova = handle & PAGE_MASK;
|
|
struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
|
|
unsigned int offset = handle & ~PAGE_MASK;
|
|
|
|
if (!iova)
|
|
return;
|
|
|
|
__dma_page_cpu_to_dev(page, offset, size, dir);
|
|
}
|
|
|
|
const struct dma_map_ops iommu_ops = {
|
|
.alloc = arm_iommu_alloc_attrs,
|
|
.free = arm_iommu_free_attrs,
|
|
.mmap = arm_iommu_mmap_attrs,
|
|
.get_sgtable = arm_iommu_get_sgtable,
|
|
|
|
.map_page = arm_iommu_map_page,
|
|
.unmap_page = arm_iommu_unmap_page,
|
|
.sync_single_for_cpu = arm_iommu_sync_single_for_cpu,
|
|
.sync_single_for_device = arm_iommu_sync_single_for_device,
|
|
|
|
.map_sg = arm_iommu_map_sg,
|
|
.unmap_sg = arm_iommu_unmap_sg,
|
|
.sync_sg_for_cpu = arm_iommu_sync_sg_for_cpu,
|
|
.sync_sg_for_device = arm_iommu_sync_sg_for_device,
|
|
|
|
.map_resource = arm_iommu_map_resource,
|
|
.unmap_resource = arm_iommu_unmap_resource,
|
|
|
|
.mapping_error = arm_dma_mapping_error,
|
|
.dma_supported = arm_dma_supported,
|
|
};
|
|
|
|
const struct dma_map_ops iommu_coherent_ops = {
|
|
.alloc = arm_coherent_iommu_alloc_attrs,
|
|
.free = arm_coherent_iommu_free_attrs,
|
|
.mmap = arm_coherent_iommu_mmap_attrs,
|
|
.get_sgtable = arm_iommu_get_sgtable,
|
|
|
|
.map_page = arm_coherent_iommu_map_page,
|
|
.unmap_page = arm_coherent_iommu_unmap_page,
|
|
|
|
.map_sg = arm_coherent_iommu_map_sg,
|
|
.unmap_sg = arm_coherent_iommu_unmap_sg,
|
|
|
|
.map_resource = arm_iommu_map_resource,
|
|
.unmap_resource = arm_iommu_unmap_resource,
|
|
|
|
.mapping_error = arm_dma_mapping_error,
|
|
.dma_supported = arm_dma_supported,
|
|
};
|
|
|
|
/**
|
|
* arm_iommu_create_mapping
|
|
* @bus: pointer to the bus holding the client device (for IOMMU calls)
|
|
* @base: start address of the valid IO address space
|
|
* @size: maximum size of the valid IO address space
|
|
*
|
|
* Creates a mapping structure which holds information about used/unused
|
|
* IO address ranges, which is required to perform memory allocation and
|
|
* mapping with IOMMU aware functions.
|
|
*
|
|
* The client device need to be attached to the mapping with
|
|
* arm_iommu_attach_device function.
|
|
*/
|
|
struct dma_iommu_mapping *
|
|
arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, u64 size)
|
|
{
|
|
unsigned int bits = size >> PAGE_SHIFT;
|
|
unsigned int bitmap_size = BITS_TO_LONGS(bits) * sizeof(long);
|
|
struct dma_iommu_mapping *mapping;
|
|
int extensions = 1;
|
|
int err = -ENOMEM;
|
|
|
|
/* currently only 32-bit DMA address space is supported */
|
|
if (size > DMA_BIT_MASK(32) + 1)
|
|
return ERR_PTR(-ERANGE);
|
|
|
|
if (!bitmap_size)
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
if (bitmap_size > PAGE_SIZE) {
|
|
extensions = bitmap_size / PAGE_SIZE;
|
|
bitmap_size = PAGE_SIZE;
|
|
}
|
|
|
|
mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL);
|
|
if (!mapping)
|
|
goto err;
|
|
|
|
mapping->bitmap_size = bitmap_size;
|
|
mapping->bitmaps = kzalloc(extensions * sizeof(unsigned long *),
|
|
GFP_KERNEL);
|
|
if (!mapping->bitmaps)
|
|
goto err2;
|
|
|
|
mapping->bitmaps[0] = kzalloc(bitmap_size, GFP_KERNEL);
|
|
if (!mapping->bitmaps[0])
|
|
goto err3;
|
|
|
|
mapping->nr_bitmaps = 1;
|
|
mapping->extensions = extensions;
|
|
mapping->base = base;
|
|
mapping->bits = BITS_PER_BYTE * bitmap_size;
|
|
|
|
spin_lock_init(&mapping->lock);
|
|
|
|
mapping->domain = iommu_domain_alloc(bus);
|
|
if (!mapping->domain)
|
|
goto err4;
|
|
|
|
kref_init(&mapping->kref);
|
|
return mapping;
|
|
err4:
|
|
kfree(mapping->bitmaps[0]);
|
|
err3:
|
|
kfree(mapping->bitmaps);
|
|
err2:
|
|
kfree(mapping);
|
|
err:
|
|
return ERR_PTR(err);
|
|
}
|
|
EXPORT_SYMBOL_GPL(arm_iommu_create_mapping);
|
|
|
|
static void release_iommu_mapping(struct kref *kref)
|
|
{
|
|
int i;
|
|
struct dma_iommu_mapping *mapping =
|
|
container_of(kref, struct dma_iommu_mapping, kref);
|
|
|
|
iommu_domain_free(mapping->domain);
|
|
for (i = 0; i < mapping->nr_bitmaps; i++)
|
|
kfree(mapping->bitmaps[i]);
|
|
kfree(mapping->bitmaps);
|
|
kfree(mapping);
|
|
}
|
|
|
|
static int extend_iommu_mapping(struct dma_iommu_mapping *mapping)
|
|
{
|
|
int next_bitmap;
|
|
|
|
if (mapping->nr_bitmaps >= mapping->extensions)
|
|
return -EINVAL;
|
|
|
|
next_bitmap = mapping->nr_bitmaps;
|
|
mapping->bitmaps[next_bitmap] = kzalloc(mapping->bitmap_size,
|
|
GFP_ATOMIC);
|
|
if (!mapping->bitmaps[next_bitmap])
|
|
return -ENOMEM;
|
|
|
|
mapping->nr_bitmaps++;
|
|
|
|
return 0;
|
|
}
|
|
|
|
void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping)
|
|
{
|
|
if (mapping)
|
|
kref_put(&mapping->kref, release_iommu_mapping);
|
|
}
|
|
EXPORT_SYMBOL_GPL(arm_iommu_release_mapping);
|
|
|
|
static int __arm_iommu_attach_device(struct device *dev,
|
|
struct dma_iommu_mapping *mapping)
|
|
{
|
|
int err;
|
|
|
|
err = iommu_attach_device(mapping->domain, dev);
|
|
if (err)
|
|
return err;
|
|
|
|
kref_get(&mapping->kref);
|
|
to_dma_iommu_mapping(dev) = mapping;
|
|
|
|
pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev));
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* arm_iommu_attach_device
|
|
* @dev: valid struct device pointer
|
|
* @mapping: io address space mapping structure (returned from
|
|
* arm_iommu_create_mapping)
|
|
*
|
|
* Attaches specified io address space mapping to the provided device.
|
|
* This replaces the dma operations (dma_map_ops pointer) with the
|
|
* IOMMU aware version.
|
|
*
|
|
* More than one client might be attached to the same io address space
|
|
* mapping.
|
|
*/
|
|
int arm_iommu_attach_device(struct device *dev,
|
|
struct dma_iommu_mapping *mapping)
|
|
{
|
|
int err;
|
|
|
|
err = __arm_iommu_attach_device(dev, mapping);
|
|
if (err)
|
|
return err;
|
|
|
|
set_dma_ops(dev, &iommu_ops);
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(arm_iommu_attach_device);
|
|
|
|
/**
|
|
* arm_iommu_detach_device
|
|
* @dev: valid struct device pointer
|
|
*
|
|
* Detaches the provided device from a previously attached map.
|
|
* This voids the dma operations (dma_map_ops pointer)
|
|
*/
|
|
void arm_iommu_detach_device(struct device *dev)
|
|
{
|
|
struct dma_iommu_mapping *mapping;
|
|
|
|
mapping = to_dma_iommu_mapping(dev);
|
|
if (!mapping) {
|
|
dev_warn(dev, "Not attached\n");
|
|
return;
|
|
}
|
|
|
|
iommu_detach_device(mapping->domain, dev);
|
|
kref_put(&mapping->kref, release_iommu_mapping);
|
|
to_dma_iommu_mapping(dev) = NULL;
|
|
set_dma_ops(dev, NULL);
|
|
|
|
pr_debug("Detached IOMMU controller from %s device.\n", dev_name(dev));
|
|
}
|
|
EXPORT_SYMBOL_GPL(arm_iommu_detach_device);
|
|
|
|
static const struct dma_map_ops *arm_get_iommu_dma_map_ops(bool coherent)
|
|
{
|
|
return coherent ? &iommu_coherent_ops : &iommu_ops;
|
|
}
|
|
|
|
static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size,
|
|
const struct iommu_ops *iommu)
|
|
{
|
|
struct dma_iommu_mapping *mapping;
|
|
|
|
if (!iommu)
|
|
return false;
|
|
|
|
mapping = arm_iommu_create_mapping(dev->bus, dma_base, size);
|
|
if (IS_ERR(mapping)) {
|
|
pr_warn("Failed to create %llu-byte IOMMU mapping for device %s\n",
|
|
size, dev_name(dev));
|
|
return false;
|
|
}
|
|
|
|
if (__arm_iommu_attach_device(dev, mapping)) {
|
|
pr_warn("Failed to attached device %s to IOMMU_mapping\n",
|
|
dev_name(dev));
|
|
arm_iommu_release_mapping(mapping);
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static void arm_teardown_iommu_dma_ops(struct device *dev)
|
|
{
|
|
struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
|
|
|
|
if (!mapping)
|
|
return;
|
|
|
|
arm_iommu_detach_device(dev);
|
|
arm_iommu_release_mapping(mapping);
|
|
}
|
|
|
|
#else
|
|
|
|
static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size,
|
|
const struct iommu_ops *iommu)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
static void arm_teardown_iommu_dma_ops(struct device *dev) { }
|
|
|
|
#define arm_get_iommu_dma_map_ops arm_get_dma_map_ops
|
|
|
|
#endif /* CONFIG_ARM_DMA_USE_IOMMU */
|
|
|
|
static const struct dma_map_ops *arm_get_dma_map_ops(bool coherent)
|
|
{
|
|
return coherent ? &arm_coherent_dma_ops : &arm_dma_ops;
|
|
}
|
|
|
|
void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
|
|
const struct iommu_ops *iommu, bool coherent)
|
|
{
|
|
const struct dma_map_ops *dma_ops;
|
|
|
|
dev->archdata.dma_coherent = coherent;
|
|
|
|
/*
|
|
* Don't override the dma_ops if they have already been set. Ideally
|
|
* this should be the only location where dma_ops are set, remove this
|
|
* check when all other callers of set_dma_ops will have disappeared.
|
|
*/
|
|
if (dev->dma_ops)
|
|
return;
|
|
|
|
if (arm_setup_iommu_dma_ops(dev, dma_base, size, iommu))
|
|
dma_ops = arm_get_iommu_dma_map_ops(coherent);
|
|
else
|
|
dma_ops = arm_get_dma_map_ops(coherent);
|
|
|
|
set_dma_ops(dev, dma_ops);
|
|
|
|
#ifdef CONFIG_XEN
|
|
if (xen_initial_domain()) {
|
|
dev->archdata.dev_dma_ops = dev->dma_ops;
|
|
dev->dma_ops = xen_dma_ops;
|
|
}
|
|
#endif
|
|
dev->archdata.dma_ops_setup = true;
|
|
}
|
|
|
|
void arch_teardown_dma_ops(struct device *dev)
|
|
{
|
|
if (!dev->archdata.dma_ops_setup)
|
|
return;
|
|
|
|
arm_teardown_iommu_dma_ops(dev);
|
|
}
|