linux-sg2042/drivers/clk/bcm/clk-bcm2835.c

2189 lines
57 KiB
C

/*
* Copyright (C) 2010,2015 Broadcom
* Copyright (C) 2012 Stephen Warren
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
/**
* DOC: BCM2835 CPRMAN (clock manager for the "audio" domain)
*
* The clock tree on the 2835 has several levels. There's a root
* oscillator running at 19.2Mhz. After the oscillator there are 5
* PLLs, roughly divided as "camera", "ARM", "core", "DSI displays",
* and "HDMI displays". Those 5 PLLs each can divide their output to
* produce up to 4 channels. Finally, there is the level of clocks to
* be consumed by other hardware components (like "H264" or "HDMI
* state machine"), which divide off of some subset of the PLL
* channels.
*
* All of the clocks in the tree are exposed in the DT, because the DT
* may want to make assignments of the final layer of clocks to the
* PLL channels, and some components of the hardware will actually
* skip layers of the tree (for example, the pixel clock comes
* directly from the PLLH PIX channel without using a CM_*CTL clock
* generator).
*/
#include <linux/clk-provider.h>
#include <linux/clkdev.h>
#include <linux/clk.h>
#include <linux/clk/bcm2835.h>
#include <linux/debugfs.h>
#include <linux/delay.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <dt-bindings/clock/bcm2835.h>
#define CM_PASSWORD 0x5a000000
#define CM_GNRICCTL 0x000
#define CM_GNRICDIV 0x004
# define CM_DIV_FRAC_BITS 12
# define CM_DIV_FRAC_MASK GENMASK(CM_DIV_FRAC_BITS - 1, 0)
#define CM_VPUCTL 0x008
#define CM_VPUDIV 0x00c
#define CM_SYSCTL 0x010
#define CM_SYSDIV 0x014
#define CM_PERIACTL 0x018
#define CM_PERIADIV 0x01c
#define CM_PERIICTL 0x020
#define CM_PERIIDIV 0x024
#define CM_H264CTL 0x028
#define CM_H264DIV 0x02c
#define CM_ISPCTL 0x030
#define CM_ISPDIV 0x034
#define CM_V3DCTL 0x038
#define CM_V3DDIV 0x03c
#define CM_CAM0CTL 0x040
#define CM_CAM0DIV 0x044
#define CM_CAM1CTL 0x048
#define CM_CAM1DIV 0x04c
#define CM_CCP2CTL 0x050
#define CM_CCP2DIV 0x054
#define CM_DSI0ECTL 0x058
#define CM_DSI0EDIV 0x05c
#define CM_DSI0PCTL 0x060
#define CM_DSI0PDIV 0x064
#define CM_DPICTL 0x068
#define CM_DPIDIV 0x06c
#define CM_GP0CTL 0x070
#define CM_GP0DIV 0x074
#define CM_GP1CTL 0x078
#define CM_GP1DIV 0x07c
#define CM_GP2CTL 0x080
#define CM_GP2DIV 0x084
#define CM_HSMCTL 0x088
#define CM_HSMDIV 0x08c
#define CM_OTPCTL 0x090
#define CM_OTPDIV 0x094
#define CM_PCMCTL 0x098
#define CM_PCMDIV 0x09c
#define CM_PWMCTL 0x0a0
#define CM_PWMDIV 0x0a4
#define CM_SLIMCTL 0x0a8
#define CM_SLIMDIV 0x0ac
#define CM_SMICTL 0x0b0
#define CM_SMIDIV 0x0b4
/* no definition for 0x0b8 and 0x0bc */
#define CM_TCNTCTL 0x0c0
# define CM_TCNT_SRC1_SHIFT 12
#define CM_TCNTCNT 0x0c4
#define CM_TECCTL 0x0c8
#define CM_TECDIV 0x0cc
#define CM_TD0CTL 0x0d0
#define CM_TD0DIV 0x0d4
#define CM_TD1CTL 0x0d8
#define CM_TD1DIV 0x0dc
#define CM_TSENSCTL 0x0e0
#define CM_TSENSDIV 0x0e4
#define CM_TIMERCTL 0x0e8
#define CM_TIMERDIV 0x0ec
#define CM_UARTCTL 0x0f0
#define CM_UARTDIV 0x0f4
#define CM_VECCTL 0x0f8
#define CM_VECDIV 0x0fc
#define CM_PULSECTL 0x190
#define CM_PULSEDIV 0x194
#define CM_SDCCTL 0x1a8
#define CM_SDCDIV 0x1ac
#define CM_ARMCTL 0x1b0
#define CM_AVEOCTL 0x1b8
#define CM_AVEODIV 0x1bc
#define CM_EMMCCTL 0x1c0
#define CM_EMMCDIV 0x1c4
/* General bits for the CM_*CTL regs */
# define CM_ENABLE BIT(4)
# define CM_KILL BIT(5)
# define CM_GATE_BIT 6
# define CM_GATE BIT(CM_GATE_BIT)
# define CM_BUSY BIT(7)
# define CM_BUSYD BIT(8)
# define CM_FRAC BIT(9)
# define CM_SRC_SHIFT 0
# define CM_SRC_BITS 4
# define CM_SRC_MASK 0xf
# define CM_SRC_GND 0
# define CM_SRC_OSC 1
# define CM_SRC_TESTDEBUG0 2
# define CM_SRC_TESTDEBUG1 3
# define CM_SRC_PLLA_CORE 4
# define CM_SRC_PLLA_PER 4
# define CM_SRC_PLLC_CORE0 5
# define CM_SRC_PLLC_PER 5
# define CM_SRC_PLLC_CORE1 8
# define CM_SRC_PLLD_CORE 6
# define CM_SRC_PLLD_PER 6
# define CM_SRC_PLLH_AUX 7
# define CM_SRC_PLLC_CORE1 8
# define CM_SRC_PLLC_CORE2 9
#define CM_OSCCOUNT 0x100
#define CM_PLLA 0x104
# define CM_PLL_ANARST BIT(8)
# define CM_PLLA_HOLDPER BIT(7)
# define CM_PLLA_LOADPER BIT(6)
# define CM_PLLA_HOLDCORE BIT(5)
# define CM_PLLA_LOADCORE BIT(4)
# define CM_PLLA_HOLDCCP2 BIT(3)
# define CM_PLLA_LOADCCP2 BIT(2)
# define CM_PLLA_HOLDDSI0 BIT(1)
# define CM_PLLA_LOADDSI0 BIT(0)
#define CM_PLLC 0x108
# define CM_PLLC_HOLDPER BIT(7)
# define CM_PLLC_LOADPER BIT(6)
# define CM_PLLC_HOLDCORE2 BIT(5)
# define CM_PLLC_LOADCORE2 BIT(4)
# define CM_PLLC_HOLDCORE1 BIT(3)
# define CM_PLLC_LOADCORE1 BIT(2)
# define CM_PLLC_HOLDCORE0 BIT(1)
# define CM_PLLC_LOADCORE0 BIT(0)
#define CM_PLLD 0x10c
# define CM_PLLD_HOLDPER BIT(7)
# define CM_PLLD_LOADPER BIT(6)
# define CM_PLLD_HOLDCORE BIT(5)
# define CM_PLLD_LOADCORE BIT(4)
# define CM_PLLD_HOLDDSI1 BIT(3)
# define CM_PLLD_LOADDSI1 BIT(2)
# define CM_PLLD_HOLDDSI0 BIT(1)
# define CM_PLLD_LOADDSI0 BIT(0)
#define CM_PLLH 0x110
# define CM_PLLH_LOADRCAL BIT(2)
# define CM_PLLH_LOADAUX BIT(1)
# define CM_PLLH_LOADPIX BIT(0)
#define CM_LOCK 0x114
# define CM_LOCK_FLOCKH BIT(12)
# define CM_LOCK_FLOCKD BIT(11)
# define CM_LOCK_FLOCKC BIT(10)
# define CM_LOCK_FLOCKB BIT(9)
# define CM_LOCK_FLOCKA BIT(8)
#define CM_EVENT 0x118
#define CM_DSI1ECTL 0x158
#define CM_DSI1EDIV 0x15c
#define CM_DSI1PCTL 0x160
#define CM_DSI1PDIV 0x164
#define CM_DFTCTL 0x168
#define CM_DFTDIV 0x16c
#define CM_PLLB 0x170
# define CM_PLLB_HOLDARM BIT(1)
# define CM_PLLB_LOADARM BIT(0)
#define A2W_PLLA_CTRL 0x1100
#define A2W_PLLC_CTRL 0x1120
#define A2W_PLLD_CTRL 0x1140
#define A2W_PLLH_CTRL 0x1160
#define A2W_PLLB_CTRL 0x11e0
# define A2W_PLL_CTRL_PRST_DISABLE BIT(17)
# define A2W_PLL_CTRL_PWRDN BIT(16)
# define A2W_PLL_CTRL_PDIV_MASK 0x000007000
# define A2W_PLL_CTRL_PDIV_SHIFT 12
# define A2W_PLL_CTRL_NDIV_MASK 0x0000003ff
# define A2W_PLL_CTRL_NDIV_SHIFT 0
#define A2W_PLLA_ANA0 0x1010
#define A2W_PLLC_ANA0 0x1030
#define A2W_PLLD_ANA0 0x1050
#define A2W_PLLH_ANA0 0x1070
#define A2W_PLLB_ANA0 0x10f0
#define A2W_PLL_KA_SHIFT 7
#define A2W_PLL_KA_MASK GENMASK(9, 7)
#define A2W_PLL_KI_SHIFT 19
#define A2W_PLL_KI_MASK GENMASK(21, 19)
#define A2W_PLL_KP_SHIFT 15
#define A2W_PLL_KP_MASK GENMASK(18, 15)
#define A2W_PLLH_KA_SHIFT 19
#define A2W_PLLH_KA_MASK GENMASK(21, 19)
#define A2W_PLLH_KI_LOW_SHIFT 22
#define A2W_PLLH_KI_LOW_MASK GENMASK(23, 22)
#define A2W_PLLH_KI_HIGH_SHIFT 0
#define A2W_PLLH_KI_HIGH_MASK GENMASK(0, 0)
#define A2W_PLLH_KP_SHIFT 1
#define A2W_PLLH_KP_MASK GENMASK(4, 1)
#define A2W_XOSC_CTRL 0x1190
# define A2W_XOSC_CTRL_PLLB_ENABLE BIT(7)
# define A2W_XOSC_CTRL_PLLA_ENABLE BIT(6)
# define A2W_XOSC_CTRL_PLLD_ENABLE BIT(5)
# define A2W_XOSC_CTRL_DDR_ENABLE BIT(4)
# define A2W_XOSC_CTRL_CPR1_ENABLE BIT(3)
# define A2W_XOSC_CTRL_USB_ENABLE BIT(2)
# define A2W_XOSC_CTRL_HDMI_ENABLE BIT(1)
# define A2W_XOSC_CTRL_PLLC_ENABLE BIT(0)
#define A2W_PLLA_FRAC 0x1200
#define A2W_PLLC_FRAC 0x1220
#define A2W_PLLD_FRAC 0x1240
#define A2W_PLLH_FRAC 0x1260
#define A2W_PLLB_FRAC 0x12e0
# define A2W_PLL_FRAC_MASK ((1 << A2W_PLL_FRAC_BITS) - 1)
# define A2W_PLL_FRAC_BITS 20
#define A2W_PLL_CHANNEL_DISABLE BIT(8)
#define A2W_PLL_DIV_BITS 8
#define A2W_PLL_DIV_SHIFT 0
#define A2W_PLLA_DSI0 0x1300
#define A2W_PLLA_CORE 0x1400
#define A2W_PLLA_PER 0x1500
#define A2W_PLLA_CCP2 0x1600
#define A2W_PLLC_CORE2 0x1320
#define A2W_PLLC_CORE1 0x1420
#define A2W_PLLC_PER 0x1520
#define A2W_PLLC_CORE0 0x1620
#define A2W_PLLD_DSI0 0x1340
#define A2W_PLLD_CORE 0x1440
#define A2W_PLLD_PER 0x1540
#define A2W_PLLD_DSI1 0x1640
#define A2W_PLLH_AUX 0x1360
#define A2W_PLLH_RCAL 0x1460
#define A2W_PLLH_PIX 0x1560
#define A2W_PLLH_STS 0x1660
#define A2W_PLLH_CTRLR 0x1960
#define A2W_PLLH_FRACR 0x1a60
#define A2W_PLLH_AUXR 0x1b60
#define A2W_PLLH_RCALR 0x1c60
#define A2W_PLLH_PIXR 0x1d60
#define A2W_PLLH_STSR 0x1e60
#define A2W_PLLB_ARM 0x13e0
#define A2W_PLLB_SP0 0x14e0
#define A2W_PLLB_SP1 0x15e0
#define A2W_PLLB_SP2 0x16e0
#define LOCK_TIMEOUT_NS 100000000
#define BCM2835_MAX_FB_RATE 1750000000u
/*
* Names of clocks used within the driver that need to be replaced
* with an external parent's name. This array is in the order that
* the clocks node in the DT references external clocks.
*/
static const char *const cprman_parent_names[] = {
"xosc",
"dsi0_byte",
"dsi0_ddr2",
"dsi0_ddr",
"dsi1_byte",
"dsi1_ddr2",
"dsi1_ddr",
};
struct bcm2835_cprman {
struct device *dev;
void __iomem *regs;
spinlock_t regs_lock; /* spinlock for all clocks */
/*
* Real names of cprman clock parents looked up through
* of_clk_get_parent_name(), which will be used in the
* parent_names[] arrays for clock registration.
*/
const char *real_parent_names[ARRAY_SIZE(cprman_parent_names)];
/* Must be last */
struct clk_hw_onecell_data onecell;
};
static inline void cprman_write(struct bcm2835_cprman *cprman, u32 reg, u32 val)
{
writel(CM_PASSWORD | val, cprman->regs + reg);
}
static inline u32 cprman_read(struct bcm2835_cprman *cprman, u32 reg)
{
return readl(cprman->regs + reg);
}
/* Does a cycle of measuring a clock through the TCNT clock, which may
* source from many other clocks in the system.
*/
static unsigned long bcm2835_measure_tcnt_mux(struct bcm2835_cprman *cprman,
u32 tcnt_mux)
{
u32 osccount = 19200; /* 1ms */
u32 count;
ktime_t timeout;
spin_lock(&cprman->regs_lock);
cprman_write(cprman, CM_TCNTCTL, CM_KILL);
cprman_write(cprman, CM_TCNTCTL,
(tcnt_mux & CM_SRC_MASK) |
(tcnt_mux >> CM_SRC_BITS) << CM_TCNT_SRC1_SHIFT);
cprman_write(cprman, CM_OSCCOUNT, osccount);
/* do a kind delay at the start */
mdelay(1);
/* Finish off whatever is left of OSCCOUNT */
timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
while (cprman_read(cprman, CM_OSCCOUNT)) {
if (ktime_after(ktime_get(), timeout)) {
dev_err(cprman->dev, "timeout waiting for OSCCOUNT\n");
count = 0;
goto out;
}
cpu_relax();
}
/* Wait for BUSY to clear. */
timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
while (cprman_read(cprman, CM_TCNTCTL) & CM_BUSY) {
if (ktime_after(ktime_get(), timeout)) {
dev_err(cprman->dev, "timeout waiting for !BUSY\n");
count = 0;
goto out;
}
cpu_relax();
}
count = cprman_read(cprman, CM_TCNTCNT);
cprman_write(cprman, CM_TCNTCTL, 0);
out:
spin_unlock(&cprman->regs_lock);
return count * 1000;
}
static int bcm2835_debugfs_regset(struct bcm2835_cprman *cprman, u32 base,
struct debugfs_reg32 *regs, size_t nregs,
struct dentry *dentry)
{
struct dentry *regdump;
struct debugfs_regset32 *regset;
regset = devm_kzalloc(cprman->dev, sizeof(*regset), GFP_KERNEL);
if (!regset)
return -ENOMEM;
regset->regs = regs;
regset->nregs = nregs;
regset->base = cprman->regs + base;
regdump = debugfs_create_regset32("regdump", S_IRUGO, dentry,
regset);
return regdump ? 0 : -ENOMEM;
}
/*
* These are fixed clocks. They're probably not all root clocks and it may
* be possible to turn them on and off but until this is mapped out better
* it's the only way they can be used.
*/
void __init bcm2835_init_clocks(void)
{
struct clk_hw *hw;
int ret;
hw = clk_hw_register_fixed_rate(NULL, "apb_pclk", NULL, 0, 126000000);
if (IS_ERR(hw))
pr_err("apb_pclk not registered\n");
hw = clk_hw_register_fixed_rate(NULL, "uart0_pclk", NULL, 0, 3000000);
if (IS_ERR(hw))
pr_err("uart0_pclk not registered\n");
ret = clk_hw_register_clkdev(hw, NULL, "20201000.uart");
if (ret)
pr_err("uart0_pclk alias not registered\n");
hw = clk_hw_register_fixed_rate(NULL, "uart1_pclk", NULL, 0, 125000000);
if (IS_ERR(hw))
pr_err("uart1_pclk not registered\n");
ret = clk_hw_register_clkdev(hw, NULL, "20215000.uart");
if (ret)
pr_err("uart1_pclk alias not registered\n");
}
struct bcm2835_pll_data {
const char *name;
u32 cm_ctrl_reg;
u32 a2w_ctrl_reg;
u32 frac_reg;
u32 ana_reg_base;
u32 reference_enable_mask;
/* Bit in CM_LOCK to indicate when the PLL has locked. */
u32 lock_mask;
const struct bcm2835_pll_ana_bits *ana;
unsigned long min_rate;
unsigned long max_rate;
/*
* Highest rate for the VCO before we have to use the
* pre-divide-by-2.
*/
unsigned long max_fb_rate;
};
struct bcm2835_pll_ana_bits {
u32 mask0;
u32 set0;
u32 mask1;
u32 set1;
u32 mask3;
u32 set3;
u32 fb_prediv_mask;
};
static const struct bcm2835_pll_ana_bits bcm2835_ana_default = {
.mask0 = 0,
.set0 = 0,
.mask1 = (u32)~(A2W_PLL_KI_MASK | A2W_PLL_KP_MASK),
.set1 = (2 << A2W_PLL_KI_SHIFT) | (8 << A2W_PLL_KP_SHIFT),
.mask3 = (u32)~A2W_PLL_KA_MASK,
.set3 = (2 << A2W_PLL_KA_SHIFT),
.fb_prediv_mask = BIT(14),
};
static const struct bcm2835_pll_ana_bits bcm2835_ana_pllh = {
.mask0 = (u32)~(A2W_PLLH_KA_MASK | A2W_PLLH_KI_LOW_MASK),
.set0 = (2 << A2W_PLLH_KA_SHIFT) | (2 << A2W_PLLH_KI_LOW_SHIFT),
.mask1 = (u32)~(A2W_PLLH_KI_HIGH_MASK | A2W_PLLH_KP_MASK),
.set1 = (6 << A2W_PLLH_KP_SHIFT),
.mask3 = 0,
.set3 = 0,
.fb_prediv_mask = BIT(11),
};
struct bcm2835_pll_divider_data {
const char *name;
const char *source_pll;
u32 cm_reg;
u32 a2w_reg;
u32 load_mask;
u32 hold_mask;
u32 fixed_divider;
u32 flags;
};
struct bcm2835_clock_data {
const char *name;
const char *const *parents;
int num_mux_parents;
/* Bitmap encoding which parents accept rate change propagation. */
unsigned int set_rate_parent;
u32 ctl_reg;
u32 div_reg;
/* Number of integer bits in the divider */
u32 int_bits;
/* Number of fractional bits in the divider */
u32 frac_bits;
u32 flags;
bool is_vpu_clock;
bool is_mash_clock;
u32 tcnt_mux;
};
struct bcm2835_gate_data {
const char *name;
const char *parent;
u32 ctl_reg;
};
struct bcm2835_pll {
struct clk_hw hw;
struct bcm2835_cprman *cprman;
const struct bcm2835_pll_data *data;
};
static int bcm2835_pll_is_on(struct clk_hw *hw)
{
struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
struct bcm2835_cprman *cprman = pll->cprman;
const struct bcm2835_pll_data *data = pll->data;
return cprman_read(cprman, data->a2w_ctrl_reg) &
A2W_PLL_CTRL_PRST_DISABLE;
}
static void bcm2835_pll_choose_ndiv_and_fdiv(unsigned long rate,
unsigned long parent_rate,
u32 *ndiv, u32 *fdiv)
{
u64 div;
div = (u64)rate << A2W_PLL_FRAC_BITS;
do_div(div, parent_rate);
*ndiv = div >> A2W_PLL_FRAC_BITS;
*fdiv = div & ((1 << A2W_PLL_FRAC_BITS) - 1);
}
static long bcm2835_pll_rate_from_divisors(unsigned long parent_rate,
u32 ndiv, u32 fdiv, u32 pdiv)
{
u64 rate;
if (pdiv == 0)
return 0;
rate = (u64)parent_rate * ((ndiv << A2W_PLL_FRAC_BITS) + fdiv);
do_div(rate, pdiv);
return rate >> A2W_PLL_FRAC_BITS;
}
static long bcm2835_pll_round_rate(struct clk_hw *hw, unsigned long rate,
unsigned long *parent_rate)
{
struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
const struct bcm2835_pll_data *data = pll->data;
u32 ndiv, fdiv;
rate = clamp(rate, data->min_rate, data->max_rate);
bcm2835_pll_choose_ndiv_and_fdiv(rate, *parent_rate, &ndiv, &fdiv);
return bcm2835_pll_rate_from_divisors(*parent_rate, ndiv, fdiv, 1);
}
static unsigned long bcm2835_pll_get_rate(struct clk_hw *hw,
unsigned long parent_rate)
{
struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
struct bcm2835_cprman *cprman = pll->cprman;
const struct bcm2835_pll_data *data = pll->data;
u32 a2wctrl = cprman_read(cprman, data->a2w_ctrl_reg);
u32 ndiv, pdiv, fdiv;
bool using_prediv;
if (parent_rate == 0)
return 0;
fdiv = cprman_read(cprman, data->frac_reg) & A2W_PLL_FRAC_MASK;
ndiv = (a2wctrl & A2W_PLL_CTRL_NDIV_MASK) >> A2W_PLL_CTRL_NDIV_SHIFT;
pdiv = (a2wctrl & A2W_PLL_CTRL_PDIV_MASK) >> A2W_PLL_CTRL_PDIV_SHIFT;
using_prediv = cprman_read(cprman, data->ana_reg_base + 4) &
data->ana->fb_prediv_mask;
if (using_prediv)
ndiv *= 2;
return bcm2835_pll_rate_from_divisors(parent_rate, ndiv, fdiv, pdiv);
}
static void bcm2835_pll_off(struct clk_hw *hw)
{
struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
struct bcm2835_cprman *cprman = pll->cprman;
const struct bcm2835_pll_data *data = pll->data;
spin_lock(&cprman->regs_lock);
cprman_write(cprman, data->cm_ctrl_reg,
cprman_read(cprman, data->cm_ctrl_reg) |
CM_PLL_ANARST);
cprman_write(cprman, data->a2w_ctrl_reg,
cprman_read(cprman, data->a2w_ctrl_reg) |
A2W_PLL_CTRL_PWRDN);
spin_unlock(&cprman->regs_lock);
}
static int bcm2835_pll_on(struct clk_hw *hw)
{
struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
struct bcm2835_cprman *cprman = pll->cprman;
const struct bcm2835_pll_data *data = pll->data;
ktime_t timeout;
cprman_write(cprman, data->a2w_ctrl_reg,
cprman_read(cprman, data->a2w_ctrl_reg) &
~A2W_PLL_CTRL_PWRDN);
/* Take the PLL out of reset. */
cprman_write(cprman, data->cm_ctrl_reg,
cprman_read(cprman, data->cm_ctrl_reg) & ~CM_PLL_ANARST);
/* Wait for the PLL to lock. */
timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
while (!(cprman_read(cprman, CM_LOCK) & data->lock_mask)) {
if (ktime_after(ktime_get(), timeout)) {
dev_err(cprman->dev, "%s: couldn't lock PLL\n",
clk_hw_get_name(hw));
return -ETIMEDOUT;
}
cpu_relax();
}
return 0;
}
static void
bcm2835_pll_write_ana(struct bcm2835_cprman *cprman, u32 ana_reg_base, u32 *ana)
{
int i;
/*
* ANA register setup is done as a series of writes to
* ANA3-ANA0, in that order. This lets us write all 4
* registers as a single cycle of the serdes interface (taking
* 100 xosc clocks), whereas if we were to update ana0, 1, and
* 3 individually through their partial-write registers, each
* would be their own serdes cycle.
*/
for (i = 3; i >= 0; i--)
cprman_write(cprman, ana_reg_base + i * 4, ana[i]);
}
static int bcm2835_pll_set_rate(struct clk_hw *hw,
unsigned long rate, unsigned long parent_rate)
{
struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
struct bcm2835_cprman *cprman = pll->cprman;
const struct bcm2835_pll_data *data = pll->data;
bool was_using_prediv, use_fb_prediv, do_ana_setup_first;
u32 ndiv, fdiv, a2w_ctl;
u32 ana[4];
int i;
if (rate > data->max_fb_rate) {
use_fb_prediv = true;
rate /= 2;
} else {
use_fb_prediv = false;
}
bcm2835_pll_choose_ndiv_and_fdiv(rate, parent_rate, &ndiv, &fdiv);
for (i = 3; i >= 0; i--)
ana[i] = cprman_read(cprman, data->ana_reg_base + i * 4);
was_using_prediv = ana[1] & data->ana->fb_prediv_mask;
ana[0] &= ~data->ana->mask0;
ana[0] |= data->ana->set0;
ana[1] &= ~data->ana->mask1;
ana[1] |= data->ana->set1;
ana[3] &= ~data->ana->mask3;
ana[3] |= data->ana->set3;
if (was_using_prediv && !use_fb_prediv) {
ana[1] &= ~data->ana->fb_prediv_mask;
do_ana_setup_first = true;
} else if (!was_using_prediv && use_fb_prediv) {
ana[1] |= data->ana->fb_prediv_mask;
do_ana_setup_first = false;
} else {
do_ana_setup_first = true;
}
/* Unmask the reference clock from the oscillator. */
cprman_write(cprman, A2W_XOSC_CTRL,
cprman_read(cprman, A2W_XOSC_CTRL) |
data->reference_enable_mask);
if (do_ana_setup_first)
bcm2835_pll_write_ana(cprman, data->ana_reg_base, ana);
/* Set the PLL multiplier from the oscillator. */
cprman_write(cprman, data->frac_reg, fdiv);
a2w_ctl = cprman_read(cprman, data->a2w_ctrl_reg);
a2w_ctl &= ~A2W_PLL_CTRL_NDIV_MASK;
a2w_ctl |= ndiv << A2W_PLL_CTRL_NDIV_SHIFT;
a2w_ctl &= ~A2W_PLL_CTRL_PDIV_MASK;
a2w_ctl |= 1 << A2W_PLL_CTRL_PDIV_SHIFT;
cprman_write(cprman, data->a2w_ctrl_reg, a2w_ctl);
if (!do_ana_setup_first)
bcm2835_pll_write_ana(cprman, data->ana_reg_base, ana);
return 0;
}
static int bcm2835_pll_debug_init(struct clk_hw *hw,
struct dentry *dentry)
{
struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
struct bcm2835_cprman *cprman = pll->cprman;
const struct bcm2835_pll_data *data = pll->data;
struct debugfs_reg32 *regs;
regs = devm_kzalloc(cprman->dev, 7 * sizeof(*regs), GFP_KERNEL);
if (!regs)
return -ENOMEM;
regs[0].name = "cm_ctrl";
regs[0].offset = data->cm_ctrl_reg;
regs[1].name = "a2w_ctrl";
regs[1].offset = data->a2w_ctrl_reg;
regs[2].name = "frac";
regs[2].offset = data->frac_reg;
regs[3].name = "ana0";
regs[3].offset = data->ana_reg_base + 0 * 4;
regs[4].name = "ana1";
regs[4].offset = data->ana_reg_base + 1 * 4;
regs[5].name = "ana2";
regs[5].offset = data->ana_reg_base + 2 * 4;
regs[6].name = "ana3";
regs[6].offset = data->ana_reg_base + 3 * 4;
return bcm2835_debugfs_regset(cprman, 0, regs, 7, dentry);
}
static const struct clk_ops bcm2835_pll_clk_ops = {
.is_prepared = bcm2835_pll_is_on,
.prepare = bcm2835_pll_on,
.unprepare = bcm2835_pll_off,
.recalc_rate = bcm2835_pll_get_rate,
.set_rate = bcm2835_pll_set_rate,
.round_rate = bcm2835_pll_round_rate,
.debug_init = bcm2835_pll_debug_init,
};
struct bcm2835_pll_divider {
struct clk_divider div;
struct bcm2835_cprman *cprman;
const struct bcm2835_pll_divider_data *data;
};
static struct bcm2835_pll_divider *
bcm2835_pll_divider_from_hw(struct clk_hw *hw)
{
return container_of(hw, struct bcm2835_pll_divider, div.hw);
}
static int bcm2835_pll_divider_is_on(struct clk_hw *hw)
{
struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
struct bcm2835_cprman *cprman = divider->cprman;
const struct bcm2835_pll_divider_data *data = divider->data;
return !(cprman_read(cprman, data->a2w_reg) & A2W_PLL_CHANNEL_DISABLE);
}
static long bcm2835_pll_divider_round_rate(struct clk_hw *hw,
unsigned long rate,
unsigned long *parent_rate)
{
return clk_divider_ops.round_rate(hw, rate, parent_rate);
}
static unsigned long bcm2835_pll_divider_get_rate(struct clk_hw *hw,
unsigned long parent_rate)
{
return clk_divider_ops.recalc_rate(hw, parent_rate);
}
static void bcm2835_pll_divider_off(struct clk_hw *hw)
{
struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
struct bcm2835_cprman *cprman = divider->cprman;
const struct bcm2835_pll_divider_data *data = divider->data;
spin_lock(&cprman->regs_lock);
cprman_write(cprman, data->cm_reg,
(cprman_read(cprman, data->cm_reg) &
~data->load_mask) | data->hold_mask);
cprman_write(cprman, data->a2w_reg,
cprman_read(cprman, data->a2w_reg) |
A2W_PLL_CHANNEL_DISABLE);
spin_unlock(&cprman->regs_lock);
}
static int bcm2835_pll_divider_on(struct clk_hw *hw)
{
struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
struct bcm2835_cprman *cprman = divider->cprman;
const struct bcm2835_pll_divider_data *data = divider->data;
spin_lock(&cprman->regs_lock);
cprman_write(cprman, data->a2w_reg,
cprman_read(cprman, data->a2w_reg) &
~A2W_PLL_CHANNEL_DISABLE);
cprman_write(cprman, data->cm_reg,
cprman_read(cprman, data->cm_reg) & ~data->hold_mask);
spin_unlock(&cprman->regs_lock);
return 0;
}
static int bcm2835_pll_divider_set_rate(struct clk_hw *hw,
unsigned long rate,
unsigned long parent_rate)
{
struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
struct bcm2835_cprman *cprman = divider->cprman;
const struct bcm2835_pll_divider_data *data = divider->data;
u32 cm, div, max_div = 1 << A2W_PLL_DIV_BITS;
div = DIV_ROUND_UP_ULL(parent_rate, rate);
div = min(div, max_div);
if (div == max_div)
div = 0;
cprman_write(cprman, data->a2w_reg, div);
cm = cprman_read(cprman, data->cm_reg);
cprman_write(cprman, data->cm_reg, cm | data->load_mask);
cprman_write(cprman, data->cm_reg, cm & ~data->load_mask);
return 0;
}
static int bcm2835_pll_divider_debug_init(struct clk_hw *hw,
struct dentry *dentry)
{
struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
struct bcm2835_cprman *cprman = divider->cprman;
const struct bcm2835_pll_divider_data *data = divider->data;
struct debugfs_reg32 *regs;
regs = devm_kzalloc(cprman->dev, 7 * sizeof(*regs), GFP_KERNEL);
if (!regs)
return -ENOMEM;
regs[0].name = "cm";
regs[0].offset = data->cm_reg;
regs[1].name = "a2w";
regs[1].offset = data->a2w_reg;
return bcm2835_debugfs_regset(cprman, 0, regs, 2, dentry);
}
static const struct clk_ops bcm2835_pll_divider_clk_ops = {
.is_prepared = bcm2835_pll_divider_is_on,
.prepare = bcm2835_pll_divider_on,
.unprepare = bcm2835_pll_divider_off,
.recalc_rate = bcm2835_pll_divider_get_rate,
.set_rate = bcm2835_pll_divider_set_rate,
.round_rate = bcm2835_pll_divider_round_rate,
.debug_init = bcm2835_pll_divider_debug_init,
};
/*
* The CM dividers do fixed-point division, so we can't use the
* generic integer divider code like the PLL dividers do (and we can't
* fake it by having some fixed shifts preceding it in the clock tree,
* because we'd run out of bits in a 32-bit unsigned long).
*/
struct bcm2835_clock {
struct clk_hw hw;
struct bcm2835_cprman *cprman;
const struct bcm2835_clock_data *data;
};
static struct bcm2835_clock *bcm2835_clock_from_hw(struct clk_hw *hw)
{
return container_of(hw, struct bcm2835_clock, hw);
}
static int bcm2835_clock_is_on(struct clk_hw *hw)
{
struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
struct bcm2835_cprman *cprman = clock->cprman;
const struct bcm2835_clock_data *data = clock->data;
return (cprman_read(cprman, data->ctl_reg) & CM_ENABLE) != 0;
}
static u32 bcm2835_clock_choose_div(struct clk_hw *hw,
unsigned long rate,
unsigned long parent_rate,
bool round_up)
{
struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
const struct bcm2835_clock_data *data = clock->data;
u32 unused_frac_mask =
GENMASK(CM_DIV_FRAC_BITS - data->frac_bits, 0) >> 1;
u64 temp = (u64)parent_rate << CM_DIV_FRAC_BITS;
u64 rem;
u32 div, mindiv, maxdiv;
rem = do_div(temp, rate);
div = temp;
/* Round up and mask off the unused bits */
if (round_up && ((div & unused_frac_mask) != 0 || rem != 0))
div += unused_frac_mask + 1;
div &= ~unused_frac_mask;
/* different clamping limits apply for a mash clock */
if (data->is_mash_clock) {
/* clamp to min divider of 2 */
mindiv = 2 << CM_DIV_FRAC_BITS;
/* clamp to the highest possible integer divider */
maxdiv = (BIT(data->int_bits) - 1) << CM_DIV_FRAC_BITS;
} else {
/* clamp to min divider of 1 */
mindiv = 1 << CM_DIV_FRAC_BITS;
/* clamp to the highest possible fractional divider */
maxdiv = GENMASK(data->int_bits + CM_DIV_FRAC_BITS - 1,
CM_DIV_FRAC_BITS - data->frac_bits);
}
/* apply the clamping limits */
div = max_t(u32, div, mindiv);
div = min_t(u32, div, maxdiv);
return div;
}
static long bcm2835_clock_rate_from_divisor(struct bcm2835_clock *clock,
unsigned long parent_rate,
u32 div)
{
const struct bcm2835_clock_data *data = clock->data;
u64 temp;
if (data->int_bits == 0 && data->frac_bits == 0)
return parent_rate;
/*
* The divisor is a 12.12 fixed point field, but only some of
* the bits are populated in any given clock.
*/
div >>= CM_DIV_FRAC_BITS - data->frac_bits;
div &= (1 << (data->int_bits + data->frac_bits)) - 1;
if (div == 0)
return 0;
temp = (u64)parent_rate << data->frac_bits;
do_div(temp, div);
return temp;
}
static unsigned long bcm2835_clock_get_rate(struct clk_hw *hw,
unsigned long parent_rate)
{
struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
struct bcm2835_cprman *cprman = clock->cprman;
const struct bcm2835_clock_data *data = clock->data;
u32 div;
if (data->int_bits == 0 && data->frac_bits == 0)
return parent_rate;
div = cprman_read(cprman, data->div_reg);
return bcm2835_clock_rate_from_divisor(clock, parent_rate, div);
}
static void bcm2835_clock_wait_busy(struct bcm2835_clock *clock)
{
struct bcm2835_cprman *cprman = clock->cprman;
const struct bcm2835_clock_data *data = clock->data;
ktime_t timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
while (cprman_read(cprman, data->ctl_reg) & CM_BUSY) {
if (ktime_after(ktime_get(), timeout)) {
dev_err(cprman->dev, "%s: couldn't lock PLL\n",
clk_hw_get_name(&clock->hw));
return;
}
cpu_relax();
}
}
static void bcm2835_clock_off(struct clk_hw *hw)
{
struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
struct bcm2835_cprman *cprman = clock->cprman;
const struct bcm2835_clock_data *data = clock->data;
spin_lock(&cprman->regs_lock);
cprman_write(cprman, data->ctl_reg,
cprman_read(cprman, data->ctl_reg) & ~CM_ENABLE);
spin_unlock(&cprman->regs_lock);
/* BUSY will remain high until the divider completes its cycle. */
bcm2835_clock_wait_busy(clock);
}
static int bcm2835_clock_on(struct clk_hw *hw)
{
struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
struct bcm2835_cprman *cprman = clock->cprman;
const struct bcm2835_clock_data *data = clock->data;
spin_lock(&cprman->regs_lock);
cprman_write(cprman, data->ctl_reg,
cprman_read(cprman, data->ctl_reg) |
CM_ENABLE |
CM_GATE);
spin_unlock(&cprman->regs_lock);
/* Debug code to measure the clock once it's turned on to see
* if it's ticking at the rate we expect.
*/
if (data->tcnt_mux && false) {
dev_info(cprman->dev,
"clk %s: rate %ld, measure %ld\n",
data->name,
clk_hw_get_rate(hw),
bcm2835_measure_tcnt_mux(cprman, data->tcnt_mux));
}
return 0;
}
static int bcm2835_clock_set_rate(struct clk_hw *hw,
unsigned long rate, unsigned long parent_rate)
{
struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
struct bcm2835_cprman *cprman = clock->cprman;
const struct bcm2835_clock_data *data = clock->data;
u32 div = bcm2835_clock_choose_div(hw, rate, parent_rate, false);
u32 ctl;
spin_lock(&cprman->regs_lock);
/*
* Setting up frac support
*
* In principle it is recommended to stop/start the clock first,
* but as we set CLK_SET_RATE_GATE during registration of the
* clock this requirement should be take care of by the
* clk-framework.
*/
ctl = cprman_read(cprman, data->ctl_reg) & ~CM_FRAC;
ctl |= (div & CM_DIV_FRAC_MASK) ? CM_FRAC : 0;
cprman_write(cprman, data->ctl_reg, ctl);
cprman_write(cprman, data->div_reg, div);
spin_unlock(&cprman->regs_lock);
return 0;
}
static bool
bcm2835_clk_is_pllc(struct clk_hw *hw)
{
if (!hw)
return false;
return strncmp(clk_hw_get_name(hw), "pllc", 4) == 0;
}
static unsigned long bcm2835_clock_choose_div_and_prate(struct clk_hw *hw,
int parent_idx,
unsigned long rate,
u32 *div,
unsigned long *prate)
{
struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
struct bcm2835_cprman *cprman = clock->cprman;
const struct bcm2835_clock_data *data = clock->data;
unsigned long best_rate = 0;
u32 curdiv, mindiv, maxdiv;
struct clk_hw *parent;
parent = clk_hw_get_parent_by_index(hw, parent_idx);
if (!(BIT(parent_idx) & data->set_rate_parent)) {
*prate = clk_hw_get_rate(parent);
*div = bcm2835_clock_choose_div(hw, rate, *prate, true);
return bcm2835_clock_rate_from_divisor(clock, *prate,
*div);
}
if (data->frac_bits)
dev_warn(cprman->dev,
"frac bits are not used when propagating rate change");
/* clamp to min divider of 2 if we're dealing with a mash clock */
mindiv = data->is_mash_clock ? 2 : 1;
maxdiv = BIT(data->int_bits) - 1;
/* TODO: Be smart, and only test a subset of the available divisors. */
for (curdiv = mindiv; curdiv <= maxdiv; curdiv++) {
unsigned long tmp_rate;
tmp_rate = clk_hw_round_rate(parent, rate * curdiv);
tmp_rate /= curdiv;
if (curdiv == mindiv ||
(tmp_rate > best_rate && tmp_rate <= rate))
best_rate = tmp_rate;
if (best_rate == rate)
break;
}
*div = curdiv << CM_DIV_FRAC_BITS;
*prate = curdiv * best_rate;
return best_rate;
}
static int bcm2835_clock_determine_rate(struct clk_hw *hw,
struct clk_rate_request *req)
{
struct clk_hw *parent, *best_parent = NULL;
bool current_parent_is_pllc;
unsigned long rate, best_rate = 0;
unsigned long prate, best_prate = 0;
size_t i;
u32 div;
current_parent_is_pllc = bcm2835_clk_is_pllc(clk_hw_get_parent(hw));
/*
* Select parent clock that results in the closest but lower rate
*/
for (i = 0; i < clk_hw_get_num_parents(hw); ++i) {
parent = clk_hw_get_parent_by_index(hw, i);
if (!parent)
continue;
/*
* Don't choose a PLLC-derived clock as our parent
* unless it had been manually set that way. PLLC's
* frequency gets adjusted by the firmware due to
* over-temp or under-voltage conditions, without
* prior notification to our clock consumer.
*/
if (bcm2835_clk_is_pllc(parent) && !current_parent_is_pllc)
continue;
rate = bcm2835_clock_choose_div_and_prate(hw, i, req->rate,
&div, &prate);
if (rate > best_rate && rate <= req->rate) {
best_parent = parent;
best_prate = prate;
best_rate = rate;
}
}
if (!best_parent)
return -EINVAL;
req->best_parent_hw = best_parent;
req->best_parent_rate = best_prate;
req->rate = best_rate;
return 0;
}
static int bcm2835_clock_set_parent(struct clk_hw *hw, u8 index)
{
struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
struct bcm2835_cprman *cprman = clock->cprman;
const struct bcm2835_clock_data *data = clock->data;
u8 src = (index << CM_SRC_SHIFT) & CM_SRC_MASK;
cprman_write(cprman, data->ctl_reg, src);
return 0;
}
static u8 bcm2835_clock_get_parent(struct clk_hw *hw)
{
struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
struct bcm2835_cprman *cprman = clock->cprman;
const struct bcm2835_clock_data *data = clock->data;
u32 src = cprman_read(cprman, data->ctl_reg);
return (src & CM_SRC_MASK) >> CM_SRC_SHIFT;
}
static struct debugfs_reg32 bcm2835_debugfs_clock_reg32[] = {
{
.name = "ctl",
.offset = 0,
},
{
.name = "div",
.offset = 4,
},
};
static int bcm2835_clock_debug_init(struct clk_hw *hw,
struct dentry *dentry)
{
struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
struct bcm2835_cprman *cprman = clock->cprman;
const struct bcm2835_clock_data *data = clock->data;
return bcm2835_debugfs_regset(
cprman, data->ctl_reg,
bcm2835_debugfs_clock_reg32,
ARRAY_SIZE(bcm2835_debugfs_clock_reg32),
dentry);
}
static const struct clk_ops bcm2835_clock_clk_ops = {
.is_prepared = bcm2835_clock_is_on,
.prepare = bcm2835_clock_on,
.unprepare = bcm2835_clock_off,
.recalc_rate = bcm2835_clock_get_rate,
.set_rate = bcm2835_clock_set_rate,
.determine_rate = bcm2835_clock_determine_rate,
.set_parent = bcm2835_clock_set_parent,
.get_parent = bcm2835_clock_get_parent,
.debug_init = bcm2835_clock_debug_init,
};
static int bcm2835_vpu_clock_is_on(struct clk_hw *hw)
{
return true;
}
/*
* The VPU clock can never be disabled (it doesn't have an ENABLE
* bit), so it gets its own set of clock ops.
*/
static const struct clk_ops bcm2835_vpu_clock_clk_ops = {
.is_prepared = bcm2835_vpu_clock_is_on,
.recalc_rate = bcm2835_clock_get_rate,
.set_rate = bcm2835_clock_set_rate,
.determine_rate = bcm2835_clock_determine_rate,
.set_parent = bcm2835_clock_set_parent,
.get_parent = bcm2835_clock_get_parent,
.debug_init = bcm2835_clock_debug_init,
};
static struct clk_hw *bcm2835_register_pll(struct bcm2835_cprman *cprman,
const struct bcm2835_pll_data *data)
{
struct bcm2835_pll *pll;
struct clk_init_data init;
int ret;
memset(&init, 0, sizeof(init));
/* All of the PLLs derive from the external oscillator. */
init.parent_names = &cprman->real_parent_names[0];
init.num_parents = 1;
init.name = data->name;
init.ops = &bcm2835_pll_clk_ops;
init.flags = CLK_IGNORE_UNUSED;
pll = kzalloc(sizeof(*pll), GFP_KERNEL);
if (!pll)
return NULL;
pll->cprman = cprman;
pll->data = data;
pll->hw.init = &init;
ret = devm_clk_hw_register(cprman->dev, &pll->hw);
if (ret)
return NULL;
return &pll->hw;
}
static struct clk_hw *
bcm2835_register_pll_divider(struct bcm2835_cprman *cprman,
const struct bcm2835_pll_divider_data *data)
{
struct bcm2835_pll_divider *divider;
struct clk_init_data init;
const char *divider_name;
int ret;
if (data->fixed_divider != 1) {
divider_name = devm_kasprintf(cprman->dev, GFP_KERNEL,
"%s_prediv", data->name);
if (!divider_name)
return NULL;
} else {
divider_name = data->name;
}
memset(&init, 0, sizeof(init));
init.parent_names = &data->source_pll;
init.num_parents = 1;
init.name = divider_name;
init.ops = &bcm2835_pll_divider_clk_ops;
init.flags = data->flags | CLK_IGNORE_UNUSED;
divider = devm_kzalloc(cprman->dev, sizeof(*divider), GFP_KERNEL);
if (!divider)
return NULL;
divider->div.reg = cprman->regs + data->a2w_reg;
divider->div.shift = A2W_PLL_DIV_SHIFT;
divider->div.width = A2W_PLL_DIV_BITS;
divider->div.flags = CLK_DIVIDER_MAX_AT_ZERO;
divider->div.lock = &cprman->regs_lock;
divider->div.hw.init = &init;
divider->div.table = NULL;
divider->cprman = cprman;
divider->data = data;
ret = devm_clk_hw_register(cprman->dev, &divider->div.hw);
if (ret)
return ERR_PTR(ret);
/*
* PLLH's channels have a fixed divide by 10 afterwards, which
* is what our consumers are actually using.
*/
if (data->fixed_divider != 1) {
return clk_hw_register_fixed_factor(cprman->dev, data->name,
divider_name,
CLK_SET_RATE_PARENT,
1,
data->fixed_divider);
}
return &divider->div.hw;
}
static struct clk_hw *bcm2835_register_clock(struct bcm2835_cprman *cprman,
const struct bcm2835_clock_data *data)
{
struct bcm2835_clock *clock;
struct clk_init_data init;
const char *parents[1 << CM_SRC_BITS];
size_t i, j;
int ret;
/*
* Replace our strings referencing parent clocks with the
* actual clock-output-name of the parent.
*/
for (i = 0; i < data->num_mux_parents; i++) {
parents[i] = data->parents[i];
for (j = 0; j < ARRAY_SIZE(cprman_parent_names); j++) {
if (strcmp(parents[i], cprman_parent_names[j]) == 0) {
parents[i] = cprman->real_parent_names[j];
break;
}
}
}
memset(&init, 0, sizeof(init));
init.parent_names = parents;
init.num_parents = data->num_mux_parents;
init.name = data->name;
init.flags = data->flags | CLK_IGNORE_UNUSED;
/*
* Pass the CLK_SET_RATE_PARENT flag if we are allowed to propagate
* rate changes on at least of the parents.
*/
if (data->set_rate_parent)
init.flags |= CLK_SET_RATE_PARENT;
if (data->is_vpu_clock) {
init.ops = &bcm2835_vpu_clock_clk_ops;
} else {
init.ops = &bcm2835_clock_clk_ops;
init.flags |= CLK_SET_RATE_GATE | CLK_SET_PARENT_GATE;
/* If the clock wasn't actually enabled at boot, it's not
* critical.
*/
if (!(cprman_read(cprman, data->ctl_reg) & CM_ENABLE))
init.flags &= ~CLK_IS_CRITICAL;
}
clock = devm_kzalloc(cprman->dev, sizeof(*clock), GFP_KERNEL);
if (!clock)
return NULL;
clock->cprman = cprman;
clock->data = data;
clock->hw.init = &init;
ret = devm_clk_hw_register(cprman->dev, &clock->hw);
if (ret)
return ERR_PTR(ret);
return &clock->hw;
}
static struct clk *bcm2835_register_gate(struct bcm2835_cprman *cprman,
const struct bcm2835_gate_data *data)
{
return clk_register_gate(cprman->dev, data->name, data->parent,
CLK_IGNORE_UNUSED | CLK_SET_RATE_GATE,
cprman->regs + data->ctl_reg,
CM_GATE_BIT, 0, &cprman->regs_lock);
}
typedef struct clk_hw *(*bcm2835_clk_register)(struct bcm2835_cprman *cprman,
const void *data);
struct bcm2835_clk_desc {
bcm2835_clk_register clk_register;
const void *data;
};
/* assignment helper macros for different clock types */
#define _REGISTER(f, ...) { .clk_register = (bcm2835_clk_register)f, \
.data = __VA_ARGS__ }
#define REGISTER_PLL(...) _REGISTER(&bcm2835_register_pll, \
&(struct bcm2835_pll_data) \
{__VA_ARGS__})
#define REGISTER_PLL_DIV(...) _REGISTER(&bcm2835_register_pll_divider, \
&(struct bcm2835_pll_divider_data) \
{__VA_ARGS__})
#define REGISTER_CLK(...) _REGISTER(&bcm2835_register_clock, \
&(struct bcm2835_clock_data) \
{__VA_ARGS__})
#define REGISTER_GATE(...) _REGISTER(&bcm2835_register_gate, \
&(struct bcm2835_gate_data) \
{__VA_ARGS__})
/* parent mux arrays plus helper macros */
/* main oscillator parent mux */
static const char *const bcm2835_clock_osc_parents[] = {
"gnd",
"xosc",
"testdebug0",
"testdebug1"
};
#define REGISTER_OSC_CLK(...) REGISTER_CLK( \
.num_mux_parents = ARRAY_SIZE(bcm2835_clock_osc_parents), \
.parents = bcm2835_clock_osc_parents, \
__VA_ARGS__)
/* main peripherial parent mux */
static const char *const bcm2835_clock_per_parents[] = {
"gnd",
"xosc",
"testdebug0",
"testdebug1",
"plla_per",
"pllc_per",
"plld_per",
"pllh_aux",
};
#define REGISTER_PER_CLK(...) REGISTER_CLK( \
.num_mux_parents = ARRAY_SIZE(bcm2835_clock_per_parents), \
.parents = bcm2835_clock_per_parents, \
__VA_ARGS__)
/* main vpu parent mux */
static const char *const bcm2835_clock_vpu_parents[] = {
"gnd",
"xosc",
"testdebug0",
"testdebug1",
"plla_core",
"pllc_core0",
"plld_core",
"pllh_aux",
"pllc_core1",
"pllc_core2",
};
#define REGISTER_VPU_CLK(...) REGISTER_CLK( \
.num_mux_parents = ARRAY_SIZE(bcm2835_clock_vpu_parents), \
.parents = bcm2835_clock_vpu_parents, \
__VA_ARGS__)
/*
* DSI parent clocks. The DSI byte/DDR/DDR2 clocks come from the DSI
* analog PHY. The _inv variants are generated internally to cprman,
* but we don't use them so they aren't hooked up.
*/
static const char *const bcm2835_clock_dsi0_parents[] = {
"gnd",
"xosc",
"testdebug0",
"testdebug1",
"dsi0_ddr",
"dsi0_ddr_inv",
"dsi0_ddr2",
"dsi0_ddr2_inv",
"dsi0_byte",
"dsi0_byte_inv",
};
static const char *const bcm2835_clock_dsi1_parents[] = {
"gnd",
"xosc",
"testdebug0",
"testdebug1",
"dsi1_ddr",
"dsi1_ddr_inv",
"dsi1_ddr2",
"dsi1_ddr2_inv",
"dsi1_byte",
"dsi1_byte_inv",
};
#define REGISTER_DSI0_CLK(...) REGISTER_CLK( \
.num_mux_parents = ARRAY_SIZE(bcm2835_clock_dsi0_parents), \
.parents = bcm2835_clock_dsi0_parents, \
__VA_ARGS__)
#define REGISTER_DSI1_CLK(...) REGISTER_CLK( \
.num_mux_parents = ARRAY_SIZE(bcm2835_clock_dsi1_parents), \
.parents = bcm2835_clock_dsi1_parents, \
__VA_ARGS__)
/*
* the real definition of all the pll, pll_dividers and clocks
* these make use of the above REGISTER_* macros
*/
static const struct bcm2835_clk_desc clk_desc_array[] = {
/* the PLL + PLL dividers */
/*
* PLLA is the auxiliary PLL, used to drive the CCP2
* (Compact Camera Port 2) transmitter clock.
*
* It is in the PX LDO power domain, which is on when the
* AUDIO domain is on.
*/
[BCM2835_PLLA] = REGISTER_PLL(
.name = "plla",
.cm_ctrl_reg = CM_PLLA,
.a2w_ctrl_reg = A2W_PLLA_CTRL,
.frac_reg = A2W_PLLA_FRAC,
.ana_reg_base = A2W_PLLA_ANA0,
.reference_enable_mask = A2W_XOSC_CTRL_PLLA_ENABLE,
.lock_mask = CM_LOCK_FLOCKA,
.ana = &bcm2835_ana_default,
.min_rate = 600000000u,
.max_rate = 2400000000u,
.max_fb_rate = BCM2835_MAX_FB_RATE),
[BCM2835_PLLA_CORE] = REGISTER_PLL_DIV(
.name = "plla_core",
.source_pll = "plla",
.cm_reg = CM_PLLA,
.a2w_reg = A2W_PLLA_CORE,
.load_mask = CM_PLLA_LOADCORE,
.hold_mask = CM_PLLA_HOLDCORE,
.fixed_divider = 1,
.flags = CLK_SET_RATE_PARENT),
[BCM2835_PLLA_PER] = REGISTER_PLL_DIV(
.name = "plla_per",
.source_pll = "plla",
.cm_reg = CM_PLLA,
.a2w_reg = A2W_PLLA_PER,
.load_mask = CM_PLLA_LOADPER,
.hold_mask = CM_PLLA_HOLDPER,
.fixed_divider = 1,
.flags = CLK_SET_RATE_PARENT),
[BCM2835_PLLA_DSI0] = REGISTER_PLL_DIV(
.name = "plla_dsi0",
.source_pll = "plla",
.cm_reg = CM_PLLA,
.a2w_reg = A2W_PLLA_DSI0,
.load_mask = CM_PLLA_LOADDSI0,
.hold_mask = CM_PLLA_HOLDDSI0,
.fixed_divider = 1),
[BCM2835_PLLA_CCP2] = REGISTER_PLL_DIV(
.name = "plla_ccp2",
.source_pll = "plla",
.cm_reg = CM_PLLA,
.a2w_reg = A2W_PLLA_CCP2,
.load_mask = CM_PLLA_LOADCCP2,
.hold_mask = CM_PLLA_HOLDCCP2,
.fixed_divider = 1,
.flags = CLK_SET_RATE_PARENT),
/* PLLB is used for the ARM's clock. */
[BCM2835_PLLB] = REGISTER_PLL(
.name = "pllb",
.cm_ctrl_reg = CM_PLLB,
.a2w_ctrl_reg = A2W_PLLB_CTRL,
.frac_reg = A2W_PLLB_FRAC,
.ana_reg_base = A2W_PLLB_ANA0,
.reference_enable_mask = A2W_XOSC_CTRL_PLLB_ENABLE,
.lock_mask = CM_LOCK_FLOCKB,
.ana = &bcm2835_ana_default,
.min_rate = 600000000u,
.max_rate = 3000000000u,
.max_fb_rate = BCM2835_MAX_FB_RATE),
[BCM2835_PLLB_ARM] = REGISTER_PLL_DIV(
.name = "pllb_arm",
.source_pll = "pllb",
.cm_reg = CM_PLLB,
.a2w_reg = A2W_PLLB_ARM,
.load_mask = CM_PLLB_LOADARM,
.hold_mask = CM_PLLB_HOLDARM,
.fixed_divider = 1,
.flags = CLK_SET_RATE_PARENT),
/*
* PLLC is the core PLL, used to drive the core VPU clock.
*
* It is in the PX LDO power domain, which is on when the
* AUDIO domain is on.
*/
[BCM2835_PLLC] = REGISTER_PLL(
.name = "pllc",
.cm_ctrl_reg = CM_PLLC,
.a2w_ctrl_reg = A2W_PLLC_CTRL,
.frac_reg = A2W_PLLC_FRAC,
.ana_reg_base = A2W_PLLC_ANA0,
.reference_enable_mask = A2W_XOSC_CTRL_PLLC_ENABLE,
.lock_mask = CM_LOCK_FLOCKC,
.ana = &bcm2835_ana_default,
.min_rate = 600000000u,
.max_rate = 3000000000u,
.max_fb_rate = BCM2835_MAX_FB_RATE),
[BCM2835_PLLC_CORE0] = REGISTER_PLL_DIV(
.name = "pllc_core0",
.source_pll = "pllc",
.cm_reg = CM_PLLC,
.a2w_reg = A2W_PLLC_CORE0,
.load_mask = CM_PLLC_LOADCORE0,
.hold_mask = CM_PLLC_HOLDCORE0,
.fixed_divider = 1,
.flags = CLK_SET_RATE_PARENT),
[BCM2835_PLLC_CORE1] = REGISTER_PLL_DIV(
.name = "pllc_core1",
.source_pll = "pllc",
.cm_reg = CM_PLLC,
.a2w_reg = A2W_PLLC_CORE1,
.load_mask = CM_PLLC_LOADCORE1,
.hold_mask = CM_PLLC_HOLDCORE1,
.fixed_divider = 1,
.flags = CLK_SET_RATE_PARENT),
[BCM2835_PLLC_CORE2] = REGISTER_PLL_DIV(
.name = "pllc_core2",
.source_pll = "pllc",
.cm_reg = CM_PLLC,
.a2w_reg = A2W_PLLC_CORE2,
.load_mask = CM_PLLC_LOADCORE2,
.hold_mask = CM_PLLC_HOLDCORE2,
.fixed_divider = 1,
.flags = CLK_SET_RATE_PARENT),
[BCM2835_PLLC_PER] = REGISTER_PLL_DIV(
.name = "pllc_per",
.source_pll = "pllc",
.cm_reg = CM_PLLC,
.a2w_reg = A2W_PLLC_PER,
.load_mask = CM_PLLC_LOADPER,
.hold_mask = CM_PLLC_HOLDPER,
.fixed_divider = 1,
.flags = CLK_SET_RATE_PARENT),
/*
* PLLD is the display PLL, used to drive DSI display panels.
*
* It is in the PX LDO power domain, which is on when the
* AUDIO domain is on.
*/
[BCM2835_PLLD] = REGISTER_PLL(
.name = "plld",
.cm_ctrl_reg = CM_PLLD,
.a2w_ctrl_reg = A2W_PLLD_CTRL,
.frac_reg = A2W_PLLD_FRAC,
.ana_reg_base = A2W_PLLD_ANA0,
.reference_enable_mask = A2W_XOSC_CTRL_DDR_ENABLE,
.lock_mask = CM_LOCK_FLOCKD,
.ana = &bcm2835_ana_default,
.min_rate = 600000000u,
.max_rate = 2400000000u,
.max_fb_rate = BCM2835_MAX_FB_RATE),
[BCM2835_PLLD_CORE] = REGISTER_PLL_DIV(
.name = "plld_core",
.source_pll = "plld",
.cm_reg = CM_PLLD,
.a2w_reg = A2W_PLLD_CORE,
.load_mask = CM_PLLD_LOADCORE,
.hold_mask = CM_PLLD_HOLDCORE,
.fixed_divider = 1,
.flags = CLK_SET_RATE_PARENT),
[BCM2835_PLLD_PER] = REGISTER_PLL_DIV(
.name = "plld_per",
.source_pll = "plld",
.cm_reg = CM_PLLD,
.a2w_reg = A2W_PLLD_PER,
.load_mask = CM_PLLD_LOADPER,
.hold_mask = CM_PLLD_HOLDPER,
.fixed_divider = 1,
.flags = CLK_SET_RATE_PARENT),
[BCM2835_PLLD_DSI0] = REGISTER_PLL_DIV(
.name = "plld_dsi0",
.source_pll = "plld",
.cm_reg = CM_PLLD,
.a2w_reg = A2W_PLLD_DSI0,
.load_mask = CM_PLLD_LOADDSI0,
.hold_mask = CM_PLLD_HOLDDSI0,
.fixed_divider = 1),
[BCM2835_PLLD_DSI1] = REGISTER_PLL_DIV(
.name = "plld_dsi1",
.source_pll = "plld",
.cm_reg = CM_PLLD,
.a2w_reg = A2W_PLLD_DSI1,
.load_mask = CM_PLLD_LOADDSI1,
.hold_mask = CM_PLLD_HOLDDSI1,
.fixed_divider = 1),
/*
* PLLH is used to supply the pixel clock or the AUX clock for the
* TV encoder.
*
* It is in the HDMI power domain.
*/
[BCM2835_PLLH] = REGISTER_PLL(
"pllh",
.cm_ctrl_reg = CM_PLLH,
.a2w_ctrl_reg = A2W_PLLH_CTRL,
.frac_reg = A2W_PLLH_FRAC,
.ana_reg_base = A2W_PLLH_ANA0,
.reference_enable_mask = A2W_XOSC_CTRL_PLLC_ENABLE,
.lock_mask = CM_LOCK_FLOCKH,
.ana = &bcm2835_ana_pllh,
.min_rate = 600000000u,
.max_rate = 3000000000u,
.max_fb_rate = BCM2835_MAX_FB_RATE),
[BCM2835_PLLH_RCAL] = REGISTER_PLL_DIV(
.name = "pllh_rcal",
.source_pll = "pllh",
.cm_reg = CM_PLLH,
.a2w_reg = A2W_PLLH_RCAL,
.load_mask = CM_PLLH_LOADRCAL,
.hold_mask = 0,
.fixed_divider = 10,
.flags = CLK_SET_RATE_PARENT),
[BCM2835_PLLH_AUX] = REGISTER_PLL_DIV(
.name = "pllh_aux",
.source_pll = "pllh",
.cm_reg = CM_PLLH,
.a2w_reg = A2W_PLLH_AUX,
.load_mask = CM_PLLH_LOADAUX,
.hold_mask = 0,
.fixed_divider = 1,
.flags = CLK_SET_RATE_PARENT),
[BCM2835_PLLH_PIX] = REGISTER_PLL_DIV(
.name = "pllh_pix",
.source_pll = "pllh",
.cm_reg = CM_PLLH,
.a2w_reg = A2W_PLLH_PIX,
.load_mask = CM_PLLH_LOADPIX,
.hold_mask = 0,
.fixed_divider = 10,
.flags = CLK_SET_RATE_PARENT),
/* the clocks */
/* clocks with oscillator parent mux */
/* One Time Programmable Memory clock. Maximum 10Mhz. */
[BCM2835_CLOCK_OTP] = REGISTER_OSC_CLK(
.name = "otp",
.ctl_reg = CM_OTPCTL,
.div_reg = CM_OTPDIV,
.int_bits = 4,
.frac_bits = 0,
.tcnt_mux = 6),
/*
* Used for a 1Mhz clock for the system clocksource, and also used
* bythe watchdog timer and the camera pulse generator.
*/
[BCM2835_CLOCK_TIMER] = REGISTER_OSC_CLK(
.name = "timer",
.ctl_reg = CM_TIMERCTL,
.div_reg = CM_TIMERDIV,
.int_bits = 6,
.frac_bits = 12),
/*
* Clock for the temperature sensor.
* Generally run at 2Mhz, max 5Mhz.
*/
[BCM2835_CLOCK_TSENS] = REGISTER_OSC_CLK(
.name = "tsens",
.ctl_reg = CM_TSENSCTL,
.div_reg = CM_TSENSDIV,
.int_bits = 5,
.frac_bits = 0),
[BCM2835_CLOCK_TEC] = REGISTER_OSC_CLK(
.name = "tec",
.ctl_reg = CM_TECCTL,
.div_reg = CM_TECDIV,
.int_bits = 6,
.frac_bits = 0),
/* clocks with vpu parent mux */
[BCM2835_CLOCK_H264] = REGISTER_VPU_CLK(
.name = "h264",
.ctl_reg = CM_H264CTL,
.div_reg = CM_H264DIV,
.int_bits = 4,
.frac_bits = 8,
.tcnt_mux = 1),
[BCM2835_CLOCK_ISP] = REGISTER_VPU_CLK(
.name = "isp",
.ctl_reg = CM_ISPCTL,
.div_reg = CM_ISPDIV,
.int_bits = 4,
.frac_bits = 8,
.tcnt_mux = 2),
/*
* Secondary SDRAM clock. Used for low-voltage modes when the PLL
* in the SDRAM controller can't be used.
*/
[BCM2835_CLOCK_SDRAM] = REGISTER_VPU_CLK(
.name = "sdram",
.ctl_reg = CM_SDCCTL,
.div_reg = CM_SDCDIV,
.int_bits = 6,
.frac_bits = 0,
.tcnt_mux = 3),
[BCM2835_CLOCK_V3D] = REGISTER_VPU_CLK(
.name = "v3d",
.ctl_reg = CM_V3DCTL,
.div_reg = CM_V3DDIV,
.int_bits = 4,
.frac_bits = 8,
.tcnt_mux = 4),
/*
* VPU clock. This doesn't have an enable bit, since it drives
* the bus for everything else, and is special so it doesn't need
* to be gated for rate changes. It is also known as "clk_audio"
* in various hardware documentation.
*/
[BCM2835_CLOCK_VPU] = REGISTER_VPU_CLK(
.name = "vpu",
.ctl_reg = CM_VPUCTL,
.div_reg = CM_VPUDIV,
.int_bits = 12,
.frac_bits = 8,
.flags = CLK_IS_CRITICAL,
.is_vpu_clock = true,
.tcnt_mux = 5),
/* clocks with per parent mux */
[BCM2835_CLOCK_AVEO] = REGISTER_PER_CLK(
.name = "aveo",
.ctl_reg = CM_AVEOCTL,
.div_reg = CM_AVEODIV,
.int_bits = 4,
.frac_bits = 0,
.tcnt_mux = 38),
[BCM2835_CLOCK_CAM0] = REGISTER_PER_CLK(
.name = "cam0",
.ctl_reg = CM_CAM0CTL,
.div_reg = CM_CAM0DIV,
.int_bits = 4,
.frac_bits = 8,
.tcnt_mux = 14),
[BCM2835_CLOCK_CAM1] = REGISTER_PER_CLK(
.name = "cam1",
.ctl_reg = CM_CAM1CTL,
.div_reg = CM_CAM1DIV,
.int_bits = 4,
.frac_bits = 8,
.tcnt_mux = 15),
[BCM2835_CLOCK_DFT] = REGISTER_PER_CLK(
.name = "dft",
.ctl_reg = CM_DFTCTL,
.div_reg = CM_DFTDIV,
.int_bits = 5,
.frac_bits = 0),
[BCM2835_CLOCK_DPI] = REGISTER_PER_CLK(
.name = "dpi",
.ctl_reg = CM_DPICTL,
.div_reg = CM_DPIDIV,
.int_bits = 4,
.frac_bits = 8,
.tcnt_mux = 17),
/* Arasan EMMC clock */
[BCM2835_CLOCK_EMMC] = REGISTER_PER_CLK(
.name = "emmc",
.ctl_reg = CM_EMMCCTL,
.div_reg = CM_EMMCDIV,
.int_bits = 4,
.frac_bits = 8,
.tcnt_mux = 39),
/* General purpose (GPIO) clocks */
[BCM2835_CLOCK_GP0] = REGISTER_PER_CLK(
.name = "gp0",
.ctl_reg = CM_GP0CTL,
.div_reg = CM_GP0DIV,
.int_bits = 12,
.frac_bits = 12,
.is_mash_clock = true,
.tcnt_mux = 20),
[BCM2835_CLOCK_GP1] = REGISTER_PER_CLK(
.name = "gp1",
.ctl_reg = CM_GP1CTL,
.div_reg = CM_GP1DIV,
.int_bits = 12,
.frac_bits = 12,
.flags = CLK_IS_CRITICAL,
.is_mash_clock = true,
.tcnt_mux = 21),
[BCM2835_CLOCK_GP2] = REGISTER_PER_CLK(
.name = "gp2",
.ctl_reg = CM_GP2CTL,
.div_reg = CM_GP2DIV,
.int_bits = 12,
.frac_bits = 12,
.flags = CLK_IS_CRITICAL),
/* HDMI state machine */
[BCM2835_CLOCK_HSM] = REGISTER_PER_CLK(
.name = "hsm",
.ctl_reg = CM_HSMCTL,
.div_reg = CM_HSMDIV,
.int_bits = 4,
.frac_bits = 8,
.tcnt_mux = 22),
[BCM2835_CLOCK_PCM] = REGISTER_PER_CLK(
.name = "pcm",
.ctl_reg = CM_PCMCTL,
.div_reg = CM_PCMDIV,
.int_bits = 12,
.frac_bits = 12,
.is_mash_clock = true,
.tcnt_mux = 23),
[BCM2835_CLOCK_PWM] = REGISTER_PER_CLK(
.name = "pwm",
.ctl_reg = CM_PWMCTL,
.div_reg = CM_PWMDIV,
.int_bits = 12,
.frac_bits = 12,
.is_mash_clock = true,
.tcnt_mux = 24),
[BCM2835_CLOCK_SLIM] = REGISTER_PER_CLK(
.name = "slim",
.ctl_reg = CM_SLIMCTL,
.div_reg = CM_SLIMDIV,
.int_bits = 12,
.frac_bits = 12,
.is_mash_clock = true,
.tcnt_mux = 25),
[BCM2835_CLOCK_SMI] = REGISTER_PER_CLK(
.name = "smi",
.ctl_reg = CM_SMICTL,
.div_reg = CM_SMIDIV,
.int_bits = 4,
.frac_bits = 8,
.tcnt_mux = 27),
[BCM2835_CLOCK_UART] = REGISTER_PER_CLK(
.name = "uart",
.ctl_reg = CM_UARTCTL,
.div_reg = CM_UARTDIV,
.int_bits = 10,
.frac_bits = 12,
.tcnt_mux = 28),
/* TV encoder clock. Only operating frequency is 108Mhz. */
[BCM2835_CLOCK_VEC] = REGISTER_PER_CLK(
.name = "vec",
.ctl_reg = CM_VECCTL,
.div_reg = CM_VECDIV,
.int_bits = 4,
.frac_bits = 0,
/*
* Allow rate change propagation only on PLLH_AUX which is
* assigned index 7 in the parent array.
*/
.set_rate_parent = BIT(7),
.tcnt_mux = 29),
/* dsi clocks */
[BCM2835_CLOCK_DSI0E] = REGISTER_PER_CLK(
.name = "dsi0e",
.ctl_reg = CM_DSI0ECTL,
.div_reg = CM_DSI0EDIV,
.int_bits = 4,
.frac_bits = 8,
.tcnt_mux = 18),
[BCM2835_CLOCK_DSI1E] = REGISTER_PER_CLK(
.name = "dsi1e",
.ctl_reg = CM_DSI1ECTL,
.div_reg = CM_DSI1EDIV,
.int_bits = 4,
.frac_bits = 8,
.tcnt_mux = 19),
[BCM2835_CLOCK_DSI0P] = REGISTER_DSI0_CLK(
.name = "dsi0p",
.ctl_reg = CM_DSI0PCTL,
.div_reg = CM_DSI0PDIV,
.int_bits = 0,
.frac_bits = 0,
.tcnt_mux = 12),
[BCM2835_CLOCK_DSI1P] = REGISTER_DSI1_CLK(
.name = "dsi1p",
.ctl_reg = CM_DSI1PCTL,
.div_reg = CM_DSI1PDIV,
.int_bits = 0,
.frac_bits = 0,
.tcnt_mux = 13),
/* the gates */
/*
* CM_PERIICTL (and CM_PERIACTL, CM_SYSCTL and CM_VPUCTL if
* you have the debug bit set in the power manager, which we
* don't bother exposing) are individual gates off of the
* non-stop vpu clock.
*/
[BCM2835_CLOCK_PERI_IMAGE] = REGISTER_GATE(
.name = "peri_image",
.parent = "vpu",
.ctl_reg = CM_PERIICTL),
};
/*
* Permanently take a reference on the parent of the SDRAM clock.
*
* While the SDRAM is being driven by its dedicated PLL most of the
* time, there is a little loop running in the firmware that
* periodically switches the SDRAM to using our CM clock to do PVT
* recalibration, with the assumption that the previously configured
* SDRAM parent is still enabled and running.
*/
static int bcm2835_mark_sdc_parent_critical(struct clk *sdc)
{
struct clk *parent = clk_get_parent(sdc);
if (IS_ERR(parent))
return PTR_ERR(parent);
return clk_prepare_enable(parent);
}
static int bcm2835_clk_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct clk_hw **hws;
struct bcm2835_cprman *cprman;
struct resource *res;
const struct bcm2835_clk_desc *desc;
const size_t asize = ARRAY_SIZE(clk_desc_array);
size_t i;
int ret;
cprman = devm_kzalloc(dev, sizeof(*cprman) +
sizeof(*cprman->onecell.hws) * asize,
GFP_KERNEL);
if (!cprman)
return -ENOMEM;
spin_lock_init(&cprman->regs_lock);
cprman->dev = dev;
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
cprman->regs = devm_ioremap_resource(dev, res);
if (IS_ERR(cprman->regs))
return PTR_ERR(cprman->regs);
memcpy(cprman->real_parent_names, cprman_parent_names,
sizeof(cprman_parent_names));
of_clk_parent_fill(dev->of_node, cprman->real_parent_names,
ARRAY_SIZE(cprman_parent_names));
/*
* Make sure the external oscillator has been registered.
*
* The other (DSI) clocks are not present on older device
* trees, which we still need to support for backwards
* compatibility.
*/
if (!cprman->real_parent_names[0])
return -ENODEV;
platform_set_drvdata(pdev, cprman);
cprman->onecell.num = asize;
hws = cprman->onecell.hws;
for (i = 0; i < asize; i++) {
desc = &clk_desc_array[i];
if (desc->clk_register && desc->data)
hws[i] = desc->clk_register(cprman, desc->data);
}
ret = bcm2835_mark_sdc_parent_critical(hws[BCM2835_CLOCK_SDRAM]->clk);
if (ret)
return ret;
return of_clk_add_hw_provider(dev->of_node, of_clk_hw_onecell_get,
&cprman->onecell);
}
static const struct of_device_id bcm2835_clk_of_match[] = {
{ .compatible = "brcm,bcm2835-cprman", },
{}
};
MODULE_DEVICE_TABLE(of, bcm2835_clk_of_match);
static struct platform_driver bcm2835_clk_driver = {
.driver = {
.name = "bcm2835-clk",
.of_match_table = bcm2835_clk_of_match,
},
.probe = bcm2835_clk_probe,
};
builtin_platform_driver(bcm2835_clk_driver);
MODULE_AUTHOR("Eric Anholt <eric@anholt.net>");
MODULE_DESCRIPTION("BCM2835 clock driver");
MODULE_LICENSE("GPL v2");