linux-sg2042/drivers/spi/spi-tegra114.c

1536 lines
42 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* SPI driver for NVIDIA's Tegra114 SPI Controller.
*
* Copyright (c) 2013, NVIDIA CORPORATION. All rights reserved.
*/
#include <linux/clk.h>
#include <linux/completion.h>
#include <linux/delay.h>
#include <linux/dmaengine.h>
#include <linux/dma-mapping.h>
#include <linux/dmapool.h>
#include <linux/err.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/kernel.h>
#include <linux/kthread.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/reset.h>
#include <linux/spi/spi.h>
#define SPI_COMMAND1 0x000
#define SPI_BIT_LENGTH(x) (((x) & 0x1f) << 0)
#define SPI_PACKED (1 << 5)
#define SPI_TX_EN (1 << 11)
#define SPI_RX_EN (1 << 12)
#define SPI_BOTH_EN_BYTE (1 << 13)
#define SPI_BOTH_EN_BIT (1 << 14)
#define SPI_LSBYTE_FE (1 << 15)
#define SPI_LSBIT_FE (1 << 16)
#define SPI_BIDIROE (1 << 17)
#define SPI_IDLE_SDA_DRIVE_LOW (0 << 18)
#define SPI_IDLE_SDA_DRIVE_HIGH (1 << 18)
#define SPI_IDLE_SDA_PULL_LOW (2 << 18)
#define SPI_IDLE_SDA_PULL_HIGH (3 << 18)
#define SPI_IDLE_SDA_MASK (3 << 18)
#define SPI_CS_SW_VAL (1 << 20)
#define SPI_CS_SW_HW (1 << 21)
/* SPI_CS_POL_INACTIVE bits are default high */
/* n from 0 to 3 */
#define SPI_CS_POL_INACTIVE(n) (1 << (22 + (n)))
#define SPI_CS_POL_INACTIVE_MASK (0xF << 22)
#define SPI_CS_SEL_0 (0 << 26)
#define SPI_CS_SEL_1 (1 << 26)
#define SPI_CS_SEL_2 (2 << 26)
#define SPI_CS_SEL_3 (3 << 26)
#define SPI_CS_SEL_MASK (3 << 26)
#define SPI_CS_SEL(x) (((x) & 0x3) << 26)
#define SPI_CONTROL_MODE_0 (0 << 28)
#define SPI_CONTROL_MODE_1 (1 << 28)
#define SPI_CONTROL_MODE_2 (2 << 28)
#define SPI_CONTROL_MODE_3 (3 << 28)
#define SPI_CONTROL_MODE_MASK (3 << 28)
#define SPI_MODE_SEL(x) (((x) & 0x3) << 28)
#define SPI_M_S (1 << 30)
#define SPI_PIO (1 << 31)
#define SPI_COMMAND2 0x004
#define SPI_TX_TAP_DELAY(x) (((x) & 0x3F) << 6)
#define SPI_RX_TAP_DELAY(x) (((x) & 0x3F) << 0)
#define SPI_CS_TIMING1 0x008
#define SPI_SETUP_HOLD(setup, hold) (((setup) << 4) | (hold))
#define SPI_CS_SETUP_HOLD(reg, cs, val) \
((((val) & 0xFFu) << ((cs) * 8)) | \
((reg) & ~(0xFFu << ((cs) * 8))))
#define SPI_CS_TIMING2 0x00C
#define CYCLES_BETWEEN_PACKETS_0(x) (((x) & 0x1F) << 0)
#define CS_ACTIVE_BETWEEN_PACKETS_0 (1 << 5)
#define CYCLES_BETWEEN_PACKETS_1(x) (((x) & 0x1F) << 8)
#define CS_ACTIVE_BETWEEN_PACKETS_1 (1 << 13)
#define CYCLES_BETWEEN_PACKETS_2(x) (((x) & 0x1F) << 16)
#define CS_ACTIVE_BETWEEN_PACKETS_2 (1 << 21)
#define CYCLES_BETWEEN_PACKETS_3(x) (((x) & 0x1F) << 24)
#define CS_ACTIVE_BETWEEN_PACKETS_3 (1 << 29)
#define SPI_SET_CS_ACTIVE_BETWEEN_PACKETS(reg, cs, val) \
(reg = (((val) & 0x1) << ((cs) * 8 + 5)) | \
((reg) & ~(1 << ((cs) * 8 + 5))))
#define SPI_SET_CYCLES_BETWEEN_PACKETS(reg, cs, val) \
(reg = (((val) & 0x1F) << ((cs) * 8)) | \
((reg) & ~(0x1F << ((cs) * 8))))
#define MAX_SETUP_HOLD_CYCLES 16
#define MAX_INACTIVE_CYCLES 32
#define SPI_TRANS_STATUS 0x010
#define SPI_BLK_CNT(val) (((val) >> 0) & 0xFFFF)
#define SPI_SLV_IDLE_COUNT(val) (((val) >> 16) & 0xFF)
#define SPI_RDY (1 << 30)
#define SPI_FIFO_STATUS 0x014
#define SPI_RX_FIFO_EMPTY (1 << 0)
#define SPI_RX_FIFO_FULL (1 << 1)
#define SPI_TX_FIFO_EMPTY (1 << 2)
#define SPI_TX_FIFO_FULL (1 << 3)
#define SPI_RX_FIFO_UNF (1 << 4)
#define SPI_RX_FIFO_OVF (1 << 5)
#define SPI_TX_FIFO_UNF (1 << 6)
#define SPI_TX_FIFO_OVF (1 << 7)
#define SPI_ERR (1 << 8)
#define SPI_TX_FIFO_FLUSH (1 << 14)
#define SPI_RX_FIFO_FLUSH (1 << 15)
#define SPI_TX_FIFO_EMPTY_COUNT(val) (((val) >> 16) & 0x7F)
#define SPI_RX_FIFO_FULL_COUNT(val) (((val) >> 23) & 0x7F)
#define SPI_FRAME_END (1 << 30)
#define SPI_CS_INACTIVE (1 << 31)
#define SPI_FIFO_ERROR (SPI_RX_FIFO_UNF | \
SPI_RX_FIFO_OVF | SPI_TX_FIFO_UNF | SPI_TX_FIFO_OVF)
#define SPI_FIFO_EMPTY (SPI_RX_FIFO_EMPTY | SPI_TX_FIFO_EMPTY)
#define SPI_TX_DATA 0x018
#define SPI_RX_DATA 0x01C
#define SPI_DMA_CTL 0x020
#define SPI_TX_TRIG_1 (0 << 15)
#define SPI_TX_TRIG_4 (1 << 15)
#define SPI_TX_TRIG_8 (2 << 15)
#define SPI_TX_TRIG_16 (3 << 15)
#define SPI_TX_TRIG_MASK (3 << 15)
#define SPI_RX_TRIG_1 (0 << 19)
#define SPI_RX_TRIG_4 (1 << 19)
#define SPI_RX_TRIG_8 (2 << 19)
#define SPI_RX_TRIG_16 (3 << 19)
#define SPI_RX_TRIG_MASK (3 << 19)
#define SPI_IE_TX (1 << 28)
#define SPI_IE_RX (1 << 29)
#define SPI_CONT (1 << 30)
#define SPI_DMA (1 << 31)
#define SPI_DMA_EN SPI_DMA
#define SPI_DMA_BLK 0x024
#define SPI_DMA_BLK_SET(x) (((x) & 0xFFFF) << 0)
#define SPI_TX_FIFO 0x108
#define SPI_RX_FIFO 0x188
#define SPI_INTR_MASK 0x18c
#define SPI_INTR_ALL_MASK (0x1fUL << 25)
#define MAX_CHIP_SELECT 4
#define SPI_FIFO_DEPTH 64
#define DATA_DIR_TX (1 << 0)
#define DATA_DIR_RX (1 << 1)
#define SPI_DMA_TIMEOUT (msecs_to_jiffies(1000))
#define DEFAULT_SPI_DMA_BUF_LEN (16*1024)
#define TX_FIFO_EMPTY_COUNT_MAX SPI_TX_FIFO_EMPTY_COUNT(0x40)
#define RX_FIFO_FULL_COUNT_ZERO SPI_RX_FIFO_FULL_COUNT(0)
#define MAX_HOLD_CYCLES 16
#define SPI_DEFAULT_SPEED 25000000
struct tegra_spi_soc_data {
bool has_intr_mask_reg;
};
struct tegra_spi_client_data {
int tx_clk_tap_delay;
int rx_clk_tap_delay;
};
struct tegra_spi_data {
struct device *dev;
struct spi_master *master;
spinlock_t lock;
struct clk *clk;
struct reset_control *rst;
void __iomem *base;
phys_addr_t phys;
unsigned irq;
u32 cur_speed;
struct spi_device *cur_spi;
struct spi_device *cs_control;
unsigned cur_pos;
unsigned words_per_32bit;
unsigned bytes_per_word;
unsigned curr_dma_words;
unsigned cur_direction;
unsigned cur_rx_pos;
unsigned cur_tx_pos;
unsigned dma_buf_size;
unsigned max_buf_size;
bool is_curr_dma_xfer;
bool use_hw_based_cs;
struct completion rx_dma_complete;
struct completion tx_dma_complete;
u32 tx_status;
u32 rx_status;
u32 status_reg;
bool is_packed;
u32 command1_reg;
u32 dma_control_reg;
u32 def_command1_reg;
u32 def_command2_reg;
u32 spi_cs_timing1;
u32 spi_cs_timing2;
u8 last_used_cs;
struct completion xfer_completion;
struct spi_transfer *curr_xfer;
struct dma_chan *rx_dma_chan;
u32 *rx_dma_buf;
dma_addr_t rx_dma_phys;
struct dma_async_tx_descriptor *rx_dma_desc;
struct dma_chan *tx_dma_chan;
u32 *tx_dma_buf;
dma_addr_t tx_dma_phys;
struct dma_async_tx_descriptor *tx_dma_desc;
const struct tegra_spi_soc_data *soc_data;
};
static int tegra_spi_runtime_suspend(struct device *dev);
static int tegra_spi_runtime_resume(struct device *dev);
static inline u32 tegra_spi_readl(struct tegra_spi_data *tspi,
unsigned long reg)
{
return readl(tspi->base + reg);
}
static inline void tegra_spi_writel(struct tegra_spi_data *tspi,
u32 val, unsigned long reg)
{
writel(val, tspi->base + reg);
/* Read back register to make sure that register writes completed */
if (reg != SPI_TX_FIFO)
readl(tspi->base + SPI_COMMAND1);
}
static void tegra_spi_clear_status(struct tegra_spi_data *tspi)
{
u32 val;
/* Write 1 to clear status register */
val = tegra_spi_readl(tspi, SPI_TRANS_STATUS);
tegra_spi_writel(tspi, val, SPI_TRANS_STATUS);
/* Clear fifo status error if any */
val = tegra_spi_readl(tspi, SPI_FIFO_STATUS);
if (val & SPI_ERR)
tegra_spi_writel(tspi, SPI_ERR | SPI_FIFO_ERROR,
SPI_FIFO_STATUS);
}
static unsigned tegra_spi_calculate_curr_xfer_param(
struct spi_device *spi, struct tegra_spi_data *tspi,
struct spi_transfer *t)
{
unsigned remain_len = t->len - tspi->cur_pos;
unsigned max_word;
unsigned bits_per_word = t->bits_per_word;
unsigned max_len;
unsigned total_fifo_words;
tspi->bytes_per_word = DIV_ROUND_UP(bits_per_word, 8);
if ((bits_per_word == 8 || bits_per_word == 16 ||
bits_per_word == 32) && t->len > 3) {
tspi->is_packed = true;
tspi->words_per_32bit = 32/bits_per_word;
} else {
tspi->is_packed = false;
tspi->words_per_32bit = 1;
}
if (tspi->is_packed) {
max_len = min(remain_len, tspi->max_buf_size);
tspi->curr_dma_words = max_len/tspi->bytes_per_word;
total_fifo_words = (max_len + 3) / 4;
} else {
max_word = (remain_len - 1) / tspi->bytes_per_word + 1;
max_word = min(max_word, tspi->max_buf_size/4);
tspi->curr_dma_words = max_word;
total_fifo_words = max_word;
}
return total_fifo_words;
}
static unsigned tegra_spi_fill_tx_fifo_from_client_txbuf(
struct tegra_spi_data *tspi, struct spi_transfer *t)
{
unsigned nbytes;
unsigned tx_empty_count;
u32 fifo_status;
unsigned max_n_32bit;
unsigned i, count;
unsigned int written_words;
unsigned fifo_words_left;
u8 *tx_buf = (u8 *)t->tx_buf + tspi->cur_tx_pos;
fifo_status = tegra_spi_readl(tspi, SPI_FIFO_STATUS);
tx_empty_count = SPI_TX_FIFO_EMPTY_COUNT(fifo_status);
if (tspi->is_packed) {
fifo_words_left = tx_empty_count * tspi->words_per_32bit;
written_words = min(fifo_words_left, tspi->curr_dma_words);
nbytes = written_words * tspi->bytes_per_word;
max_n_32bit = DIV_ROUND_UP(nbytes, 4);
for (count = 0; count < max_n_32bit; count++) {
u32 x = 0;
for (i = 0; (i < 4) && nbytes; i++, nbytes--)
x |= (u32)(*tx_buf++) << (i * 8);
tegra_spi_writel(tspi, x, SPI_TX_FIFO);
}
tspi->cur_tx_pos += written_words * tspi->bytes_per_word;
} else {
unsigned int write_bytes;
max_n_32bit = min(tspi->curr_dma_words, tx_empty_count);
written_words = max_n_32bit;
nbytes = written_words * tspi->bytes_per_word;
if (nbytes > t->len - tspi->cur_pos)
nbytes = t->len - tspi->cur_pos;
write_bytes = nbytes;
for (count = 0; count < max_n_32bit; count++) {
u32 x = 0;
for (i = 0; nbytes && (i < tspi->bytes_per_word);
i++, nbytes--)
x |= (u32)(*tx_buf++) << (i * 8);
tegra_spi_writel(tspi, x, SPI_TX_FIFO);
}
tspi->cur_tx_pos += write_bytes;
}
return written_words;
}
static unsigned int tegra_spi_read_rx_fifo_to_client_rxbuf(
struct tegra_spi_data *tspi, struct spi_transfer *t)
{
unsigned rx_full_count;
u32 fifo_status;
unsigned i, count;
unsigned int read_words = 0;
unsigned len;
u8 *rx_buf = (u8 *)t->rx_buf + tspi->cur_rx_pos;
fifo_status = tegra_spi_readl(tspi, SPI_FIFO_STATUS);
rx_full_count = SPI_RX_FIFO_FULL_COUNT(fifo_status);
if (tspi->is_packed) {
len = tspi->curr_dma_words * tspi->bytes_per_word;
for (count = 0; count < rx_full_count; count++) {
u32 x = tegra_spi_readl(tspi, SPI_RX_FIFO);
for (i = 0; len && (i < 4); i++, len--)
*rx_buf++ = (x >> i*8) & 0xFF;
}
read_words += tspi->curr_dma_words;
tspi->cur_rx_pos += tspi->curr_dma_words * tspi->bytes_per_word;
} else {
u32 rx_mask = ((u32)1 << t->bits_per_word) - 1;
u8 bytes_per_word = tspi->bytes_per_word;
unsigned int read_bytes;
len = rx_full_count * bytes_per_word;
if (len > t->len - tspi->cur_pos)
len = t->len - tspi->cur_pos;
read_bytes = len;
for (count = 0; count < rx_full_count; count++) {
u32 x = tegra_spi_readl(tspi, SPI_RX_FIFO) & rx_mask;
for (i = 0; len && (i < bytes_per_word); i++, len--)
*rx_buf++ = (x >> (i*8)) & 0xFF;
}
read_words += rx_full_count;
tspi->cur_rx_pos += read_bytes;
}
return read_words;
}
static void tegra_spi_copy_client_txbuf_to_spi_txbuf(
struct tegra_spi_data *tspi, struct spi_transfer *t)
{
/* Make the dma buffer to read by cpu */
dma_sync_single_for_cpu(tspi->dev, tspi->tx_dma_phys,
tspi->dma_buf_size, DMA_TO_DEVICE);
if (tspi->is_packed) {
unsigned len = tspi->curr_dma_words * tspi->bytes_per_word;
memcpy(tspi->tx_dma_buf, t->tx_buf + tspi->cur_pos, len);
tspi->cur_tx_pos += tspi->curr_dma_words * tspi->bytes_per_word;
} else {
unsigned int i;
unsigned int count;
u8 *tx_buf = (u8 *)t->tx_buf + tspi->cur_tx_pos;
unsigned consume = tspi->curr_dma_words * tspi->bytes_per_word;
unsigned int write_bytes;
if (consume > t->len - tspi->cur_pos)
consume = t->len - tspi->cur_pos;
write_bytes = consume;
for (count = 0; count < tspi->curr_dma_words; count++) {
u32 x = 0;
for (i = 0; consume && (i < tspi->bytes_per_word);
i++, consume--)
x |= (u32)(*tx_buf++) << (i * 8);
tspi->tx_dma_buf[count] = x;
}
tspi->cur_tx_pos += write_bytes;
}
/* Make the dma buffer to read by dma */
dma_sync_single_for_device(tspi->dev, tspi->tx_dma_phys,
tspi->dma_buf_size, DMA_TO_DEVICE);
}
static void tegra_spi_copy_spi_rxbuf_to_client_rxbuf(
struct tegra_spi_data *tspi, struct spi_transfer *t)
{
/* Make the dma buffer to read by cpu */
dma_sync_single_for_cpu(tspi->dev, tspi->rx_dma_phys,
tspi->dma_buf_size, DMA_FROM_DEVICE);
if (tspi->is_packed) {
unsigned len = tspi->curr_dma_words * tspi->bytes_per_word;
memcpy(t->rx_buf + tspi->cur_rx_pos, tspi->rx_dma_buf, len);
tspi->cur_rx_pos += tspi->curr_dma_words * tspi->bytes_per_word;
} else {
unsigned int i;
unsigned int count;
unsigned char *rx_buf = t->rx_buf + tspi->cur_rx_pos;
u32 rx_mask = ((u32)1 << t->bits_per_word) - 1;
unsigned consume = tspi->curr_dma_words * tspi->bytes_per_word;
unsigned int read_bytes;
if (consume > t->len - tspi->cur_pos)
consume = t->len - tspi->cur_pos;
read_bytes = consume;
for (count = 0; count < tspi->curr_dma_words; count++) {
u32 x = tspi->rx_dma_buf[count] & rx_mask;
for (i = 0; consume && (i < tspi->bytes_per_word);
i++, consume--)
*rx_buf++ = (x >> (i*8)) & 0xFF;
}
tspi->cur_rx_pos += read_bytes;
}
/* Make the dma buffer to read by dma */
dma_sync_single_for_device(tspi->dev, tspi->rx_dma_phys,
tspi->dma_buf_size, DMA_FROM_DEVICE);
}
static void tegra_spi_dma_complete(void *args)
{
struct completion *dma_complete = args;
complete(dma_complete);
}
static int tegra_spi_start_tx_dma(struct tegra_spi_data *tspi, int len)
{
reinit_completion(&tspi->tx_dma_complete);
tspi->tx_dma_desc = dmaengine_prep_slave_single(tspi->tx_dma_chan,
tspi->tx_dma_phys, len, DMA_MEM_TO_DEV,
DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
if (!tspi->tx_dma_desc) {
dev_err(tspi->dev, "Not able to get desc for Tx\n");
return -EIO;
}
tspi->tx_dma_desc->callback = tegra_spi_dma_complete;
tspi->tx_dma_desc->callback_param = &tspi->tx_dma_complete;
dmaengine_submit(tspi->tx_dma_desc);
dma_async_issue_pending(tspi->tx_dma_chan);
return 0;
}
static int tegra_spi_start_rx_dma(struct tegra_spi_data *tspi, int len)
{
reinit_completion(&tspi->rx_dma_complete);
tspi->rx_dma_desc = dmaengine_prep_slave_single(tspi->rx_dma_chan,
tspi->rx_dma_phys, len, DMA_DEV_TO_MEM,
DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
if (!tspi->rx_dma_desc) {
dev_err(tspi->dev, "Not able to get desc for Rx\n");
return -EIO;
}
tspi->rx_dma_desc->callback = tegra_spi_dma_complete;
tspi->rx_dma_desc->callback_param = &tspi->rx_dma_complete;
dmaengine_submit(tspi->rx_dma_desc);
dma_async_issue_pending(tspi->rx_dma_chan);
return 0;
}
static int tegra_spi_flush_fifos(struct tegra_spi_data *tspi)
{
unsigned long timeout = jiffies + HZ;
u32 status;
status = tegra_spi_readl(tspi, SPI_FIFO_STATUS);
if ((status & SPI_FIFO_EMPTY) != SPI_FIFO_EMPTY) {
status |= SPI_RX_FIFO_FLUSH | SPI_TX_FIFO_FLUSH;
tegra_spi_writel(tspi, status, SPI_FIFO_STATUS);
while ((status & SPI_FIFO_EMPTY) != SPI_FIFO_EMPTY) {
status = tegra_spi_readl(tspi, SPI_FIFO_STATUS);
if (time_after(jiffies, timeout)) {
dev_err(tspi->dev,
"timeout waiting for fifo flush\n");
return -EIO;
}
udelay(1);
}
}
return 0;
}
static int tegra_spi_start_dma_based_transfer(
struct tegra_spi_data *tspi, struct spi_transfer *t)
{
u32 val;
unsigned int len;
int ret = 0;
u8 dma_burst;
struct dma_slave_config dma_sconfig = {0};
val = SPI_DMA_BLK_SET(tspi->curr_dma_words - 1);
tegra_spi_writel(tspi, val, SPI_DMA_BLK);
if (tspi->is_packed)
len = DIV_ROUND_UP(tspi->curr_dma_words * tspi->bytes_per_word,
4) * 4;
else
len = tspi->curr_dma_words * 4;
/* Set attention level based on length of transfer */
if (len & 0xF) {
val |= SPI_TX_TRIG_1 | SPI_RX_TRIG_1;
dma_burst = 1;
} else if (((len) >> 4) & 0x1) {
val |= SPI_TX_TRIG_4 | SPI_RX_TRIG_4;
dma_burst = 4;
} else {
val |= SPI_TX_TRIG_8 | SPI_RX_TRIG_8;
dma_burst = 8;
}
if (!tspi->soc_data->has_intr_mask_reg) {
if (tspi->cur_direction & DATA_DIR_TX)
val |= SPI_IE_TX;
if (tspi->cur_direction & DATA_DIR_RX)
val |= SPI_IE_RX;
}
tegra_spi_writel(tspi, val, SPI_DMA_CTL);
tspi->dma_control_reg = val;
dma_sconfig.device_fc = true;
if (tspi->cur_direction & DATA_DIR_TX) {
dma_sconfig.dst_addr = tspi->phys + SPI_TX_FIFO;
dma_sconfig.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
dma_sconfig.dst_maxburst = dma_burst;
ret = dmaengine_slave_config(tspi->tx_dma_chan, &dma_sconfig);
if (ret < 0) {
dev_err(tspi->dev,
"DMA slave config failed: %d\n", ret);
return ret;
}
tegra_spi_copy_client_txbuf_to_spi_txbuf(tspi, t);
ret = tegra_spi_start_tx_dma(tspi, len);
if (ret < 0) {
dev_err(tspi->dev,
"Starting tx dma failed, err %d\n", ret);
return ret;
}
}
if (tspi->cur_direction & DATA_DIR_RX) {
dma_sconfig.src_addr = tspi->phys + SPI_RX_FIFO;
dma_sconfig.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
dma_sconfig.src_maxburst = dma_burst;
ret = dmaengine_slave_config(tspi->rx_dma_chan, &dma_sconfig);
if (ret < 0) {
dev_err(tspi->dev,
"DMA slave config failed: %d\n", ret);
return ret;
}
/* Make the dma buffer to read by dma */
dma_sync_single_for_device(tspi->dev, tspi->rx_dma_phys,
tspi->dma_buf_size, DMA_FROM_DEVICE);
ret = tegra_spi_start_rx_dma(tspi, len);
if (ret < 0) {
dev_err(tspi->dev,
"Starting rx dma failed, err %d\n", ret);
if (tspi->cur_direction & DATA_DIR_TX)
dmaengine_terminate_all(tspi->tx_dma_chan);
return ret;
}
}
tspi->is_curr_dma_xfer = true;
tspi->dma_control_reg = val;
val |= SPI_DMA_EN;
tegra_spi_writel(tspi, val, SPI_DMA_CTL);
return ret;
}
static int tegra_spi_start_cpu_based_transfer(
struct tegra_spi_data *tspi, struct spi_transfer *t)
{
u32 val;
unsigned cur_words;
if (tspi->cur_direction & DATA_DIR_TX)
cur_words = tegra_spi_fill_tx_fifo_from_client_txbuf(tspi, t);
else
cur_words = tspi->curr_dma_words;
val = SPI_DMA_BLK_SET(cur_words - 1);
tegra_spi_writel(tspi, val, SPI_DMA_BLK);
val = 0;
if (tspi->cur_direction & DATA_DIR_TX)
val |= SPI_IE_TX;
if (tspi->cur_direction & DATA_DIR_RX)
val |= SPI_IE_RX;
tegra_spi_writel(tspi, val, SPI_DMA_CTL);
tspi->dma_control_reg = val;
tspi->is_curr_dma_xfer = false;
val = tspi->command1_reg;
val |= SPI_PIO;
tegra_spi_writel(tspi, val, SPI_COMMAND1);
return 0;
}
static int tegra_spi_init_dma_param(struct tegra_spi_data *tspi,
bool dma_to_memory)
{
struct dma_chan *dma_chan;
u32 *dma_buf;
dma_addr_t dma_phys;
dma_chan = dma_request_chan(tspi->dev, dma_to_memory ? "rx" : "tx");
if (IS_ERR(dma_chan))
return dev_err_probe(tspi->dev, PTR_ERR(dma_chan),
"Dma channel is not available\n");
dma_buf = dma_alloc_coherent(tspi->dev, tspi->dma_buf_size,
&dma_phys, GFP_KERNEL);
if (!dma_buf) {
dev_err(tspi->dev, " Not able to allocate the dma buffer\n");
dma_release_channel(dma_chan);
return -ENOMEM;
}
if (dma_to_memory) {
tspi->rx_dma_chan = dma_chan;
tspi->rx_dma_buf = dma_buf;
tspi->rx_dma_phys = dma_phys;
} else {
tspi->tx_dma_chan = dma_chan;
tspi->tx_dma_buf = dma_buf;
tspi->tx_dma_phys = dma_phys;
}
return 0;
}
static void tegra_spi_deinit_dma_param(struct tegra_spi_data *tspi,
bool dma_to_memory)
{
u32 *dma_buf;
dma_addr_t dma_phys;
struct dma_chan *dma_chan;
if (dma_to_memory) {
dma_buf = tspi->rx_dma_buf;
dma_chan = tspi->rx_dma_chan;
dma_phys = tspi->rx_dma_phys;
tspi->rx_dma_chan = NULL;
tspi->rx_dma_buf = NULL;
} else {
dma_buf = tspi->tx_dma_buf;
dma_chan = tspi->tx_dma_chan;
dma_phys = tspi->tx_dma_phys;
tspi->tx_dma_buf = NULL;
tspi->tx_dma_chan = NULL;
}
if (!dma_chan)
return;
dma_free_coherent(tspi->dev, tspi->dma_buf_size, dma_buf, dma_phys);
dma_release_channel(dma_chan);
}
static int tegra_spi_set_hw_cs_timing(struct spi_device *spi)
{
struct tegra_spi_data *tspi = spi_master_get_devdata(spi->master);
struct spi_delay *setup = &spi->cs_setup;
struct spi_delay *hold = &spi->cs_hold;
struct spi_delay *inactive = &spi->cs_inactive;
u8 setup_dly, hold_dly, inactive_dly;
u32 setup_hold;
u32 spi_cs_timing;
u32 inactive_cycles;
u8 cs_state;
if ((setup && setup->unit != SPI_DELAY_UNIT_SCK) ||
(hold && hold->unit != SPI_DELAY_UNIT_SCK) ||
(inactive && inactive->unit != SPI_DELAY_UNIT_SCK)) {
dev_err(&spi->dev,
"Invalid delay unit %d, should be SPI_DELAY_UNIT_SCK\n",
SPI_DELAY_UNIT_SCK);
return -EINVAL;
}
setup_dly = setup ? setup->value : 0;
hold_dly = hold ? hold->value : 0;
inactive_dly = inactive ? inactive->value : 0;
setup_dly = min_t(u8, setup_dly, MAX_SETUP_HOLD_CYCLES);
hold_dly = min_t(u8, hold_dly, MAX_SETUP_HOLD_CYCLES);
if (setup_dly && hold_dly) {
setup_hold = SPI_SETUP_HOLD(setup_dly - 1, hold_dly - 1);
spi_cs_timing = SPI_CS_SETUP_HOLD(tspi->spi_cs_timing1,
spi->chip_select,
setup_hold);
if (tspi->spi_cs_timing1 != spi_cs_timing) {
tspi->spi_cs_timing1 = spi_cs_timing;
tegra_spi_writel(tspi, spi_cs_timing, SPI_CS_TIMING1);
}
}
inactive_cycles = min_t(u8, inactive_dly, MAX_INACTIVE_CYCLES);
if (inactive_cycles)
inactive_cycles--;
cs_state = inactive_cycles ? 0 : 1;
spi_cs_timing = tspi->spi_cs_timing2;
SPI_SET_CS_ACTIVE_BETWEEN_PACKETS(spi_cs_timing, spi->chip_select,
cs_state);
SPI_SET_CYCLES_BETWEEN_PACKETS(spi_cs_timing, spi->chip_select,
inactive_cycles);
if (tspi->spi_cs_timing2 != spi_cs_timing) {
tspi->spi_cs_timing2 = spi_cs_timing;
tegra_spi_writel(tspi, spi_cs_timing, SPI_CS_TIMING2);
}
return 0;
}
static u32 tegra_spi_setup_transfer_one(struct spi_device *spi,
struct spi_transfer *t,
bool is_first_of_msg,
bool is_single_xfer)
{
struct tegra_spi_data *tspi = spi_master_get_devdata(spi->master);
struct tegra_spi_client_data *cdata = spi->controller_data;
u32 speed = t->speed_hz;
u8 bits_per_word = t->bits_per_word;
u32 command1, command2;
int req_mode;
u32 tx_tap = 0, rx_tap = 0;
if (speed != tspi->cur_speed) {
clk_set_rate(tspi->clk, speed);
tspi->cur_speed = speed;
}
tspi->cur_spi = spi;
tspi->cur_pos = 0;
tspi->cur_rx_pos = 0;
tspi->cur_tx_pos = 0;
tspi->curr_xfer = t;
if (is_first_of_msg) {
tegra_spi_clear_status(tspi);
command1 = tspi->def_command1_reg;
command1 |= SPI_BIT_LENGTH(bits_per_word - 1);
command1 &= ~SPI_CONTROL_MODE_MASK;
req_mode = spi->mode & 0x3;
if (req_mode == SPI_MODE_0)
command1 |= SPI_CONTROL_MODE_0;
else if (req_mode == SPI_MODE_1)
command1 |= SPI_CONTROL_MODE_1;
else if (req_mode == SPI_MODE_2)
command1 |= SPI_CONTROL_MODE_2;
else if (req_mode == SPI_MODE_3)
command1 |= SPI_CONTROL_MODE_3;
if (spi->mode & SPI_LSB_FIRST)
command1 |= SPI_LSBIT_FE;
else
command1 &= ~SPI_LSBIT_FE;
if (spi->mode & SPI_3WIRE)
command1 |= SPI_BIDIROE;
else
command1 &= ~SPI_BIDIROE;
if (tspi->cs_control) {
if (tspi->cs_control != spi)
tegra_spi_writel(tspi, command1, SPI_COMMAND1);
tspi->cs_control = NULL;
} else
tegra_spi_writel(tspi, command1, SPI_COMMAND1);
/* GPIO based chip select control */
if (spi->cs_gpiod)
gpiod_set_value(spi->cs_gpiod, 1);
if (is_single_xfer && !(t->cs_change)) {
tspi->use_hw_based_cs = true;
command1 &= ~(SPI_CS_SW_HW | SPI_CS_SW_VAL);
} else {
tspi->use_hw_based_cs = false;
command1 |= SPI_CS_SW_HW;
if (spi->mode & SPI_CS_HIGH)
command1 |= SPI_CS_SW_VAL;
else
command1 &= ~SPI_CS_SW_VAL;
}
if (tspi->last_used_cs != spi->chip_select) {
if (cdata && cdata->tx_clk_tap_delay)
tx_tap = cdata->tx_clk_tap_delay;
if (cdata && cdata->rx_clk_tap_delay)
rx_tap = cdata->rx_clk_tap_delay;
command2 = SPI_TX_TAP_DELAY(tx_tap) |
SPI_RX_TAP_DELAY(rx_tap);
if (command2 != tspi->def_command2_reg)
tegra_spi_writel(tspi, command2, SPI_COMMAND2);
tspi->last_used_cs = spi->chip_select;
}
} else {
command1 = tspi->command1_reg;
command1 &= ~SPI_BIT_LENGTH(~0);
command1 |= SPI_BIT_LENGTH(bits_per_word - 1);
}
return command1;
}
static int tegra_spi_start_transfer_one(struct spi_device *spi,
struct spi_transfer *t, u32 command1)
{
struct tegra_spi_data *tspi = spi_master_get_devdata(spi->master);
unsigned total_fifo_words;
int ret;
total_fifo_words = tegra_spi_calculate_curr_xfer_param(spi, tspi, t);
if (t->rx_nbits == SPI_NBITS_DUAL || t->tx_nbits == SPI_NBITS_DUAL)
command1 |= SPI_BOTH_EN_BIT;
else
command1 &= ~SPI_BOTH_EN_BIT;
if (tspi->is_packed)
command1 |= SPI_PACKED;
else
command1 &= ~SPI_PACKED;
command1 &= ~(SPI_CS_SEL_MASK | SPI_TX_EN | SPI_RX_EN);
tspi->cur_direction = 0;
if (t->rx_buf) {
command1 |= SPI_RX_EN;
tspi->cur_direction |= DATA_DIR_RX;
}
if (t->tx_buf) {
command1 |= SPI_TX_EN;
tspi->cur_direction |= DATA_DIR_TX;
}
command1 |= SPI_CS_SEL(spi->chip_select);
tegra_spi_writel(tspi, command1, SPI_COMMAND1);
tspi->command1_reg = command1;
dev_dbg(tspi->dev, "The def 0x%x and written 0x%x\n",
tspi->def_command1_reg, (unsigned)command1);
ret = tegra_spi_flush_fifos(tspi);
if (ret < 0)
return ret;
if (total_fifo_words > SPI_FIFO_DEPTH)
ret = tegra_spi_start_dma_based_transfer(tspi, t);
else
ret = tegra_spi_start_cpu_based_transfer(tspi, t);
return ret;
}
static struct tegra_spi_client_data
*tegra_spi_parse_cdata_dt(struct spi_device *spi)
{
struct tegra_spi_client_data *cdata;
struct device_node *slave_np;
slave_np = spi->dev.of_node;
if (!slave_np) {
dev_dbg(&spi->dev, "device node not found\n");
return NULL;
}
cdata = kzalloc(sizeof(*cdata), GFP_KERNEL);
if (!cdata)
return NULL;
of_property_read_u32(slave_np, "nvidia,tx-clk-tap-delay",
&cdata->tx_clk_tap_delay);
of_property_read_u32(slave_np, "nvidia,rx-clk-tap-delay",
&cdata->rx_clk_tap_delay);
return cdata;
}
static void tegra_spi_cleanup(struct spi_device *spi)
{
struct tegra_spi_client_data *cdata = spi->controller_data;
spi->controller_data = NULL;
if (spi->dev.of_node)
kfree(cdata);
}
static int tegra_spi_setup(struct spi_device *spi)
{
struct tegra_spi_data *tspi = spi_master_get_devdata(spi->master);
struct tegra_spi_client_data *cdata = spi->controller_data;
u32 val;
unsigned long flags;
int ret;
dev_dbg(&spi->dev, "setup %d bpw, %scpol, %scpha, %dHz\n",
spi->bits_per_word,
spi->mode & SPI_CPOL ? "" : "~",
spi->mode & SPI_CPHA ? "" : "~",
spi->max_speed_hz);
if (!cdata) {
cdata = tegra_spi_parse_cdata_dt(spi);
spi->controller_data = cdata;
}
ret = pm_runtime_get_sync(tspi->dev);
if (ret < 0) {
pm_runtime_put_noidle(tspi->dev);
dev_err(tspi->dev, "pm runtime failed, e = %d\n", ret);
if (cdata)
tegra_spi_cleanup(spi);
return ret;
}
if (tspi->soc_data->has_intr_mask_reg) {
val = tegra_spi_readl(tspi, SPI_INTR_MASK);
val &= ~SPI_INTR_ALL_MASK;
tegra_spi_writel(tspi, val, SPI_INTR_MASK);
}
spin_lock_irqsave(&tspi->lock, flags);
/* GPIO based chip select control */
if (spi->cs_gpiod)
gpiod_set_value(spi->cs_gpiod, 0);
val = tspi->def_command1_reg;
if (spi->mode & SPI_CS_HIGH)
val &= ~SPI_CS_POL_INACTIVE(spi->chip_select);
else
val |= SPI_CS_POL_INACTIVE(spi->chip_select);
tspi->def_command1_reg = val;
tegra_spi_writel(tspi, tspi->def_command1_reg, SPI_COMMAND1);
spin_unlock_irqrestore(&tspi->lock, flags);
pm_runtime_put(tspi->dev);
return 0;
}
static void tegra_spi_transfer_end(struct spi_device *spi)
{
struct tegra_spi_data *tspi = spi_master_get_devdata(spi->master);
int cs_val = (spi->mode & SPI_CS_HIGH) ? 0 : 1;
/* GPIO based chip select control */
if (spi->cs_gpiod)
gpiod_set_value(spi->cs_gpiod, 0);
if (!tspi->use_hw_based_cs) {
if (cs_val)
tspi->command1_reg |= SPI_CS_SW_VAL;
else
tspi->command1_reg &= ~SPI_CS_SW_VAL;
tegra_spi_writel(tspi, tspi->command1_reg, SPI_COMMAND1);
}
tegra_spi_writel(tspi, tspi->def_command1_reg, SPI_COMMAND1);
}
static void tegra_spi_dump_regs(struct tegra_spi_data *tspi)
{
dev_dbg(tspi->dev, "============ SPI REGISTER DUMP ============\n");
dev_dbg(tspi->dev, "Command1: 0x%08x | Command2: 0x%08x\n",
tegra_spi_readl(tspi, SPI_COMMAND1),
tegra_spi_readl(tspi, SPI_COMMAND2));
dev_dbg(tspi->dev, "DMA_CTL: 0x%08x | DMA_BLK: 0x%08x\n",
tegra_spi_readl(tspi, SPI_DMA_CTL),
tegra_spi_readl(tspi, SPI_DMA_BLK));
dev_dbg(tspi->dev, "TRANS_STAT: 0x%08x | FIFO_STATUS: 0x%08x\n",
tegra_spi_readl(tspi, SPI_TRANS_STATUS),
tegra_spi_readl(tspi, SPI_FIFO_STATUS));
}
static int tegra_spi_transfer_one_message(struct spi_master *master,
struct spi_message *msg)
{
bool is_first_msg = true;
struct tegra_spi_data *tspi = spi_master_get_devdata(master);
struct spi_transfer *xfer;
struct spi_device *spi = msg->spi;
int ret;
bool skip = false;
int single_xfer;
msg->status = 0;
msg->actual_length = 0;
single_xfer = list_is_singular(&msg->transfers);
list_for_each_entry(xfer, &msg->transfers, transfer_list) {
u32 cmd1;
reinit_completion(&tspi->xfer_completion);
cmd1 = tegra_spi_setup_transfer_one(spi, xfer, is_first_msg,
single_xfer);
if (!xfer->len) {
ret = 0;
skip = true;
goto complete_xfer;
}
ret = tegra_spi_start_transfer_one(spi, xfer, cmd1);
if (ret < 0) {
dev_err(tspi->dev,
"spi can not start transfer, err %d\n", ret);
goto complete_xfer;
}
is_first_msg = false;
ret = wait_for_completion_timeout(&tspi->xfer_completion,
SPI_DMA_TIMEOUT);
if (WARN_ON(ret == 0)) {
dev_err(tspi->dev, "spi transfer timeout\n");
if (tspi->is_curr_dma_xfer &&
(tspi->cur_direction & DATA_DIR_TX))
dmaengine_terminate_all(tspi->tx_dma_chan);
if (tspi->is_curr_dma_xfer &&
(tspi->cur_direction & DATA_DIR_RX))
dmaengine_terminate_all(tspi->rx_dma_chan);
ret = -EIO;
tegra_spi_dump_regs(tspi);
tegra_spi_flush_fifos(tspi);
reset_control_assert(tspi->rst);
udelay(2);
reset_control_deassert(tspi->rst);
tspi->last_used_cs = master->num_chipselect + 1;
goto complete_xfer;
}
if (tspi->tx_status || tspi->rx_status) {
dev_err(tspi->dev, "Error in Transfer\n");
ret = -EIO;
tegra_spi_dump_regs(tspi);
goto complete_xfer;
}
msg->actual_length += xfer->len;
complete_xfer:
if (ret < 0 || skip) {
tegra_spi_transfer_end(spi);
spi_transfer_delay_exec(xfer);
goto exit;
} else if (list_is_last(&xfer->transfer_list,
&msg->transfers)) {
if (xfer->cs_change)
tspi->cs_control = spi;
else {
tegra_spi_transfer_end(spi);
spi_transfer_delay_exec(xfer);
}
} else if (xfer->cs_change) {
tegra_spi_transfer_end(spi);
spi_transfer_delay_exec(xfer);
}
}
ret = 0;
exit:
msg->status = ret;
spi_finalize_current_message(master);
return ret;
}
static irqreturn_t handle_cpu_based_xfer(struct tegra_spi_data *tspi)
{
struct spi_transfer *t = tspi->curr_xfer;
unsigned long flags;
spin_lock_irqsave(&tspi->lock, flags);
if (tspi->tx_status || tspi->rx_status) {
dev_err(tspi->dev, "CpuXfer ERROR bit set 0x%x\n",
tspi->status_reg);
dev_err(tspi->dev, "CpuXfer 0x%08x:0x%08x\n",
tspi->command1_reg, tspi->dma_control_reg);
tegra_spi_dump_regs(tspi);
tegra_spi_flush_fifos(tspi);
complete(&tspi->xfer_completion);
spin_unlock_irqrestore(&tspi->lock, flags);
reset_control_assert(tspi->rst);
udelay(2);
reset_control_deassert(tspi->rst);
return IRQ_HANDLED;
}
if (tspi->cur_direction & DATA_DIR_RX)
tegra_spi_read_rx_fifo_to_client_rxbuf(tspi, t);
if (tspi->cur_direction & DATA_DIR_TX)
tspi->cur_pos = tspi->cur_tx_pos;
else
tspi->cur_pos = tspi->cur_rx_pos;
if (tspi->cur_pos == t->len) {
complete(&tspi->xfer_completion);
goto exit;
}
tegra_spi_calculate_curr_xfer_param(tspi->cur_spi, tspi, t);
tegra_spi_start_cpu_based_transfer(tspi, t);
exit:
spin_unlock_irqrestore(&tspi->lock, flags);
return IRQ_HANDLED;
}
static irqreturn_t handle_dma_based_xfer(struct tegra_spi_data *tspi)
{
struct spi_transfer *t = tspi->curr_xfer;
long wait_status;
int err = 0;
unsigned total_fifo_words;
unsigned long flags;
/* Abort dmas if any error */
if (tspi->cur_direction & DATA_DIR_TX) {
if (tspi->tx_status) {
dmaengine_terminate_all(tspi->tx_dma_chan);
err += 1;
} else {
wait_status = wait_for_completion_interruptible_timeout(
&tspi->tx_dma_complete, SPI_DMA_TIMEOUT);
if (wait_status <= 0) {
dmaengine_terminate_all(tspi->tx_dma_chan);
dev_err(tspi->dev, "TxDma Xfer failed\n");
err += 1;
}
}
}
if (tspi->cur_direction & DATA_DIR_RX) {
if (tspi->rx_status) {
dmaengine_terminate_all(tspi->rx_dma_chan);
err += 2;
} else {
wait_status = wait_for_completion_interruptible_timeout(
&tspi->rx_dma_complete, SPI_DMA_TIMEOUT);
if (wait_status <= 0) {
dmaengine_terminate_all(tspi->rx_dma_chan);
dev_err(tspi->dev, "RxDma Xfer failed\n");
err += 2;
}
}
}
spin_lock_irqsave(&tspi->lock, flags);
if (err) {
dev_err(tspi->dev, "DmaXfer: ERROR bit set 0x%x\n",
tspi->status_reg);
dev_err(tspi->dev, "DmaXfer 0x%08x:0x%08x\n",
tspi->command1_reg, tspi->dma_control_reg);
tegra_spi_dump_regs(tspi);
tegra_spi_flush_fifos(tspi);
complete(&tspi->xfer_completion);
spin_unlock_irqrestore(&tspi->lock, flags);
reset_control_assert(tspi->rst);
udelay(2);
reset_control_deassert(tspi->rst);
return IRQ_HANDLED;
}
if (tspi->cur_direction & DATA_DIR_RX)
tegra_spi_copy_spi_rxbuf_to_client_rxbuf(tspi, t);
if (tspi->cur_direction & DATA_DIR_TX)
tspi->cur_pos = tspi->cur_tx_pos;
else
tspi->cur_pos = tspi->cur_rx_pos;
if (tspi->cur_pos == t->len) {
complete(&tspi->xfer_completion);
goto exit;
}
/* Continue transfer in current message */
total_fifo_words = tegra_spi_calculate_curr_xfer_param(tspi->cur_spi,
tspi, t);
if (total_fifo_words > SPI_FIFO_DEPTH)
err = tegra_spi_start_dma_based_transfer(tspi, t);
else
err = tegra_spi_start_cpu_based_transfer(tspi, t);
exit:
spin_unlock_irqrestore(&tspi->lock, flags);
return IRQ_HANDLED;
}
static irqreturn_t tegra_spi_isr_thread(int irq, void *context_data)
{
struct tegra_spi_data *tspi = context_data;
if (!tspi->is_curr_dma_xfer)
return handle_cpu_based_xfer(tspi);
return handle_dma_based_xfer(tspi);
}
static irqreturn_t tegra_spi_isr(int irq, void *context_data)
{
struct tegra_spi_data *tspi = context_data;
tspi->status_reg = tegra_spi_readl(tspi, SPI_FIFO_STATUS);
if (tspi->cur_direction & DATA_DIR_TX)
tspi->tx_status = tspi->status_reg &
(SPI_TX_FIFO_UNF | SPI_TX_FIFO_OVF);
if (tspi->cur_direction & DATA_DIR_RX)
tspi->rx_status = tspi->status_reg &
(SPI_RX_FIFO_OVF | SPI_RX_FIFO_UNF);
tegra_spi_clear_status(tspi);
return IRQ_WAKE_THREAD;
}
static struct tegra_spi_soc_data tegra114_spi_soc_data = {
.has_intr_mask_reg = false,
};
static struct tegra_spi_soc_data tegra124_spi_soc_data = {
.has_intr_mask_reg = false,
};
static struct tegra_spi_soc_data tegra210_spi_soc_data = {
.has_intr_mask_reg = true,
};
static const struct of_device_id tegra_spi_of_match[] = {
{
.compatible = "nvidia,tegra114-spi",
.data = &tegra114_spi_soc_data,
}, {
.compatible = "nvidia,tegra124-spi",
.data = &tegra124_spi_soc_data,
}, {
.compatible = "nvidia,tegra210-spi",
.data = &tegra210_spi_soc_data,
},
{}
};
MODULE_DEVICE_TABLE(of, tegra_spi_of_match);
static int tegra_spi_probe(struct platform_device *pdev)
{
struct spi_master *master;
struct tegra_spi_data *tspi;
struct resource *r;
int ret, spi_irq;
int bus_num;
master = spi_alloc_master(&pdev->dev, sizeof(*tspi));
if (!master) {
dev_err(&pdev->dev, "master allocation failed\n");
return -ENOMEM;
}
platform_set_drvdata(pdev, master);
tspi = spi_master_get_devdata(master);
if (of_property_read_u32(pdev->dev.of_node, "spi-max-frequency",
&master->max_speed_hz))
master->max_speed_hz = 25000000; /* 25MHz */
/* the spi->mode bits understood by this driver: */
master->use_gpio_descriptors = true;
master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LSB_FIRST |
SPI_TX_DUAL | SPI_RX_DUAL | SPI_3WIRE;
master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
master->setup = tegra_spi_setup;
master->cleanup = tegra_spi_cleanup;
master->transfer_one_message = tegra_spi_transfer_one_message;
master->set_cs_timing = tegra_spi_set_hw_cs_timing;
master->num_chipselect = MAX_CHIP_SELECT;
master->auto_runtime_pm = true;
bus_num = of_alias_get_id(pdev->dev.of_node, "spi");
if (bus_num >= 0)
master->bus_num = bus_num;
tspi->master = master;
tspi->dev = &pdev->dev;
spin_lock_init(&tspi->lock);
tspi->soc_data = of_device_get_match_data(&pdev->dev);
if (!tspi->soc_data) {
dev_err(&pdev->dev, "unsupported tegra\n");
ret = -ENODEV;
goto exit_free_master;
}
r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
tspi->base = devm_ioremap_resource(&pdev->dev, r);
if (IS_ERR(tspi->base)) {
ret = PTR_ERR(tspi->base);
goto exit_free_master;
}
tspi->phys = r->start;
spi_irq = platform_get_irq(pdev, 0);
tspi->irq = spi_irq;
tspi->clk = devm_clk_get(&pdev->dev, "spi");
if (IS_ERR(tspi->clk)) {
dev_err(&pdev->dev, "can not get clock\n");
ret = PTR_ERR(tspi->clk);
goto exit_free_master;
}
tspi->rst = devm_reset_control_get_exclusive(&pdev->dev, "spi");
if (IS_ERR(tspi->rst)) {
dev_err(&pdev->dev, "can not get reset\n");
ret = PTR_ERR(tspi->rst);
goto exit_free_master;
}
tspi->max_buf_size = SPI_FIFO_DEPTH << 2;
tspi->dma_buf_size = DEFAULT_SPI_DMA_BUF_LEN;
ret = tegra_spi_init_dma_param(tspi, true);
if (ret < 0)
goto exit_free_master;
ret = tegra_spi_init_dma_param(tspi, false);
if (ret < 0)
goto exit_rx_dma_free;
tspi->max_buf_size = tspi->dma_buf_size;
init_completion(&tspi->tx_dma_complete);
init_completion(&tspi->rx_dma_complete);
init_completion(&tspi->xfer_completion);
pm_runtime_enable(&pdev->dev);
if (!pm_runtime_enabled(&pdev->dev)) {
ret = tegra_spi_runtime_resume(&pdev->dev);
if (ret)
goto exit_pm_disable;
}
ret = pm_runtime_get_sync(&pdev->dev);
if (ret < 0) {
dev_err(&pdev->dev, "pm runtime get failed, e = %d\n", ret);
pm_runtime_put_noidle(&pdev->dev);
goto exit_pm_disable;
}
reset_control_assert(tspi->rst);
udelay(2);
reset_control_deassert(tspi->rst);
tspi->def_command1_reg = SPI_M_S;
tegra_spi_writel(tspi, tspi->def_command1_reg, SPI_COMMAND1);
tspi->spi_cs_timing1 = tegra_spi_readl(tspi, SPI_CS_TIMING1);
tspi->spi_cs_timing2 = tegra_spi_readl(tspi, SPI_CS_TIMING2);
tspi->def_command2_reg = tegra_spi_readl(tspi, SPI_COMMAND2);
tspi->last_used_cs = master->num_chipselect + 1;
pm_runtime_put(&pdev->dev);
ret = request_threaded_irq(tspi->irq, tegra_spi_isr,
tegra_spi_isr_thread, IRQF_ONESHOT,
dev_name(&pdev->dev), tspi);
if (ret < 0) {
dev_err(&pdev->dev, "Failed to register ISR for IRQ %d\n",
tspi->irq);
goto exit_pm_disable;
}
master->dev.of_node = pdev->dev.of_node;
ret = devm_spi_register_master(&pdev->dev, master);
if (ret < 0) {
dev_err(&pdev->dev, "can not register to master err %d\n", ret);
goto exit_free_irq;
}
return ret;
exit_free_irq:
free_irq(spi_irq, tspi);
exit_pm_disable:
pm_runtime_disable(&pdev->dev);
if (!pm_runtime_status_suspended(&pdev->dev))
tegra_spi_runtime_suspend(&pdev->dev);
tegra_spi_deinit_dma_param(tspi, false);
exit_rx_dma_free:
tegra_spi_deinit_dma_param(tspi, true);
exit_free_master:
spi_master_put(master);
return ret;
}
static int tegra_spi_remove(struct platform_device *pdev)
{
struct spi_master *master = platform_get_drvdata(pdev);
struct tegra_spi_data *tspi = spi_master_get_devdata(master);
free_irq(tspi->irq, tspi);
if (tspi->tx_dma_chan)
tegra_spi_deinit_dma_param(tspi, false);
if (tspi->rx_dma_chan)
tegra_spi_deinit_dma_param(tspi, true);
pm_runtime_disable(&pdev->dev);
if (!pm_runtime_status_suspended(&pdev->dev))
tegra_spi_runtime_suspend(&pdev->dev);
return 0;
}
#ifdef CONFIG_PM_SLEEP
static int tegra_spi_suspend(struct device *dev)
{
struct spi_master *master = dev_get_drvdata(dev);
return spi_master_suspend(master);
}
static int tegra_spi_resume(struct device *dev)
{
struct spi_master *master = dev_get_drvdata(dev);
struct tegra_spi_data *tspi = spi_master_get_devdata(master);
int ret;
ret = pm_runtime_get_sync(dev);
if (ret < 0) {
pm_runtime_put_noidle(dev);
dev_err(dev, "pm runtime failed, e = %d\n", ret);
return ret;
}
tegra_spi_writel(tspi, tspi->command1_reg, SPI_COMMAND1);
tegra_spi_writel(tspi, tspi->def_command2_reg, SPI_COMMAND2);
tspi->last_used_cs = master->num_chipselect + 1;
pm_runtime_put(dev);
return spi_master_resume(master);
}
#endif
static int tegra_spi_runtime_suspend(struct device *dev)
{
struct spi_master *master = dev_get_drvdata(dev);
struct tegra_spi_data *tspi = spi_master_get_devdata(master);
/* Flush all write which are in PPSB queue by reading back */
tegra_spi_readl(tspi, SPI_COMMAND1);
clk_disable_unprepare(tspi->clk);
return 0;
}
static int tegra_spi_runtime_resume(struct device *dev)
{
struct spi_master *master = dev_get_drvdata(dev);
struct tegra_spi_data *tspi = spi_master_get_devdata(master);
int ret;
ret = clk_prepare_enable(tspi->clk);
if (ret < 0) {
dev_err(tspi->dev, "clk_prepare failed: %d\n", ret);
return ret;
}
return 0;
}
static const struct dev_pm_ops tegra_spi_pm_ops = {
SET_RUNTIME_PM_OPS(tegra_spi_runtime_suspend,
tegra_spi_runtime_resume, NULL)
SET_SYSTEM_SLEEP_PM_OPS(tegra_spi_suspend, tegra_spi_resume)
};
static struct platform_driver tegra_spi_driver = {
.driver = {
.name = "spi-tegra114",
.pm = &tegra_spi_pm_ops,
.of_match_table = tegra_spi_of_match,
},
.probe = tegra_spi_probe,
.remove = tegra_spi_remove,
};
module_platform_driver(tegra_spi_driver);
MODULE_ALIAS("platform:spi-tegra114");
MODULE_DESCRIPTION("NVIDIA Tegra114 SPI Controller Driver");
MODULE_AUTHOR("Laxman Dewangan <ldewangan@nvidia.com>");
MODULE_LICENSE("GPL v2");