linux-sg2042/arch/mips/mm/uasm-mips.c

260 lines
9.6 KiB
C

/*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*
* A small micro-assembler. It is intentionally kept simple, does only
* support a subset of instructions, and does not try to hide pipeline
* effects like branch delay slots.
*
* Copyright (C) 2004, 2005, 2006, 2008 Thiemo Seufer
* Copyright (C) 2005, 2007 Maciej W. Rozycki
* Copyright (C) 2006 Ralf Baechle (ralf@linux-mips.org)
* Copyright (C) 2012, 2013 MIPS Technologies, Inc. All rights reserved.
*/
#include <linux/kernel.h>
#include <linux/types.h>
#include <asm/inst.h>
#include <asm/elf.h>
#include <asm/bugs.h>
#define UASM_ISA _UASM_ISA_CLASSIC
#include <asm/uasm.h>
#define RS_MASK 0x1f
#define RS_SH 21
#define RT_MASK 0x1f
#define RT_SH 16
#define SCIMM_MASK 0xfffff
#define SCIMM_SH 6
/* This macro sets the non-variable bits of an instruction. */
#define M(a, b, c, d, e, f) \
((a) << OP_SH \
| (b) << RS_SH \
| (c) << RT_SH \
| (d) << RD_SH \
| (e) << RE_SH \
| (f) << FUNC_SH)
/* This macro sets the non-variable bits of an R6 instruction. */
#define M6(a, b, c, d, e) \
((a) << OP_SH \
| (b) << RS_SH \
| (c) << RT_SH \
| (d) << SIMM9_SH \
| (e) << FUNC_SH)
#include "uasm.c"
static struct insn insn_table[] = {
{ insn_addiu, M(addiu_op, 0, 0, 0, 0, 0), RS | RT | SIMM },
{ insn_addu, M(spec_op, 0, 0, 0, 0, addu_op), RS | RT | RD },
{ insn_andi, M(andi_op, 0, 0, 0, 0, 0), RS | RT | UIMM },
{ insn_and, M(spec_op, 0, 0, 0, 0, and_op), RS | RT | RD },
{ insn_bbit0, M(lwc2_op, 0, 0, 0, 0, 0), RS | RT | BIMM },
{ insn_bbit1, M(swc2_op, 0, 0, 0, 0, 0), RS | RT | BIMM },
{ insn_beql, M(beql_op, 0, 0, 0, 0, 0), RS | RT | BIMM },
{ insn_beq, M(beq_op, 0, 0, 0, 0, 0), RS | RT | BIMM },
{ insn_bgezl, M(bcond_op, 0, bgezl_op, 0, 0, 0), RS | BIMM },
{ insn_bgez, M(bcond_op, 0, bgez_op, 0, 0, 0), RS | BIMM },
{ insn_bltzl, M(bcond_op, 0, bltzl_op, 0, 0, 0), RS | BIMM },
{ insn_bltz, M(bcond_op, 0, bltz_op, 0, 0, 0), RS | BIMM },
{ insn_bne, M(bne_op, 0, 0, 0, 0, 0), RS | RT | BIMM },
#ifndef CONFIG_CPU_MIPSR6
{ insn_cache, M(cache_op, 0, 0, 0, 0, 0), RS | RT | SIMM },
#else
{ insn_cache, M6(spec3_op, 0, 0, 0, cache6_op), RS | RT | SIMM9 },
#endif
{ insn_cfc1, M(cop1_op, cfc_op, 0, 0, 0, 0), RT | RD },
{ insn_cfcmsa, M(msa_op, 0, msa_cfc_op, 0, 0, msa_elm_op), RD | RE },
{ insn_ctc1, M(cop1_op, ctc_op, 0, 0, 0, 0), RT | RD },
{ insn_ctcmsa, M(msa_op, 0, msa_ctc_op, 0, 0, msa_elm_op), RD | RE },
{ insn_daddiu, M(daddiu_op, 0, 0, 0, 0, 0), RS | RT | SIMM },
{ insn_daddu, M(spec_op, 0, 0, 0, 0, daddu_op), RS | RT | RD },
{ insn_dinsm, M(spec3_op, 0, 0, 0, 0, dinsm_op), RS | RT | RD | RE },
{ insn_di, M(cop0_op, mfmc0_op, 0, 12, 0, 0), RT },
{ insn_dins, M(spec3_op, 0, 0, 0, 0, dins_op), RS | RT | RD | RE },
{ insn_divu, M(spec_op, 0, 0, 0, 0, divu_op), RS | RT },
{ insn_dmfc0, M(cop0_op, dmfc_op, 0, 0, 0, 0), RT | RD | SET},
{ insn_dmtc0, M(cop0_op, dmtc_op, 0, 0, 0, 0), RT | RD | SET},
{ insn_drotr32, M(spec_op, 1, 0, 0, 0, dsrl32_op), RT | RD | RE },
{ insn_drotr, M(spec_op, 1, 0, 0, 0, dsrl_op), RT | RD | RE },
{ insn_dsll32, M(spec_op, 0, 0, 0, 0, dsll32_op), RT | RD | RE },
{ insn_dsll, M(spec_op, 0, 0, 0, 0, dsll_op), RT | RD | RE },
{ insn_dsra, M(spec_op, 0, 0, 0, 0, dsra_op), RT | RD | RE },
{ insn_dsrl32, M(spec_op, 0, 0, 0, 0, dsrl32_op), RT | RD | RE },
{ insn_dsrl, M(spec_op, 0, 0, 0, 0, dsrl_op), RT | RD | RE },
{ insn_dsubu, M(spec_op, 0, 0, 0, 0, dsubu_op), RS | RT | RD },
{ insn_eret, M(cop0_op, cop_op, 0, 0, 0, eret_op), 0 },
{ insn_ext, M(spec3_op, 0, 0, 0, 0, ext_op), RS | RT | RD | RE },
{ insn_ins, M(spec3_op, 0, 0, 0, 0, ins_op), RS | RT | RD | RE },
{ insn_j, M(j_op, 0, 0, 0, 0, 0), JIMM },
{ insn_jal, M(jal_op, 0, 0, 0, 0, 0), JIMM },
{ insn_jalr, M(spec_op, 0, 0, 0, 0, jalr_op), RS | RD },
{ insn_j, M(j_op, 0, 0, 0, 0, 0), JIMM },
#ifndef CONFIG_CPU_MIPSR6
{ insn_jr, M(spec_op, 0, 0, 0, 0, jr_op), RS },
#else
{ insn_jr, M(spec_op, 0, 0, 0, 0, jalr_op), RS },
#endif
{ insn_lb, M(lb_op, 0, 0, 0, 0, 0), RS | RT | SIMM },
{ insn_ld, M(ld_op, 0, 0, 0, 0, 0), RS | RT | SIMM },
{ insn_ldx, M(spec3_op, 0, 0, 0, ldx_op, lx_op), RS | RT | RD },
{ insn_lh, M(lh_op, 0, 0, 0, 0, 0), RS | RT | SIMM },
#ifndef CONFIG_CPU_MIPSR6
{ insn_lld, M(lld_op, 0, 0, 0, 0, 0), RS | RT | SIMM },
{ insn_ll, M(ll_op, 0, 0, 0, 0, 0), RS | RT | SIMM },
#else
{ insn_lld, M6(spec3_op, 0, 0, 0, lld6_op), RS | RT | SIMM9 },
{ insn_ll, M6(spec3_op, 0, 0, 0, ll6_op), RS | RT | SIMM9 },
#endif
{ insn_lui, M(lui_op, 0, 0, 0, 0, 0), RT | SIMM },
{ insn_lw, M(lw_op, 0, 0, 0, 0, 0), RS | RT | SIMM },
{ insn_lwx, M(spec3_op, 0, 0, 0, lwx_op, lx_op), RS | RT | RD },
{ insn_mfc0, M(cop0_op, mfc_op, 0, 0, 0, 0), RT | RD | SET},
{ insn_mfhc0, M(cop0_op, mfhc0_op, 0, 0, 0, 0), RT | RD | SET},
{ insn_mfhi, M(spec_op, 0, 0, 0, 0, mfhi_op), RD },
{ insn_mflo, M(spec_op, 0, 0, 0, 0, mflo_op), RD },
{ insn_mtc0, M(cop0_op, mtc_op, 0, 0, 0, 0), RT | RD | SET},
{ insn_mthc0, M(cop0_op, mthc0_op, 0, 0, 0, 0), RT | RD | SET},
{ insn_mthi, M(spec_op, 0, 0, 0, 0, mthi_op), RS },
{ insn_mtlo, M(spec_op, 0, 0, 0, 0, mtlo_op), RS },
#ifndef CONFIG_CPU_MIPSR6
{ insn_mul, M(spec2_op, 0, 0, 0, 0, mul_op), RS | RT | RD},
#else
{ insn_mul, M(spec_op, 0, 0, 0, mult_mul_op, mult_op), RS | RT | RD},
#endif
{ insn_ori, M(ori_op, 0, 0, 0, 0, 0), RS | RT | UIMM },
{ insn_or, M(spec_op, 0, 0, 0, 0, or_op), RS | RT | RD },
#ifndef CONFIG_CPU_MIPSR6
{ insn_pref, M(pref_op, 0, 0, 0, 0, 0), RS | RT | SIMM },
#else
{ insn_pref, M6(spec3_op, 0, 0, 0, pref6_op), RS | RT | SIMM9 },
#endif
{ insn_rfe, M(cop0_op, cop_op, 0, 0, 0, rfe_op), 0 },
{ insn_rotr, M(spec_op, 1, 0, 0, 0, srl_op), RT | RD | RE },
#ifndef CONFIG_CPU_MIPSR6
{ insn_scd, M(scd_op, 0, 0, 0, 0, 0), RS | RT | SIMM },
{ insn_sc, M(sc_op, 0, 0, 0, 0, 0), RS | RT | SIMM },
#else
{ insn_scd, M6(spec3_op, 0, 0, 0, scd6_op), RS | RT | SIMM9 },
{ insn_sc, M6(spec3_op, 0, 0, 0, sc6_op), RS | RT | SIMM9 },
#endif
{ insn_sd, M(sd_op, 0, 0, 0, 0, 0), RS | RT | SIMM },
{ insn_sll, M(spec_op, 0, 0, 0, 0, sll_op), RT | RD | RE },
{ insn_sllv, M(spec_op, 0, 0, 0, 0, sllv_op), RS | RT | RD },
{ insn_slt, M(spec_op, 0, 0, 0, 0, slt_op), RS | RT | RD },
{ insn_sltiu, M(sltiu_op, 0, 0, 0, 0, 0), RS | RT | SIMM },
{ insn_sltu, M(spec_op, 0, 0, 0, 0, sltu_op), RS | RT | RD },
{ insn_sra, M(spec_op, 0, 0, 0, 0, sra_op), RT | RD | RE },
{ insn_srl, M(spec_op, 0, 0, 0, 0, srl_op), RT | RD | RE },
{ insn_srlv, M(spec_op, 0, 0, 0, 0, srlv_op), RS | RT | RD },
{ insn_subu, M(spec_op, 0, 0, 0, 0, subu_op), RS | RT | RD },
{ insn_sw, M(sw_op, 0, 0, 0, 0, 0), RS | RT | SIMM },
{ insn_sync, M(spec_op, 0, 0, 0, 0, sync_op), RE },
{ insn_syscall, M(spec_op, 0, 0, 0, 0, syscall_op), SCIMM},
{ insn_tlbp, M(cop0_op, cop_op, 0, 0, 0, tlbp_op), 0 },
{ insn_tlbr, M(cop0_op, cop_op, 0, 0, 0, tlbr_op), 0 },
{ insn_tlbwi, M(cop0_op, cop_op, 0, 0, 0, tlbwi_op), 0 },
{ insn_tlbwr, M(cop0_op, cop_op, 0, 0, 0, tlbwr_op), 0 },
{ insn_wait, M(cop0_op, cop_op, 0, 0, 0, wait_op), SCIMM },
{ insn_wsbh, M(spec3_op, 0, 0, 0, wsbh_op, bshfl_op), RT | RD },
{ insn_xori, M(xori_op, 0, 0, 0, 0, 0), RS | RT | UIMM },
{ insn_xor, M(spec_op, 0, 0, 0, 0, xor_op), RS | RT | RD },
{ insn_yield, M(spec3_op, 0, 0, 0, 0, yield_op), RS | RD },
{ insn_ldpte, M(lwc2_op, 0, 0, 0, ldpte_op, mult_op), RS | RD },
{ insn_lddir, M(lwc2_op, 0, 0, 0, lddir_op, mult_op), RS | RT | RD },
{ insn_invalid, 0, 0 }
};
#undef M
static inline u32 build_bimm(s32 arg)
{
WARN(arg > 0x1ffff || arg < -0x20000,
KERN_WARNING "Micro-assembler field overflow\n");
WARN(arg & 0x3, KERN_WARNING "Invalid micro-assembler branch target\n");
return ((arg < 0) ? (1 << 15) : 0) | ((arg >> 2) & 0x7fff);
}
static inline u32 build_jimm(u32 arg)
{
WARN(arg & ~(JIMM_MASK << 2),
KERN_WARNING "Micro-assembler field overflow\n");
return (arg >> 2) & JIMM_MASK;
}
/*
* The order of opcode arguments is implicitly left to right,
* starting with RS and ending with FUNC or IMM.
*/
static void build_insn(u32 **buf, enum opcode opc, ...)
{
struct insn *ip = NULL;
unsigned int i;
va_list ap;
u32 op;
for (i = 0; insn_table[i].opcode != insn_invalid; i++)
if (insn_table[i].opcode == opc) {
ip = &insn_table[i];
break;
}
if (!ip || (opc == insn_daddiu && r4k_daddiu_bug()))
panic("Unsupported Micro-assembler instruction %d", opc);
op = ip->match;
va_start(ap, opc);
if (ip->fields & RS)
op |= build_rs(va_arg(ap, u32));
if (ip->fields & RT)
op |= build_rt(va_arg(ap, u32));
if (ip->fields & RD)
op |= build_rd(va_arg(ap, u32));
if (ip->fields & RE)
op |= build_re(va_arg(ap, u32));
if (ip->fields & SIMM)
op |= build_simm(va_arg(ap, s32));
if (ip->fields & UIMM)
op |= build_uimm(va_arg(ap, u32));
if (ip->fields & BIMM)
op |= build_bimm(va_arg(ap, s32));
if (ip->fields & JIMM)
op |= build_jimm(va_arg(ap, u32));
if (ip->fields & FUNC)
op |= build_func(va_arg(ap, u32));
if (ip->fields & SET)
op |= build_set(va_arg(ap, u32));
if (ip->fields & SCIMM)
op |= build_scimm(va_arg(ap, u32));
if (ip->fields & SIMM9)
op |= build_scimm9(va_arg(ap, u32));
va_end(ap);
**buf = op;
(*buf)++;
}
static inline void
__resolve_relocs(struct uasm_reloc *rel, struct uasm_label *lab)
{
long laddr = (long)lab->addr;
long raddr = (long)rel->addr;
switch (rel->type) {
case R_MIPS_PC16:
*rel->addr |= build_bimm(laddr - (raddr + 4));
break;
default:
panic("Unsupported Micro-assembler relocation %d",
rel->type);
}
}