867 lines
22 KiB
C
867 lines
22 KiB
C
/*
|
|
* This file contains ioremap and related functions for 64-bit machines.
|
|
*
|
|
* Derived from arch/ppc64/mm/init.c
|
|
* Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
|
|
*
|
|
* Modifications by Paul Mackerras (PowerMac) (paulus@samba.org)
|
|
* and Cort Dougan (PReP) (cort@cs.nmt.edu)
|
|
* Copyright (C) 1996 Paul Mackerras
|
|
*
|
|
* Derived from "arch/i386/mm/init.c"
|
|
* Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
|
|
*
|
|
* Dave Engebretsen <engebret@us.ibm.com>
|
|
* Rework for PPC64 port.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version
|
|
* 2 of the License, or (at your option) any later version.
|
|
*
|
|
*/
|
|
|
|
#include <linux/signal.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/string.h>
|
|
#include <linux/export.h>
|
|
#include <linux/types.h>
|
|
#include <linux/mman.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/swap.h>
|
|
#include <linux/stddef.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/memblock.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/hugetlb.h>
|
|
|
|
#include <asm/pgalloc.h>
|
|
#include <asm/page.h>
|
|
#include <asm/prom.h>
|
|
#include <asm/io.h>
|
|
#include <asm/mmu_context.h>
|
|
#include <asm/pgtable.h>
|
|
#include <asm/mmu.h>
|
|
#include <asm/smp.h>
|
|
#include <asm/machdep.h>
|
|
#include <asm/tlb.h>
|
|
#include <asm/processor.h>
|
|
#include <asm/cputable.h>
|
|
#include <asm/sections.h>
|
|
#include <asm/firmware.h>
|
|
#include <asm/dma.h>
|
|
|
|
#include "mmu_decl.h"
|
|
|
|
#define CREATE_TRACE_POINTS
|
|
#include <trace/events/thp.h>
|
|
|
|
/* Some sanity checking */
|
|
#if TASK_SIZE_USER64 > PGTABLE_RANGE
|
|
#error TASK_SIZE_USER64 exceeds pagetable range
|
|
#endif
|
|
|
|
#ifdef CONFIG_PPC_STD_MMU_64
|
|
#if TASK_SIZE_USER64 > (1UL << (ESID_BITS + SID_SHIFT))
|
|
#error TASK_SIZE_USER64 exceeds user VSID range
|
|
#endif
|
|
#endif
|
|
|
|
unsigned long ioremap_bot = IOREMAP_BASE;
|
|
|
|
#ifdef CONFIG_PPC_MMU_NOHASH
|
|
static __ref void *early_alloc_pgtable(unsigned long size)
|
|
{
|
|
void *pt;
|
|
|
|
pt = __va(memblock_alloc_base(size, size, __pa(MAX_DMA_ADDRESS)));
|
|
memset(pt, 0, size);
|
|
|
|
return pt;
|
|
}
|
|
#endif /* CONFIG_PPC_MMU_NOHASH */
|
|
|
|
/*
|
|
* map_kernel_page currently only called by __ioremap
|
|
* map_kernel_page adds an entry to the ioremap page table
|
|
* and adds an entry to the HPT, possibly bolting it
|
|
*/
|
|
int map_kernel_page(unsigned long ea, unsigned long pa, int flags)
|
|
{
|
|
pgd_t *pgdp;
|
|
pud_t *pudp;
|
|
pmd_t *pmdp;
|
|
pte_t *ptep;
|
|
|
|
if (slab_is_available()) {
|
|
pgdp = pgd_offset_k(ea);
|
|
pudp = pud_alloc(&init_mm, pgdp, ea);
|
|
if (!pudp)
|
|
return -ENOMEM;
|
|
pmdp = pmd_alloc(&init_mm, pudp, ea);
|
|
if (!pmdp)
|
|
return -ENOMEM;
|
|
ptep = pte_alloc_kernel(pmdp, ea);
|
|
if (!ptep)
|
|
return -ENOMEM;
|
|
set_pte_at(&init_mm, ea, ptep, pfn_pte(pa >> PAGE_SHIFT,
|
|
__pgprot(flags)));
|
|
} else {
|
|
#ifdef CONFIG_PPC_MMU_NOHASH
|
|
pgdp = pgd_offset_k(ea);
|
|
#ifdef PUD_TABLE_SIZE
|
|
if (pgd_none(*pgdp)) {
|
|
pudp = early_alloc_pgtable(PUD_TABLE_SIZE);
|
|
BUG_ON(pudp == NULL);
|
|
pgd_populate(&init_mm, pgdp, pudp);
|
|
}
|
|
#endif /* PUD_TABLE_SIZE */
|
|
pudp = pud_offset(pgdp, ea);
|
|
if (pud_none(*pudp)) {
|
|
pmdp = early_alloc_pgtable(PMD_TABLE_SIZE);
|
|
BUG_ON(pmdp == NULL);
|
|
pud_populate(&init_mm, pudp, pmdp);
|
|
}
|
|
pmdp = pmd_offset(pudp, ea);
|
|
if (!pmd_present(*pmdp)) {
|
|
ptep = early_alloc_pgtable(PAGE_SIZE);
|
|
BUG_ON(ptep == NULL);
|
|
pmd_populate_kernel(&init_mm, pmdp, ptep);
|
|
}
|
|
ptep = pte_offset_kernel(pmdp, ea);
|
|
set_pte_at(&init_mm, ea, ptep, pfn_pte(pa >> PAGE_SHIFT,
|
|
__pgprot(flags)));
|
|
#else /* CONFIG_PPC_MMU_NOHASH */
|
|
/*
|
|
* If the mm subsystem is not fully up, we cannot create a
|
|
* linux page table entry for this mapping. Simply bolt an
|
|
* entry in the hardware page table.
|
|
*
|
|
*/
|
|
if (htab_bolt_mapping(ea, ea + PAGE_SIZE, pa, flags,
|
|
mmu_io_psize, mmu_kernel_ssize)) {
|
|
printk(KERN_ERR "Failed to do bolted mapping IO "
|
|
"memory at %016lx !\n", pa);
|
|
return -ENOMEM;
|
|
}
|
|
#endif /* !CONFIG_PPC_MMU_NOHASH */
|
|
}
|
|
|
|
#ifdef CONFIG_PPC_BOOK3E_64
|
|
/*
|
|
* With hardware tablewalk, a sync is needed to ensure that
|
|
* subsequent accesses see the PTE we just wrote. Unlike userspace
|
|
* mappings, we can't tolerate spurious faults, so make sure
|
|
* the new PTE will be seen the first time.
|
|
*/
|
|
mb();
|
|
#else
|
|
smp_wmb();
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
|
|
/**
|
|
* __ioremap_at - Low level function to establish the page tables
|
|
* for an IO mapping
|
|
*/
|
|
void __iomem * __ioremap_at(phys_addr_t pa, void *ea, unsigned long size,
|
|
unsigned long flags)
|
|
{
|
|
unsigned long i;
|
|
|
|
/* Make sure we have the base flags */
|
|
if ((flags & _PAGE_PRESENT) == 0)
|
|
flags |= pgprot_val(PAGE_KERNEL);
|
|
|
|
/* Non-cacheable page cannot be coherent */
|
|
if (flags & _PAGE_NO_CACHE)
|
|
flags &= ~_PAGE_COHERENT;
|
|
|
|
/* We don't support the 4K PFN hack with ioremap */
|
|
if (flags & _PAGE_4K_PFN)
|
|
return NULL;
|
|
|
|
WARN_ON(pa & ~PAGE_MASK);
|
|
WARN_ON(((unsigned long)ea) & ~PAGE_MASK);
|
|
WARN_ON(size & ~PAGE_MASK);
|
|
|
|
for (i = 0; i < size; i += PAGE_SIZE)
|
|
if (map_kernel_page((unsigned long)ea+i, pa+i, flags))
|
|
return NULL;
|
|
|
|
return (void __iomem *)ea;
|
|
}
|
|
|
|
/**
|
|
* __iounmap_from - Low level function to tear down the page tables
|
|
* for an IO mapping. This is used for mappings that
|
|
* are manipulated manually, like partial unmapping of
|
|
* PCI IOs or ISA space.
|
|
*/
|
|
void __iounmap_at(void *ea, unsigned long size)
|
|
{
|
|
WARN_ON(((unsigned long)ea) & ~PAGE_MASK);
|
|
WARN_ON(size & ~PAGE_MASK);
|
|
|
|
unmap_kernel_range((unsigned long)ea, size);
|
|
}
|
|
|
|
void __iomem * __ioremap_caller(phys_addr_t addr, unsigned long size,
|
|
unsigned long flags, void *caller)
|
|
{
|
|
phys_addr_t paligned;
|
|
void __iomem *ret;
|
|
|
|
/*
|
|
* Choose an address to map it to.
|
|
* Once the imalloc system is running, we use it.
|
|
* Before that, we map using addresses going
|
|
* up from ioremap_bot. imalloc will use
|
|
* the addresses from ioremap_bot through
|
|
* IMALLOC_END
|
|
*
|
|
*/
|
|
paligned = addr & PAGE_MASK;
|
|
size = PAGE_ALIGN(addr + size) - paligned;
|
|
|
|
if ((size == 0) || (paligned == 0))
|
|
return NULL;
|
|
|
|
if (mem_init_done) {
|
|
struct vm_struct *area;
|
|
|
|
area = __get_vm_area_caller(size, VM_IOREMAP,
|
|
ioremap_bot, IOREMAP_END,
|
|
caller);
|
|
if (area == NULL)
|
|
return NULL;
|
|
|
|
area->phys_addr = paligned;
|
|
ret = __ioremap_at(paligned, area->addr, size, flags);
|
|
if (!ret)
|
|
vunmap(area->addr);
|
|
} else {
|
|
ret = __ioremap_at(paligned, (void *)ioremap_bot, size, flags);
|
|
if (ret)
|
|
ioremap_bot += size;
|
|
}
|
|
|
|
if (ret)
|
|
ret += addr & ~PAGE_MASK;
|
|
return ret;
|
|
}
|
|
|
|
void __iomem * __ioremap(phys_addr_t addr, unsigned long size,
|
|
unsigned long flags)
|
|
{
|
|
return __ioremap_caller(addr, size, flags, __builtin_return_address(0));
|
|
}
|
|
|
|
void __iomem * ioremap(phys_addr_t addr, unsigned long size)
|
|
{
|
|
unsigned long flags = _PAGE_NO_CACHE | _PAGE_GUARDED;
|
|
void *caller = __builtin_return_address(0);
|
|
|
|
if (ppc_md.ioremap)
|
|
return ppc_md.ioremap(addr, size, flags, caller);
|
|
return __ioremap_caller(addr, size, flags, caller);
|
|
}
|
|
|
|
void __iomem * ioremap_wc(phys_addr_t addr, unsigned long size)
|
|
{
|
|
unsigned long flags = _PAGE_NO_CACHE;
|
|
void *caller = __builtin_return_address(0);
|
|
|
|
if (ppc_md.ioremap)
|
|
return ppc_md.ioremap(addr, size, flags, caller);
|
|
return __ioremap_caller(addr, size, flags, caller);
|
|
}
|
|
|
|
void __iomem * ioremap_prot(phys_addr_t addr, unsigned long size,
|
|
unsigned long flags)
|
|
{
|
|
void *caller = __builtin_return_address(0);
|
|
|
|
/* writeable implies dirty for kernel addresses */
|
|
if (flags & _PAGE_RW)
|
|
flags |= _PAGE_DIRTY;
|
|
|
|
/* we don't want to let _PAGE_USER and _PAGE_EXEC leak out */
|
|
flags &= ~(_PAGE_USER | _PAGE_EXEC);
|
|
|
|
#ifdef _PAGE_BAP_SR
|
|
/* _PAGE_USER contains _PAGE_BAP_SR on BookE using the new PTE format
|
|
* which means that we just cleared supervisor access... oops ;-) This
|
|
* restores it
|
|
*/
|
|
flags |= _PAGE_BAP_SR;
|
|
#endif
|
|
|
|
if (ppc_md.ioremap)
|
|
return ppc_md.ioremap(addr, size, flags, caller);
|
|
return __ioremap_caller(addr, size, flags, caller);
|
|
}
|
|
|
|
|
|
/*
|
|
* Unmap an IO region and remove it from imalloc'd list.
|
|
* Access to IO memory should be serialized by driver.
|
|
*/
|
|
void __iounmap(volatile void __iomem *token)
|
|
{
|
|
void *addr;
|
|
|
|
if (!mem_init_done)
|
|
return;
|
|
|
|
addr = (void *) ((unsigned long __force)
|
|
PCI_FIX_ADDR(token) & PAGE_MASK);
|
|
if ((unsigned long)addr < ioremap_bot) {
|
|
printk(KERN_WARNING "Attempt to iounmap early bolted mapping"
|
|
" at 0x%p\n", addr);
|
|
return;
|
|
}
|
|
vunmap(addr);
|
|
}
|
|
|
|
void iounmap(volatile void __iomem *token)
|
|
{
|
|
if (ppc_md.iounmap)
|
|
ppc_md.iounmap(token);
|
|
else
|
|
__iounmap(token);
|
|
}
|
|
|
|
EXPORT_SYMBOL(ioremap);
|
|
EXPORT_SYMBOL(ioremap_wc);
|
|
EXPORT_SYMBOL(ioremap_prot);
|
|
EXPORT_SYMBOL(__ioremap);
|
|
EXPORT_SYMBOL(__ioremap_at);
|
|
EXPORT_SYMBOL(iounmap);
|
|
EXPORT_SYMBOL(__iounmap);
|
|
EXPORT_SYMBOL(__iounmap_at);
|
|
|
|
#ifndef __PAGETABLE_PUD_FOLDED
|
|
/* 4 level page table */
|
|
struct page *pgd_page(pgd_t pgd)
|
|
{
|
|
if (pgd_huge(pgd))
|
|
return pte_page(pgd_pte(pgd));
|
|
return virt_to_page(pgd_page_vaddr(pgd));
|
|
}
|
|
#endif
|
|
|
|
struct page *pud_page(pud_t pud)
|
|
{
|
|
if (pud_huge(pud))
|
|
return pte_page(pud_pte(pud));
|
|
return virt_to_page(pud_page_vaddr(pud));
|
|
}
|
|
|
|
/*
|
|
* For hugepage we have pfn in the pmd, we use PTE_RPN_SHIFT bits for flags
|
|
* For PTE page, we have a PTE_FRAG_SIZE (4K) aligned virtual address.
|
|
*/
|
|
struct page *pmd_page(pmd_t pmd)
|
|
{
|
|
if (pmd_trans_huge(pmd) || pmd_huge(pmd))
|
|
return pfn_to_page(pmd_pfn(pmd));
|
|
return virt_to_page(pmd_page_vaddr(pmd));
|
|
}
|
|
|
|
#ifdef CONFIG_PPC_64K_PAGES
|
|
static pte_t *get_from_cache(struct mm_struct *mm)
|
|
{
|
|
void *pte_frag, *ret;
|
|
|
|
spin_lock(&mm->page_table_lock);
|
|
ret = mm->context.pte_frag;
|
|
if (ret) {
|
|
pte_frag = ret + PTE_FRAG_SIZE;
|
|
/*
|
|
* If we have taken up all the fragments mark PTE page NULL
|
|
*/
|
|
if (((unsigned long)pte_frag & ~PAGE_MASK) == 0)
|
|
pte_frag = NULL;
|
|
mm->context.pte_frag = pte_frag;
|
|
}
|
|
spin_unlock(&mm->page_table_lock);
|
|
return (pte_t *)ret;
|
|
}
|
|
|
|
static pte_t *__alloc_for_cache(struct mm_struct *mm, int kernel)
|
|
{
|
|
void *ret = NULL;
|
|
struct page *page = alloc_page(GFP_KERNEL | __GFP_NOTRACK |
|
|
__GFP_REPEAT | __GFP_ZERO);
|
|
if (!page)
|
|
return NULL;
|
|
if (!kernel && !pgtable_page_ctor(page)) {
|
|
__free_page(page);
|
|
return NULL;
|
|
}
|
|
|
|
ret = page_address(page);
|
|
spin_lock(&mm->page_table_lock);
|
|
/*
|
|
* If we find pgtable_page set, we return
|
|
* the allocated page with single fragement
|
|
* count.
|
|
*/
|
|
if (likely(!mm->context.pte_frag)) {
|
|
atomic_set(&page->_count, PTE_FRAG_NR);
|
|
mm->context.pte_frag = ret + PTE_FRAG_SIZE;
|
|
}
|
|
spin_unlock(&mm->page_table_lock);
|
|
|
|
return (pte_t *)ret;
|
|
}
|
|
|
|
pte_t *page_table_alloc(struct mm_struct *mm, unsigned long vmaddr, int kernel)
|
|
{
|
|
pte_t *pte;
|
|
|
|
pte = get_from_cache(mm);
|
|
if (pte)
|
|
return pte;
|
|
|
|
return __alloc_for_cache(mm, kernel);
|
|
}
|
|
|
|
void page_table_free(struct mm_struct *mm, unsigned long *table, int kernel)
|
|
{
|
|
struct page *page = virt_to_page(table);
|
|
if (put_page_testzero(page)) {
|
|
if (!kernel)
|
|
pgtable_page_dtor(page);
|
|
free_hot_cold_page(page, 0);
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_SMP
|
|
static void page_table_free_rcu(void *table)
|
|
{
|
|
struct page *page = virt_to_page(table);
|
|
if (put_page_testzero(page)) {
|
|
pgtable_page_dtor(page);
|
|
free_hot_cold_page(page, 0);
|
|
}
|
|
}
|
|
|
|
void pgtable_free_tlb(struct mmu_gather *tlb, void *table, int shift)
|
|
{
|
|
unsigned long pgf = (unsigned long)table;
|
|
|
|
BUG_ON(shift > MAX_PGTABLE_INDEX_SIZE);
|
|
pgf |= shift;
|
|
tlb_remove_table(tlb, (void *)pgf);
|
|
}
|
|
|
|
void __tlb_remove_table(void *_table)
|
|
{
|
|
void *table = (void *)((unsigned long)_table & ~MAX_PGTABLE_INDEX_SIZE);
|
|
unsigned shift = (unsigned long)_table & MAX_PGTABLE_INDEX_SIZE;
|
|
|
|
if (!shift)
|
|
/* PTE page needs special handling */
|
|
page_table_free_rcu(table);
|
|
else {
|
|
BUG_ON(shift > MAX_PGTABLE_INDEX_SIZE);
|
|
kmem_cache_free(PGT_CACHE(shift), table);
|
|
}
|
|
}
|
|
#else
|
|
void pgtable_free_tlb(struct mmu_gather *tlb, void *table, int shift)
|
|
{
|
|
if (!shift) {
|
|
/* PTE page needs special handling */
|
|
struct page *page = virt_to_page(table);
|
|
if (put_page_testzero(page)) {
|
|
pgtable_page_dtor(page);
|
|
free_hot_cold_page(page, 0);
|
|
}
|
|
} else {
|
|
BUG_ON(shift > MAX_PGTABLE_INDEX_SIZE);
|
|
kmem_cache_free(PGT_CACHE(shift), table);
|
|
}
|
|
}
|
|
#endif
|
|
#endif /* CONFIG_PPC_64K_PAGES */
|
|
|
|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
|
|
|
|
/*
|
|
* This is called when relaxing access to a hugepage. It's also called in the page
|
|
* fault path when we don't hit any of the major fault cases, ie, a minor
|
|
* update of _PAGE_ACCESSED, _PAGE_DIRTY, etc... The generic code will have
|
|
* handled those two for us, we additionally deal with missing execute
|
|
* permission here on some processors
|
|
*/
|
|
int pmdp_set_access_flags(struct vm_area_struct *vma, unsigned long address,
|
|
pmd_t *pmdp, pmd_t entry, int dirty)
|
|
{
|
|
int changed;
|
|
#ifdef CONFIG_DEBUG_VM
|
|
WARN_ON(!pmd_trans_huge(*pmdp));
|
|
assert_spin_locked(&vma->vm_mm->page_table_lock);
|
|
#endif
|
|
changed = !pmd_same(*(pmdp), entry);
|
|
if (changed) {
|
|
__ptep_set_access_flags(pmdp_ptep(pmdp), pmd_pte(entry));
|
|
/*
|
|
* Since we are not supporting SW TLB systems, we don't
|
|
* have any thing similar to flush_tlb_page_nohash()
|
|
*/
|
|
}
|
|
return changed;
|
|
}
|
|
|
|
unsigned long pmd_hugepage_update(struct mm_struct *mm, unsigned long addr,
|
|
pmd_t *pmdp, unsigned long clr,
|
|
unsigned long set)
|
|
{
|
|
|
|
unsigned long old, tmp;
|
|
|
|
#ifdef CONFIG_DEBUG_VM
|
|
WARN_ON(!pmd_trans_huge(*pmdp));
|
|
assert_spin_locked(&mm->page_table_lock);
|
|
#endif
|
|
|
|
#ifdef PTE_ATOMIC_UPDATES
|
|
__asm__ __volatile__(
|
|
"1: ldarx %0,0,%3\n\
|
|
andi. %1,%0,%6\n\
|
|
bne- 1b \n\
|
|
andc %1,%0,%4 \n\
|
|
or %1,%1,%7\n\
|
|
stdcx. %1,0,%3 \n\
|
|
bne- 1b"
|
|
: "=&r" (old), "=&r" (tmp), "=m" (*pmdp)
|
|
: "r" (pmdp), "r" (clr), "m" (*pmdp), "i" (_PAGE_BUSY), "r" (set)
|
|
: "cc" );
|
|
#else
|
|
old = pmd_val(*pmdp);
|
|
*pmdp = __pmd((old & ~clr) | set);
|
|
#endif
|
|
trace_hugepage_update(addr, old, clr, set);
|
|
if (old & _PAGE_HASHPTE)
|
|
hpte_do_hugepage_flush(mm, addr, pmdp, old);
|
|
return old;
|
|
}
|
|
|
|
pmd_t pmdp_clear_flush(struct vm_area_struct *vma, unsigned long address,
|
|
pmd_t *pmdp)
|
|
{
|
|
pmd_t pmd;
|
|
|
|
VM_BUG_ON(address & ~HPAGE_PMD_MASK);
|
|
if (pmd_trans_huge(*pmdp)) {
|
|
pmd = pmdp_get_and_clear(vma->vm_mm, address, pmdp);
|
|
} else {
|
|
/*
|
|
* khugepaged calls this for normal pmd
|
|
*/
|
|
pmd = *pmdp;
|
|
pmd_clear(pmdp);
|
|
/*
|
|
* Wait for all pending hash_page to finish. This is needed
|
|
* in case of subpage collapse. When we collapse normal pages
|
|
* to hugepage, we first clear the pmd, then invalidate all
|
|
* the PTE entries. The assumption here is that any low level
|
|
* page fault will see a none pmd and take the slow path that
|
|
* will wait on mmap_sem. But we could very well be in a
|
|
* hash_page with local ptep pointer value. Such a hash page
|
|
* can result in adding new HPTE entries for normal subpages.
|
|
* That means we could be modifying the page content as we
|
|
* copy them to a huge page. So wait for parallel hash_page
|
|
* to finish before invalidating HPTE entries. We can do this
|
|
* by sending an IPI to all the cpus and executing a dummy
|
|
* function there.
|
|
*/
|
|
kick_all_cpus_sync();
|
|
/*
|
|
* Now invalidate the hpte entries in the range
|
|
* covered by pmd. This make sure we take a
|
|
* fault and will find the pmd as none, which will
|
|
* result in a major fault which takes mmap_sem and
|
|
* hence wait for collapse to complete. Without this
|
|
* the __collapse_huge_page_copy can result in copying
|
|
* the old content.
|
|
*/
|
|
flush_tlb_pmd_range(vma->vm_mm, &pmd, address);
|
|
}
|
|
return pmd;
|
|
}
|
|
|
|
int pmdp_test_and_clear_young(struct vm_area_struct *vma,
|
|
unsigned long address, pmd_t *pmdp)
|
|
{
|
|
return __pmdp_test_and_clear_young(vma->vm_mm, address, pmdp);
|
|
}
|
|
|
|
/*
|
|
* We currently remove entries from the hashtable regardless of whether
|
|
* the entry was young or dirty. The generic routines only flush if the
|
|
* entry was young or dirty which is not good enough.
|
|
*
|
|
* We should be more intelligent about this but for the moment we override
|
|
* these functions and force a tlb flush unconditionally
|
|
*/
|
|
int pmdp_clear_flush_young(struct vm_area_struct *vma,
|
|
unsigned long address, pmd_t *pmdp)
|
|
{
|
|
return __pmdp_test_and_clear_young(vma->vm_mm, address, pmdp);
|
|
}
|
|
|
|
/*
|
|
* We mark the pmd splitting and invalidate all the hpte
|
|
* entries for this hugepage.
|
|
*/
|
|
void pmdp_splitting_flush(struct vm_area_struct *vma,
|
|
unsigned long address, pmd_t *pmdp)
|
|
{
|
|
unsigned long old, tmp;
|
|
|
|
VM_BUG_ON(address & ~HPAGE_PMD_MASK);
|
|
|
|
#ifdef CONFIG_DEBUG_VM
|
|
WARN_ON(!pmd_trans_huge(*pmdp));
|
|
assert_spin_locked(&vma->vm_mm->page_table_lock);
|
|
#endif
|
|
|
|
#ifdef PTE_ATOMIC_UPDATES
|
|
|
|
__asm__ __volatile__(
|
|
"1: ldarx %0,0,%3\n\
|
|
andi. %1,%0,%6\n\
|
|
bne- 1b \n\
|
|
ori %1,%0,%4 \n\
|
|
stdcx. %1,0,%3 \n\
|
|
bne- 1b"
|
|
: "=&r" (old), "=&r" (tmp), "=m" (*pmdp)
|
|
: "r" (pmdp), "i" (_PAGE_SPLITTING), "m" (*pmdp), "i" (_PAGE_BUSY)
|
|
: "cc" );
|
|
#else
|
|
old = pmd_val(*pmdp);
|
|
*pmdp = __pmd(old | _PAGE_SPLITTING);
|
|
#endif
|
|
/*
|
|
* If we didn't had the splitting flag set, go and flush the
|
|
* HPTE entries.
|
|
*/
|
|
trace_hugepage_splitting(address, old);
|
|
if (!(old & _PAGE_SPLITTING)) {
|
|
/* We need to flush the hpte */
|
|
if (old & _PAGE_HASHPTE)
|
|
hpte_do_hugepage_flush(vma->vm_mm, address, pmdp, old);
|
|
}
|
|
/*
|
|
* This ensures that generic code that rely on IRQ disabling
|
|
* to prevent a parallel THP split work as expected.
|
|
*/
|
|
kick_all_cpus_sync();
|
|
}
|
|
|
|
/*
|
|
* We want to put the pgtable in pmd and use pgtable for tracking
|
|
* the base page size hptes
|
|
*/
|
|
void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
|
|
pgtable_t pgtable)
|
|
{
|
|
pgtable_t *pgtable_slot;
|
|
assert_spin_locked(&mm->page_table_lock);
|
|
/*
|
|
* we store the pgtable in the second half of PMD
|
|
*/
|
|
pgtable_slot = (pgtable_t *)pmdp + PTRS_PER_PMD;
|
|
*pgtable_slot = pgtable;
|
|
/*
|
|
* expose the deposited pgtable to other cpus.
|
|
* before we set the hugepage PTE at pmd level
|
|
* hash fault code looks at the deposted pgtable
|
|
* to store hash index values.
|
|
*/
|
|
smp_wmb();
|
|
}
|
|
|
|
pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp)
|
|
{
|
|
pgtable_t pgtable;
|
|
pgtable_t *pgtable_slot;
|
|
|
|
assert_spin_locked(&mm->page_table_lock);
|
|
pgtable_slot = (pgtable_t *)pmdp + PTRS_PER_PMD;
|
|
pgtable = *pgtable_slot;
|
|
/*
|
|
* Once we withdraw, mark the entry NULL.
|
|
*/
|
|
*pgtable_slot = NULL;
|
|
/*
|
|
* We store HPTE information in the deposited PTE fragment.
|
|
* zero out the content on withdraw.
|
|
*/
|
|
memset(pgtable, 0, PTE_FRAG_SIZE);
|
|
return pgtable;
|
|
}
|
|
|
|
/*
|
|
* set a new huge pmd. We should not be called for updating
|
|
* an existing pmd entry. That should go via pmd_hugepage_update.
|
|
*/
|
|
void set_pmd_at(struct mm_struct *mm, unsigned long addr,
|
|
pmd_t *pmdp, pmd_t pmd)
|
|
{
|
|
#ifdef CONFIG_DEBUG_VM
|
|
WARN_ON(pmd_val(*pmdp) & _PAGE_PRESENT);
|
|
assert_spin_locked(&mm->page_table_lock);
|
|
WARN_ON(!pmd_trans_huge(pmd));
|
|
#endif
|
|
trace_hugepage_set_pmd(addr, pmd);
|
|
return set_pte_at(mm, addr, pmdp_ptep(pmdp), pmd_pte(pmd));
|
|
}
|
|
|
|
void pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
|
|
pmd_t *pmdp)
|
|
{
|
|
pmd_hugepage_update(vma->vm_mm, address, pmdp, _PAGE_PRESENT, 0);
|
|
}
|
|
|
|
/*
|
|
* A linux hugepage PMD was changed and the corresponding hash table entries
|
|
* neesd to be flushed.
|
|
*/
|
|
void hpte_do_hugepage_flush(struct mm_struct *mm, unsigned long addr,
|
|
pmd_t *pmdp, unsigned long old_pmd)
|
|
{
|
|
int ssize;
|
|
unsigned int psize;
|
|
unsigned long vsid;
|
|
|
|
/* get the base page size,vsid and segment size */
|
|
#ifdef CONFIG_DEBUG_VM
|
|
psize = get_slice_psize(mm, addr);
|
|
BUG_ON(psize == MMU_PAGE_16M);
|
|
#endif
|
|
if (old_pmd & _PAGE_COMBO)
|
|
psize = MMU_PAGE_4K;
|
|
else
|
|
psize = MMU_PAGE_64K;
|
|
|
|
if (!is_kernel_addr(addr)) {
|
|
ssize = user_segment_size(addr);
|
|
vsid = get_vsid(mm->context.id, addr, ssize);
|
|
WARN_ON(vsid == 0);
|
|
} else {
|
|
vsid = get_kernel_vsid(addr, mmu_kernel_ssize);
|
|
ssize = mmu_kernel_ssize;
|
|
}
|
|
|
|
return flush_hash_hugepage(vsid, addr, pmdp, psize, ssize);
|
|
}
|
|
|
|
static pmd_t pmd_set_protbits(pmd_t pmd, pgprot_t pgprot)
|
|
{
|
|
pmd_val(pmd) |= pgprot_val(pgprot);
|
|
return pmd;
|
|
}
|
|
|
|
pmd_t pfn_pmd(unsigned long pfn, pgprot_t pgprot)
|
|
{
|
|
pmd_t pmd;
|
|
/*
|
|
* For a valid pte, we would have _PAGE_PRESENT or _PAGE_FILE always
|
|
* set. We use this to check THP page at pmd level.
|
|
* leaf pte for huge page, bottom two bits != 00
|
|
*/
|
|
pmd_val(pmd) = pfn << PTE_RPN_SHIFT;
|
|
pmd_val(pmd) |= _PAGE_THP_HUGE;
|
|
pmd = pmd_set_protbits(pmd, pgprot);
|
|
return pmd;
|
|
}
|
|
|
|
pmd_t mk_pmd(struct page *page, pgprot_t pgprot)
|
|
{
|
|
return pfn_pmd(page_to_pfn(page), pgprot);
|
|
}
|
|
|
|
pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
|
|
{
|
|
|
|
pmd_val(pmd) &= _HPAGE_CHG_MASK;
|
|
pmd = pmd_set_protbits(pmd, newprot);
|
|
return pmd;
|
|
}
|
|
|
|
/*
|
|
* This is called at the end of handling a user page fault, when the
|
|
* fault has been handled by updating a HUGE PMD entry in the linux page tables.
|
|
* We use it to preload an HPTE into the hash table corresponding to
|
|
* the updated linux HUGE PMD entry.
|
|
*/
|
|
void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
|
|
pmd_t *pmd)
|
|
{
|
|
return;
|
|
}
|
|
|
|
pmd_t pmdp_get_and_clear(struct mm_struct *mm,
|
|
unsigned long addr, pmd_t *pmdp)
|
|
{
|
|
pmd_t old_pmd;
|
|
pgtable_t pgtable;
|
|
unsigned long old;
|
|
pgtable_t *pgtable_slot;
|
|
|
|
old = pmd_hugepage_update(mm, addr, pmdp, ~0UL, 0);
|
|
old_pmd = __pmd(old);
|
|
/*
|
|
* We have pmd == none and we are holding page_table_lock.
|
|
* So we can safely go and clear the pgtable hash
|
|
* index info.
|
|
*/
|
|
pgtable_slot = (pgtable_t *)pmdp + PTRS_PER_PMD;
|
|
pgtable = *pgtable_slot;
|
|
/*
|
|
* Let's zero out old valid and hash index details
|
|
* hash fault look at them.
|
|
*/
|
|
memset(pgtable, 0, PTE_FRAG_SIZE);
|
|
return old_pmd;
|
|
}
|
|
|
|
int has_transparent_hugepage(void)
|
|
{
|
|
if (!mmu_has_feature(MMU_FTR_16M_PAGE))
|
|
return 0;
|
|
/*
|
|
* We support THP only if PMD_SIZE is 16MB.
|
|
*/
|
|
if (mmu_psize_defs[MMU_PAGE_16M].shift != PMD_SHIFT)
|
|
return 0;
|
|
/*
|
|
* We need to make sure that we support 16MB hugepage in a segement
|
|
* with base page size 64K or 4K. We only enable THP with a PAGE_SIZE
|
|
* of 64K.
|
|
*/
|
|
/*
|
|
* If we have 64K HPTE, we will be using that by default
|
|
*/
|
|
if (mmu_psize_defs[MMU_PAGE_64K].shift &&
|
|
(mmu_psize_defs[MMU_PAGE_64K].penc[MMU_PAGE_16M] == -1))
|
|
return 0;
|
|
/*
|
|
* Ok we only have 4K HPTE
|
|
*/
|
|
if (mmu_psize_defs[MMU_PAGE_4K].penc[MMU_PAGE_16M] == -1)
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
|