linux-sg2042/arch/x86/platform/mrst/mrst.c

1053 lines
27 KiB
C

/*
* mrst.c: Intel Moorestown platform specific setup code
*
* (C) Copyright 2008 Intel Corporation
* Author: Jacob Pan (jacob.jun.pan@intel.com)
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; version 2
* of the License.
*/
#define pr_fmt(fmt) "mrst: " fmt
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/interrupt.h>
#include <linux/scatterlist.h>
#include <linux/sfi.h>
#include <linux/intel_pmic_gpio.h>
#include <linux/spi/spi.h>
#include <linux/i2c.h>
#include <linux/i2c/pca953x.h>
#include <linux/gpio_keys.h>
#include <linux/input.h>
#include <linux/platform_device.h>
#include <linux/irq.h>
#include <linux/module.h>
#include <linux/notifier.h>
#include <linux/mfd/intel_msic.h>
#include <linux/gpio.h>
#include <linux/i2c/tc35876x.h>
#include <asm/setup.h>
#include <asm/mpspec_def.h>
#include <asm/hw_irq.h>
#include <asm/apic.h>
#include <asm/io_apic.h>
#include <asm/mrst.h>
#include <asm/mrst-vrtc.h>
#include <asm/io.h>
#include <asm/i8259.h>
#include <asm/intel_scu_ipc.h>
#include <asm/apb_timer.h>
#include <asm/reboot.h>
/*
* the clockevent devices on Moorestown/Medfield can be APBT or LAPIC clock,
* cmdline option x86_mrst_timer can be used to override the configuration
* to prefer one or the other.
* at runtime, there are basically three timer configurations:
* 1. per cpu apbt clock only
* 2. per cpu always-on lapic clocks only, this is Penwell/Medfield only
* 3. per cpu lapic clock (C3STOP) and one apbt clock, with broadcast.
*
* by default (without cmdline option), platform code first detects cpu type
* to see if we are on lincroft or penwell, then set up both lapic or apbt
* clocks accordingly.
* i.e. by default, medfield uses configuration #2, moorestown uses #1.
* config #3 is supported but not recommended on medfield.
*
* rating and feature summary:
* lapic (with C3STOP) --------- 100
* apbt (always-on) ------------ 110
* lapic (always-on,ARAT) ------ 150
*/
__cpuinitdata enum mrst_timer_options mrst_timer_options;
static u32 sfi_mtimer_usage[SFI_MTMR_MAX_NUM];
static struct sfi_timer_table_entry sfi_mtimer_array[SFI_MTMR_MAX_NUM];
enum mrst_cpu_type __mrst_cpu_chip;
EXPORT_SYMBOL_GPL(__mrst_cpu_chip);
int sfi_mtimer_num;
struct sfi_rtc_table_entry sfi_mrtc_array[SFI_MRTC_MAX];
EXPORT_SYMBOL_GPL(sfi_mrtc_array);
int sfi_mrtc_num;
static void mrst_power_off(void)
{
}
static void mrst_reboot(void)
{
intel_scu_ipc_simple_command(IPCMSG_COLD_BOOT, 0);
}
/* parse all the mtimer info to a static mtimer array */
static int __init sfi_parse_mtmr(struct sfi_table_header *table)
{
struct sfi_table_simple *sb;
struct sfi_timer_table_entry *pentry;
struct mpc_intsrc mp_irq;
int totallen;
sb = (struct sfi_table_simple *)table;
if (!sfi_mtimer_num) {
sfi_mtimer_num = SFI_GET_NUM_ENTRIES(sb,
struct sfi_timer_table_entry);
pentry = (struct sfi_timer_table_entry *) sb->pentry;
totallen = sfi_mtimer_num * sizeof(*pentry);
memcpy(sfi_mtimer_array, pentry, totallen);
}
pr_debug("SFI MTIMER info (num = %d):\n", sfi_mtimer_num);
pentry = sfi_mtimer_array;
for (totallen = 0; totallen < sfi_mtimer_num; totallen++, pentry++) {
pr_debug("timer[%d]: paddr = 0x%08x, freq = %dHz,"
" irq = %d\n", totallen, (u32)pentry->phys_addr,
pentry->freq_hz, pentry->irq);
if (!pentry->irq)
continue;
mp_irq.type = MP_INTSRC;
mp_irq.irqtype = mp_INT;
/* triggering mode edge bit 2-3, active high polarity bit 0-1 */
mp_irq.irqflag = 5;
mp_irq.srcbus = MP_BUS_ISA;
mp_irq.srcbusirq = pentry->irq; /* IRQ */
mp_irq.dstapic = MP_APIC_ALL;
mp_irq.dstirq = pentry->irq;
mp_save_irq(&mp_irq);
}
return 0;
}
struct sfi_timer_table_entry *sfi_get_mtmr(int hint)
{
int i;
if (hint < sfi_mtimer_num) {
if (!sfi_mtimer_usage[hint]) {
pr_debug("hint taken for timer %d irq %d\n",\
hint, sfi_mtimer_array[hint].irq);
sfi_mtimer_usage[hint] = 1;
return &sfi_mtimer_array[hint];
}
}
/* take the first timer available */
for (i = 0; i < sfi_mtimer_num;) {
if (!sfi_mtimer_usage[i]) {
sfi_mtimer_usage[i] = 1;
return &sfi_mtimer_array[i];
}
i++;
}
return NULL;
}
void sfi_free_mtmr(struct sfi_timer_table_entry *mtmr)
{
int i;
for (i = 0; i < sfi_mtimer_num;) {
if (mtmr->irq == sfi_mtimer_array[i].irq) {
sfi_mtimer_usage[i] = 0;
return;
}
i++;
}
}
/* parse all the mrtc info to a global mrtc array */
int __init sfi_parse_mrtc(struct sfi_table_header *table)
{
struct sfi_table_simple *sb;
struct sfi_rtc_table_entry *pentry;
struct mpc_intsrc mp_irq;
int totallen;
sb = (struct sfi_table_simple *)table;
if (!sfi_mrtc_num) {
sfi_mrtc_num = SFI_GET_NUM_ENTRIES(sb,
struct sfi_rtc_table_entry);
pentry = (struct sfi_rtc_table_entry *)sb->pentry;
totallen = sfi_mrtc_num * sizeof(*pentry);
memcpy(sfi_mrtc_array, pentry, totallen);
}
pr_debug("SFI RTC info (num = %d):\n", sfi_mrtc_num);
pentry = sfi_mrtc_array;
for (totallen = 0; totallen < sfi_mrtc_num; totallen++, pentry++) {
pr_debug("RTC[%d]: paddr = 0x%08x, irq = %d\n",
totallen, (u32)pentry->phys_addr, pentry->irq);
mp_irq.type = MP_INTSRC;
mp_irq.irqtype = mp_INT;
mp_irq.irqflag = 0xf; /* level trigger and active low */
mp_irq.srcbus = MP_BUS_ISA;
mp_irq.srcbusirq = pentry->irq; /* IRQ */
mp_irq.dstapic = MP_APIC_ALL;
mp_irq.dstirq = pentry->irq;
mp_save_irq(&mp_irq);
}
return 0;
}
static unsigned long __init mrst_calibrate_tsc(void)
{
unsigned long fast_calibrate;
u32 lo, hi, ratio, fsb;
rdmsr(MSR_IA32_PERF_STATUS, lo, hi);
pr_debug("IA32 perf status is 0x%x, 0x%0x\n", lo, hi);
ratio = (hi >> 8) & 0x1f;
pr_debug("ratio is %d\n", ratio);
if (!ratio) {
pr_err("read a zero ratio, should be incorrect!\n");
pr_err("force tsc ratio to 16 ...\n");
ratio = 16;
}
rdmsr(MSR_FSB_FREQ, lo, hi);
if ((lo & 0x7) == 0x7)
fsb = PENWELL_FSB_FREQ_83SKU;
else
fsb = PENWELL_FSB_FREQ_100SKU;
fast_calibrate = ratio * fsb;
pr_debug("read penwell tsc %lu khz\n", fast_calibrate);
lapic_timer_frequency = fsb * 1000 / HZ;
/* mark tsc clocksource as reliable */
set_cpu_cap(&boot_cpu_data, X86_FEATURE_TSC_RELIABLE);
if (fast_calibrate)
return fast_calibrate;
return 0;
}
static void __init mrst_time_init(void)
{
sfi_table_parse(SFI_SIG_MTMR, NULL, NULL, sfi_parse_mtmr);
switch (mrst_timer_options) {
case MRST_TIMER_APBT_ONLY:
break;
case MRST_TIMER_LAPIC_APBT:
x86_init.timers.setup_percpu_clockev = setup_boot_APIC_clock;
x86_cpuinit.setup_percpu_clockev = setup_secondary_APIC_clock;
break;
default:
if (!boot_cpu_has(X86_FEATURE_ARAT))
break;
x86_init.timers.setup_percpu_clockev = setup_boot_APIC_clock;
x86_cpuinit.setup_percpu_clockev = setup_secondary_APIC_clock;
return;
}
/* we need at least one APB timer */
pre_init_apic_IRQ0();
apbt_time_init();
}
static void __cpuinit mrst_arch_setup(void)
{
if (boot_cpu_data.x86 == 6 && boot_cpu_data.x86_model == 0x27)
__mrst_cpu_chip = MRST_CPU_CHIP_PENWELL;
else {
pr_err("Unknown Intel MID CPU (%d:%d), default to Penwell\n",
boot_cpu_data.x86, boot_cpu_data.x86_model);
__mrst_cpu_chip = MRST_CPU_CHIP_PENWELL;
}
}
/* MID systems don't have i8042 controller */
static int mrst_i8042_detect(void)
{
return 0;
}
/*
* Moorestown does not have external NMI source nor port 0x61 to report
* NMI status. The possible NMI sources are from pmu as a result of NMI
* watchdog or lock debug. Reading io port 0x61 results in 0xff which
* misled NMI handler.
*/
static unsigned char mrst_get_nmi_reason(void)
{
return 0;
}
/*
* Moorestown specific x86_init function overrides and early setup
* calls.
*/
void __init x86_mrst_early_setup(void)
{
x86_init.resources.probe_roms = x86_init_noop;
x86_init.resources.reserve_resources = x86_init_noop;
x86_init.timers.timer_init = mrst_time_init;
x86_init.timers.setup_percpu_clockev = x86_init_noop;
x86_init.irqs.pre_vector_init = x86_init_noop;
x86_init.oem.arch_setup = mrst_arch_setup;
x86_cpuinit.setup_percpu_clockev = apbt_setup_secondary_clock;
x86_platform.calibrate_tsc = mrst_calibrate_tsc;
x86_platform.i8042_detect = mrst_i8042_detect;
x86_init.timers.wallclock_init = mrst_rtc_init;
x86_platform.get_nmi_reason = mrst_get_nmi_reason;
x86_init.pci.init = pci_mrst_init;
x86_init.pci.fixup_irqs = x86_init_noop;
legacy_pic = &null_legacy_pic;
/* Moorestown specific power_off/restart method */
pm_power_off = mrst_power_off;
machine_ops.emergency_restart = mrst_reboot;
/* Avoid searching for BIOS MP tables */
x86_init.mpparse.find_smp_config = x86_init_noop;
x86_init.mpparse.get_smp_config = x86_init_uint_noop;
set_bit(MP_BUS_ISA, mp_bus_not_pci);
}
/*
* if user does not want to use per CPU apb timer, just give it a lower rating
* than local apic timer and skip the late per cpu timer init.
*/
static inline int __init setup_x86_mrst_timer(char *arg)
{
if (!arg)
return -EINVAL;
if (strcmp("apbt_only", arg) == 0)
mrst_timer_options = MRST_TIMER_APBT_ONLY;
else if (strcmp("lapic_and_apbt", arg) == 0)
mrst_timer_options = MRST_TIMER_LAPIC_APBT;
else {
pr_warning("X86 MRST timer option %s not recognised"
" use x86_mrst_timer=apbt_only or lapic_and_apbt\n",
arg);
return -EINVAL;
}
return 0;
}
__setup("x86_mrst_timer=", setup_x86_mrst_timer);
/*
* Parsing GPIO table first, since the DEVS table will need this table
* to map the pin name to the actual pin.
*/
static struct sfi_gpio_table_entry *gpio_table;
static int gpio_num_entry;
static int __init sfi_parse_gpio(struct sfi_table_header *table)
{
struct sfi_table_simple *sb;
struct sfi_gpio_table_entry *pentry;
int num, i;
if (gpio_table)
return 0;
sb = (struct sfi_table_simple *)table;
num = SFI_GET_NUM_ENTRIES(sb, struct sfi_gpio_table_entry);
pentry = (struct sfi_gpio_table_entry *)sb->pentry;
gpio_table = kmalloc(num * sizeof(*pentry), GFP_KERNEL);
if (!gpio_table)
return -1;
memcpy(gpio_table, pentry, num * sizeof(*pentry));
gpio_num_entry = num;
pr_debug("GPIO pin info:\n");
for (i = 0; i < num; i++, pentry++)
pr_debug("info[%2d]: controller = %16.16s, pin_name = %16.16s,"
" pin = %d\n", i,
pentry->controller_name,
pentry->pin_name,
pentry->pin_no);
return 0;
}
static int get_gpio_by_name(const char *name)
{
struct sfi_gpio_table_entry *pentry = gpio_table;
int i;
if (!pentry)
return -1;
for (i = 0; i < gpio_num_entry; i++, pentry++) {
if (!strncmp(name, pentry->pin_name, SFI_NAME_LEN))
return pentry->pin_no;
}
return -1;
}
/*
* Here defines the array of devices platform data that IAFW would export
* through SFI "DEVS" table, we use name and type to match the device and
* its platform data.
*/
struct devs_id {
char name[SFI_NAME_LEN + 1];
u8 type;
u8 delay;
void *(*get_platform_data)(void *info);
};
/* the offset for the mapping of global gpio pin to irq */
#define MRST_IRQ_OFFSET 0x100
static void __init *pmic_gpio_platform_data(void *info)
{
static struct intel_pmic_gpio_platform_data pmic_gpio_pdata;
int gpio_base = get_gpio_by_name("pmic_gpio_base");
if (gpio_base == -1)
gpio_base = 64;
pmic_gpio_pdata.gpio_base = gpio_base;
pmic_gpio_pdata.irq_base = gpio_base + MRST_IRQ_OFFSET;
pmic_gpio_pdata.gpiointr = 0xffffeff8;
return &pmic_gpio_pdata;
}
static void __init *max3111_platform_data(void *info)
{
struct spi_board_info *spi_info = info;
int intr = get_gpio_by_name("max3111_int");
spi_info->mode = SPI_MODE_0;
if (intr == -1)
return NULL;
spi_info->irq = intr + MRST_IRQ_OFFSET;
return NULL;
}
/* we have multiple max7315 on the board ... */
#define MAX7315_NUM 2
static void __init *max7315_platform_data(void *info)
{
static struct pca953x_platform_data max7315_pdata[MAX7315_NUM];
static int nr;
struct pca953x_platform_data *max7315 = &max7315_pdata[nr];
struct i2c_board_info *i2c_info = info;
int gpio_base, intr;
char base_pin_name[SFI_NAME_LEN + 1];
char intr_pin_name[SFI_NAME_LEN + 1];
if (nr == MAX7315_NUM) {
pr_err("too many max7315s, we only support %d\n",
MAX7315_NUM);
return NULL;
}
/* we have several max7315 on the board, we only need load several
* instances of the same pca953x driver to cover them
*/
strcpy(i2c_info->type, "max7315");
if (nr++) {
sprintf(base_pin_name, "max7315_%d_base", nr);
sprintf(intr_pin_name, "max7315_%d_int", nr);
} else {
strcpy(base_pin_name, "max7315_base");
strcpy(intr_pin_name, "max7315_int");
}
gpio_base = get_gpio_by_name(base_pin_name);
intr = get_gpio_by_name(intr_pin_name);
if (gpio_base == -1)
return NULL;
max7315->gpio_base = gpio_base;
if (intr != -1) {
i2c_info->irq = intr + MRST_IRQ_OFFSET;
max7315->irq_base = gpio_base + MRST_IRQ_OFFSET;
} else {
i2c_info->irq = -1;
max7315->irq_base = -1;
}
return max7315;
}
static void *tca6416_platform_data(void *info)
{
static struct pca953x_platform_data tca6416;
struct i2c_board_info *i2c_info = info;
int gpio_base, intr;
char base_pin_name[SFI_NAME_LEN + 1];
char intr_pin_name[SFI_NAME_LEN + 1];
strcpy(i2c_info->type, "tca6416");
strcpy(base_pin_name, "tca6416_base");
strcpy(intr_pin_name, "tca6416_int");
gpio_base = get_gpio_by_name(base_pin_name);
intr = get_gpio_by_name(intr_pin_name);
if (gpio_base == -1)
return NULL;
tca6416.gpio_base = gpio_base;
if (intr != -1) {
i2c_info->irq = intr + MRST_IRQ_OFFSET;
tca6416.irq_base = gpio_base + MRST_IRQ_OFFSET;
} else {
i2c_info->irq = -1;
tca6416.irq_base = -1;
}
return &tca6416;
}
static void *mpu3050_platform_data(void *info)
{
struct i2c_board_info *i2c_info = info;
int intr = get_gpio_by_name("mpu3050_int");
if (intr == -1)
return NULL;
i2c_info->irq = intr + MRST_IRQ_OFFSET;
return NULL;
}
static void __init *emc1403_platform_data(void *info)
{
static short intr2nd_pdata;
struct i2c_board_info *i2c_info = info;
int intr = get_gpio_by_name("thermal_int");
int intr2nd = get_gpio_by_name("thermal_alert");
if (intr == -1 || intr2nd == -1)
return NULL;
i2c_info->irq = intr + MRST_IRQ_OFFSET;
intr2nd_pdata = intr2nd + MRST_IRQ_OFFSET;
return &intr2nd_pdata;
}
static void __init *lis331dl_platform_data(void *info)
{
static short intr2nd_pdata;
struct i2c_board_info *i2c_info = info;
int intr = get_gpio_by_name("accel_int");
int intr2nd = get_gpio_by_name("accel_2");
if (intr == -1 || intr2nd == -1)
return NULL;
i2c_info->irq = intr + MRST_IRQ_OFFSET;
intr2nd_pdata = intr2nd + MRST_IRQ_OFFSET;
return &intr2nd_pdata;
}
static void __init *no_platform_data(void *info)
{
return NULL;
}
static struct resource msic_resources[] = {
{
.start = INTEL_MSIC_IRQ_PHYS_BASE,
.end = INTEL_MSIC_IRQ_PHYS_BASE + 64 - 1,
.flags = IORESOURCE_MEM,
},
};
static struct intel_msic_platform_data msic_pdata;
static struct platform_device msic_device = {
.name = "intel_msic",
.id = -1,
.dev = {
.platform_data = &msic_pdata,
},
.num_resources = ARRAY_SIZE(msic_resources),
.resource = msic_resources,
};
static inline bool mrst_has_msic(void)
{
return mrst_identify_cpu() == MRST_CPU_CHIP_PENWELL;
}
static int msic_scu_status_change(struct notifier_block *nb,
unsigned long code, void *data)
{
if (code == SCU_DOWN) {
platform_device_unregister(&msic_device);
return 0;
}
return platform_device_register(&msic_device);
}
static int __init msic_init(void)
{
static struct notifier_block msic_scu_notifier = {
.notifier_call = msic_scu_status_change,
};
/*
* We need to be sure that the SCU IPC is ready before MSIC device
* can be registered.
*/
if (mrst_has_msic())
intel_scu_notifier_add(&msic_scu_notifier);
return 0;
}
arch_initcall(msic_init);
/*
* msic_generic_platform_data - sets generic platform data for the block
* @info: pointer to the SFI device table entry for this block
* @block: MSIC block
*
* Function sets IRQ number from the SFI table entry for given device to
* the MSIC platform data.
*/
static void *msic_generic_platform_data(void *info, enum intel_msic_block block)
{
struct sfi_device_table_entry *entry = info;
BUG_ON(block < 0 || block >= INTEL_MSIC_BLOCK_LAST);
msic_pdata.irq[block] = entry->irq;
return no_platform_data(info);
}
static void *msic_battery_platform_data(void *info)
{
return msic_generic_platform_data(info, INTEL_MSIC_BLOCK_BATTERY);
}
static void *msic_gpio_platform_data(void *info)
{
static struct intel_msic_gpio_pdata pdata;
int gpio = get_gpio_by_name("msic_gpio_base");
if (gpio < 0)
return NULL;
pdata.gpio_base = gpio;
msic_pdata.gpio = &pdata;
return msic_generic_platform_data(info, INTEL_MSIC_BLOCK_GPIO);
}
static void *msic_audio_platform_data(void *info)
{
struct platform_device *pdev;
pdev = platform_device_register_simple("sst-platform", -1, NULL, 0);
if (IS_ERR(pdev)) {
pr_err("failed to create audio platform device\n");
return NULL;
}
return msic_generic_platform_data(info, INTEL_MSIC_BLOCK_AUDIO);
}
static void *msic_power_btn_platform_data(void *info)
{
return msic_generic_platform_data(info, INTEL_MSIC_BLOCK_POWER_BTN);
}
static void *msic_ocd_platform_data(void *info)
{
static struct intel_msic_ocd_pdata pdata;
int gpio = get_gpio_by_name("ocd_gpio");
if (gpio < 0)
return NULL;
pdata.gpio = gpio;
msic_pdata.ocd = &pdata;
return msic_generic_platform_data(info, INTEL_MSIC_BLOCK_OCD);
}
static void *msic_thermal_platform_data(void *info)
{
return msic_generic_platform_data(info, INTEL_MSIC_BLOCK_THERMAL);
}
/* tc35876x DSI-LVDS bridge chip and panel platform data */
static void *tc35876x_platform_data(void *data)
{
static struct tc35876x_platform_data pdata;
/* gpio pins set to -1 will not be used by the driver */
pdata.gpio_bridge_reset = get_gpio_by_name("LCMB_RXEN");
pdata.gpio_panel_bl_en = get_gpio_by_name("6S6P_BL_EN");
pdata.gpio_panel_vadd = get_gpio_by_name("EN_VREG_LCD_V3P3");
return &pdata;
}
static const struct devs_id __initconst device_ids[] = {
{"bma023", SFI_DEV_TYPE_I2C, 1, &no_platform_data},
{"pmic_gpio", SFI_DEV_TYPE_SPI, 1, &pmic_gpio_platform_data},
{"pmic_gpio", SFI_DEV_TYPE_IPC, 1, &pmic_gpio_platform_data},
{"spi_max3111", SFI_DEV_TYPE_SPI, 0, &max3111_platform_data},
{"i2c_max7315", SFI_DEV_TYPE_I2C, 1, &max7315_platform_data},
{"i2c_max7315_2", SFI_DEV_TYPE_I2C, 1, &max7315_platform_data},
{"tca6416", SFI_DEV_TYPE_I2C, 1, &tca6416_platform_data},
{"emc1403", SFI_DEV_TYPE_I2C, 1, &emc1403_platform_data},
{"i2c_accel", SFI_DEV_TYPE_I2C, 0, &lis331dl_platform_data},
{"pmic_audio", SFI_DEV_TYPE_IPC, 1, &no_platform_data},
{"mpu3050", SFI_DEV_TYPE_I2C, 1, &mpu3050_platform_data},
{"i2c_disp_brig", SFI_DEV_TYPE_I2C, 0, &tc35876x_platform_data},
/* MSIC subdevices */
{"msic_battery", SFI_DEV_TYPE_IPC, 1, &msic_battery_platform_data},
{"msic_gpio", SFI_DEV_TYPE_IPC, 1, &msic_gpio_platform_data},
{"msic_audio", SFI_DEV_TYPE_IPC, 1, &msic_audio_platform_data},
{"msic_power_btn", SFI_DEV_TYPE_IPC, 1, &msic_power_btn_platform_data},
{"msic_ocd", SFI_DEV_TYPE_IPC, 1, &msic_ocd_platform_data},
{"msic_thermal", SFI_DEV_TYPE_IPC, 1, &msic_thermal_platform_data},
{},
};
#define MAX_IPCDEVS 24
static struct platform_device *ipc_devs[MAX_IPCDEVS];
static int ipc_next_dev;
#define MAX_SCU_SPI 24
static struct spi_board_info *spi_devs[MAX_SCU_SPI];
static int spi_next_dev;
#define MAX_SCU_I2C 24
static struct i2c_board_info *i2c_devs[MAX_SCU_I2C];
static int i2c_bus[MAX_SCU_I2C];
static int i2c_next_dev;
static void __init intel_scu_device_register(struct platform_device *pdev)
{
if(ipc_next_dev == MAX_IPCDEVS)
pr_err("too many SCU IPC devices");
else
ipc_devs[ipc_next_dev++] = pdev;
}
static void __init intel_scu_spi_device_register(struct spi_board_info *sdev)
{
struct spi_board_info *new_dev;
if (spi_next_dev == MAX_SCU_SPI) {
pr_err("too many SCU SPI devices");
return;
}
new_dev = kzalloc(sizeof(*sdev), GFP_KERNEL);
if (!new_dev) {
pr_err("failed to alloc mem for delayed spi dev %s\n",
sdev->modalias);
return;
}
memcpy(new_dev, sdev, sizeof(*sdev));
spi_devs[spi_next_dev++] = new_dev;
}
static void __init intel_scu_i2c_device_register(int bus,
struct i2c_board_info *idev)
{
struct i2c_board_info *new_dev;
if (i2c_next_dev == MAX_SCU_I2C) {
pr_err("too many SCU I2C devices");
return;
}
new_dev = kzalloc(sizeof(*idev), GFP_KERNEL);
if (!new_dev) {
pr_err("failed to alloc mem for delayed i2c dev %s\n",
idev->type);
return;
}
memcpy(new_dev, idev, sizeof(*idev));
i2c_bus[i2c_next_dev] = bus;
i2c_devs[i2c_next_dev++] = new_dev;
}
BLOCKING_NOTIFIER_HEAD(intel_scu_notifier);
EXPORT_SYMBOL_GPL(intel_scu_notifier);
/* Called by IPC driver */
void intel_scu_devices_create(void)
{
int i;
for (i = 0; i < ipc_next_dev; i++)
platform_device_add(ipc_devs[i]);
for (i = 0; i < spi_next_dev; i++)
spi_register_board_info(spi_devs[i], 1);
for (i = 0; i < i2c_next_dev; i++) {
struct i2c_adapter *adapter;
struct i2c_client *client;
adapter = i2c_get_adapter(i2c_bus[i]);
if (adapter) {
client = i2c_new_device(adapter, i2c_devs[i]);
if (!client)
pr_err("can't create i2c device %s\n",
i2c_devs[i]->type);
} else
i2c_register_board_info(i2c_bus[i], i2c_devs[i], 1);
}
intel_scu_notifier_post(SCU_AVAILABLE, NULL);
}
EXPORT_SYMBOL_GPL(intel_scu_devices_create);
/* Called by IPC driver */
void intel_scu_devices_destroy(void)
{
int i;
intel_scu_notifier_post(SCU_DOWN, NULL);
for (i = 0; i < ipc_next_dev; i++)
platform_device_del(ipc_devs[i]);
}
EXPORT_SYMBOL_GPL(intel_scu_devices_destroy);
static void __init install_irq_resource(struct platform_device *pdev, int irq)
{
/* Single threaded */
static struct resource __initdata res = {
.name = "IRQ",
.flags = IORESOURCE_IRQ,
};
res.start = irq;
platform_device_add_resources(pdev, &res, 1);
}
static void __init sfi_handle_ipc_dev(struct sfi_device_table_entry *entry)
{
const struct devs_id *dev = device_ids;
struct platform_device *pdev;
void *pdata = NULL;
while (dev->name[0]) {
if (dev->type == SFI_DEV_TYPE_IPC &&
!strncmp(dev->name, entry->name, SFI_NAME_LEN)) {
pdata = dev->get_platform_data(entry);
break;
}
dev++;
}
/*
* On Medfield the platform device creation is handled by the MSIC
* MFD driver so we don't need to do it here.
*/
if (mrst_has_msic())
return;
pdev = platform_device_alloc(entry->name, 0);
if (pdev == NULL) {
pr_err("out of memory for SFI platform device '%s'.\n",
entry->name);
return;
}
install_irq_resource(pdev, entry->irq);
pdev->dev.platform_data = pdata;
intel_scu_device_register(pdev);
}
static void __init sfi_handle_spi_dev(struct spi_board_info *spi_info)
{
const struct devs_id *dev = device_ids;
void *pdata = NULL;
while (dev->name[0]) {
if (dev->type == SFI_DEV_TYPE_SPI &&
!strncmp(dev->name, spi_info->modalias, SFI_NAME_LEN)) {
pdata = dev->get_platform_data(spi_info);
break;
}
dev++;
}
spi_info->platform_data = pdata;
if (dev->delay)
intel_scu_spi_device_register(spi_info);
else
spi_register_board_info(spi_info, 1);
}
static void __init sfi_handle_i2c_dev(int bus, struct i2c_board_info *i2c_info)
{
const struct devs_id *dev = device_ids;
void *pdata = NULL;
while (dev->name[0]) {
if (dev->type == SFI_DEV_TYPE_I2C &&
!strncmp(dev->name, i2c_info->type, SFI_NAME_LEN)) {
pdata = dev->get_platform_data(i2c_info);
break;
}
dev++;
}
i2c_info->platform_data = pdata;
if (dev->delay)
intel_scu_i2c_device_register(bus, i2c_info);
else
i2c_register_board_info(bus, i2c_info, 1);
}
static int __init sfi_parse_devs(struct sfi_table_header *table)
{
struct sfi_table_simple *sb;
struct sfi_device_table_entry *pentry;
struct spi_board_info spi_info;
struct i2c_board_info i2c_info;
int num, i, bus;
int ioapic;
struct io_apic_irq_attr irq_attr;
sb = (struct sfi_table_simple *)table;
num = SFI_GET_NUM_ENTRIES(sb, struct sfi_device_table_entry);
pentry = (struct sfi_device_table_entry *)sb->pentry;
for (i = 0; i < num; i++, pentry++) {
int irq = pentry->irq;
if (irq != (u8)0xff) { /* native RTE case */
/* these SPI2 devices are not exposed to system as PCI
* devices, but they have separate RTE entry in IOAPIC
* so we have to enable them one by one here
*/
ioapic = mp_find_ioapic(irq);
irq_attr.ioapic = ioapic;
irq_attr.ioapic_pin = irq;
irq_attr.trigger = 1;
irq_attr.polarity = 1;
io_apic_set_pci_routing(NULL, irq, &irq_attr);
} else
irq = 0; /* No irq */
switch (pentry->type) {
case SFI_DEV_TYPE_IPC:
pr_debug("info[%2d]: IPC bus, name = %16.16s, "
"irq = 0x%2x\n", i, pentry->name, pentry->irq);
sfi_handle_ipc_dev(pentry);
break;
case SFI_DEV_TYPE_SPI:
memset(&spi_info, 0, sizeof(spi_info));
strncpy(spi_info.modalias, pentry->name, SFI_NAME_LEN);
spi_info.irq = irq;
spi_info.bus_num = pentry->host_num;
spi_info.chip_select = pentry->addr;
spi_info.max_speed_hz = pentry->max_freq;
pr_debug("info[%2d]: SPI bus = %d, name = %16.16s, "
"irq = 0x%2x, max_freq = %d, cs = %d\n", i,
spi_info.bus_num,
spi_info.modalias,
spi_info.irq,
spi_info.max_speed_hz,
spi_info.chip_select);
sfi_handle_spi_dev(&spi_info);
break;
case SFI_DEV_TYPE_I2C:
memset(&i2c_info, 0, sizeof(i2c_info));
bus = pentry->host_num;
strncpy(i2c_info.type, pentry->name, SFI_NAME_LEN);
i2c_info.irq = irq;
i2c_info.addr = pentry->addr;
pr_debug("info[%2d]: I2C bus = %d, name = %16.16s, "
"irq = 0x%2x, addr = 0x%x\n", i, bus,
i2c_info.type,
i2c_info.irq,
i2c_info.addr);
sfi_handle_i2c_dev(bus, &i2c_info);
break;
case SFI_DEV_TYPE_UART:
case SFI_DEV_TYPE_HSI:
default:
;
}
}
return 0;
}
static int __init mrst_platform_init(void)
{
sfi_table_parse(SFI_SIG_GPIO, NULL, NULL, sfi_parse_gpio);
sfi_table_parse(SFI_SIG_DEVS, NULL, NULL, sfi_parse_devs);
return 0;
}
arch_initcall(mrst_platform_init);
/*
* we will search these buttons in SFI GPIO table (by name)
* and register them dynamically. Please add all possible
* buttons here, we will shrink them if no GPIO found.
*/
static struct gpio_keys_button gpio_button[] = {
{KEY_POWER, -1, 1, "power_btn", EV_KEY, 0, 3000},
{KEY_PROG1, -1, 1, "prog_btn1", EV_KEY, 0, 20},
{KEY_PROG2, -1, 1, "prog_btn2", EV_KEY, 0, 20},
{SW_LID, -1, 1, "lid_switch", EV_SW, 0, 20},
{KEY_VOLUMEUP, -1, 1, "vol_up", EV_KEY, 0, 20},
{KEY_VOLUMEDOWN, -1, 1, "vol_down", EV_KEY, 0, 20},
{KEY_CAMERA, -1, 1, "camera_full", EV_KEY, 0, 20},
{KEY_CAMERA_FOCUS, -1, 1, "camera_half", EV_KEY, 0, 20},
{SW_KEYPAD_SLIDE, -1, 1, "MagSw1", EV_SW, 0, 20},
{SW_KEYPAD_SLIDE, -1, 1, "MagSw2", EV_SW, 0, 20},
};
static struct gpio_keys_platform_data mrst_gpio_keys = {
.buttons = gpio_button,
.rep = 1,
.nbuttons = -1, /* will fill it after search */
};
static struct platform_device pb_device = {
.name = "gpio-keys",
.id = -1,
.dev = {
.platform_data = &mrst_gpio_keys,
},
};
/*
* Shrink the non-existent buttons, register the gpio button
* device if there is some
*/
static int __init pb_keys_init(void)
{
struct gpio_keys_button *gb = gpio_button;
int i, num, good = 0;
num = sizeof(gpio_button) / sizeof(struct gpio_keys_button);
for (i = 0; i < num; i++) {
gb[i].gpio = get_gpio_by_name(gb[i].desc);
pr_debug("info[%2d]: name = %s, gpio = %d\n", i, gb[i].desc, gb[i].gpio);
if (gb[i].gpio == -1)
continue;
if (i != good)
gb[good] = gb[i];
good++;
}
if (good) {
mrst_gpio_keys.nbuttons = good;
return platform_device_register(&pb_device);
}
return 0;
}
late_initcall(pb_keys_init);