linux-sg2042/net/dsa/mv88e6xxx.c

523 lines
10 KiB
C

/*
* net/dsa/mv88e6xxx.c - Marvell 88e6xxx switch chip support
* Copyright (c) 2008 Marvell Semiconductor
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*/
#include <linux/list.h>
#include <linux/netdevice.h>
#include <linux/phy.h>
#include "dsa_priv.h"
#include "mv88e6xxx.h"
/*
* If the switch's ADDR[4:0] strap pins are strapped to zero, it will
* use all 32 SMI bus addresses on its SMI bus, and all switch registers
* will be directly accessible on some {device address,register address}
* pair. If the ADDR[4:0] pins are not strapped to zero, the switch
* will only respond to SMI transactions to that specific address, and
* an indirect addressing mechanism needs to be used to access its
* registers.
*/
static int mv88e6xxx_reg_wait_ready(struct mii_bus *bus, int sw_addr)
{
int ret;
int i;
for (i = 0; i < 16; i++) {
ret = mdiobus_read(bus, sw_addr, 0);
if (ret < 0)
return ret;
if ((ret & 0x8000) == 0)
return 0;
}
return -ETIMEDOUT;
}
int __mv88e6xxx_reg_read(struct mii_bus *bus, int sw_addr, int addr, int reg)
{
int ret;
if (sw_addr == 0)
return mdiobus_read(bus, addr, reg);
/*
* Wait for the bus to become free.
*/
ret = mv88e6xxx_reg_wait_ready(bus, sw_addr);
if (ret < 0)
return ret;
/*
* Transmit the read command.
*/
ret = mdiobus_write(bus, sw_addr, 0, 0x9800 | (addr << 5) | reg);
if (ret < 0)
return ret;
/*
* Wait for the read command to complete.
*/
ret = mv88e6xxx_reg_wait_ready(bus, sw_addr);
if (ret < 0)
return ret;
/*
* Read the data.
*/
ret = mdiobus_read(bus, sw_addr, 1);
if (ret < 0)
return ret;
return ret & 0xffff;
}
int mv88e6xxx_reg_read(struct dsa_switch *ds, int addr, int reg)
{
struct mv88e6xxx_priv_state *ps = (void *)(ds + 1);
int ret;
mutex_lock(&ps->smi_mutex);
ret = __mv88e6xxx_reg_read(ds->master_mii_bus,
ds->pd->sw_addr, addr, reg);
mutex_unlock(&ps->smi_mutex);
return ret;
}
int __mv88e6xxx_reg_write(struct mii_bus *bus, int sw_addr, int addr,
int reg, u16 val)
{
int ret;
if (sw_addr == 0)
return mdiobus_write(bus, addr, reg, val);
/*
* Wait for the bus to become free.
*/
ret = mv88e6xxx_reg_wait_ready(bus, sw_addr);
if (ret < 0)
return ret;
/*
* Transmit the data to write.
*/
ret = mdiobus_write(bus, sw_addr, 1, val);
if (ret < 0)
return ret;
/*
* Transmit the write command.
*/
ret = mdiobus_write(bus, sw_addr, 0, 0x9400 | (addr << 5) | reg);
if (ret < 0)
return ret;
/*
* Wait for the write command to complete.
*/
ret = mv88e6xxx_reg_wait_ready(bus, sw_addr);
if (ret < 0)
return ret;
return 0;
}
int mv88e6xxx_reg_write(struct dsa_switch *ds, int addr, int reg, u16 val)
{
struct mv88e6xxx_priv_state *ps = (void *)(ds + 1);
int ret;
mutex_lock(&ps->smi_mutex);
ret = __mv88e6xxx_reg_write(ds->master_mii_bus,
ds->pd->sw_addr, addr, reg, val);
mutex_unlock(&ps->smi_mutex);
return ret;
}
int mv88e6xxx_config_prio(struct dsa_switch *ds)
{
/*
* Configure the IP ToS mapping registers.
*/
REG_WRITE(REG_GLOBAL, 0x10, 0x0000);
REG_WRITE(REG_GLOBAL, 0x11, 0x0000);
REG_WRITE(REG_GLOBAL, 0x12, 0x5555);
REG_WRITE(REG_GLOBAL, 0x13, 0x5555);
REG_WRITE(REG_GLOBAL, 0x14, 0xaaaa);
REG_WRITE(REG_GLOBAL, 0x15, 0xaaaa);
REG_WRITE(REG_GLOBAL, 0x16, 0xffff);
REG_WRITE(REG_GLOBAL, 0x17, 0xffff);
/*
* Configure the IEEE 802.1p priority mapping register.
*/
REG_WRITE(REG_GLOBAL, 0x18, 0xfa41);
return 0;
}
int mv88e6xxx_set_addr_direct(struct dsa_switch *ds, u8 *addr)
{
REG_WRITE(REG_GLOBAL, 0x01, (addr[0] << 8) | addr[1]);
REG_WRITE(REG_GLOBAL, 0x02, (addr[2] << 8) | addr[3]);
REG_WRITE(REG_GLOBAL, 0x03, (addr[4] << 8) | addr[5]);
return 0;
}
int mv88e6xxx_set_addr_indirect(struct dsa_switch *ds, u8 *addr)
{
int i;
int ret;
for (i = 0; i < 6; i++) {
int j;
/*
* Write the MAC address byte.
*/
REG_WRITE(REG_GLOBAL2, 0x0d, 0x8000 | (i << 8) | addr[i]);
/*
* Wait for the write to complete.
*/
for (j = 0; j < 16; j++) {
ret = REG_READ(REG_GLOBAL2, 0x0d);
if ((ret & 0x8000) == 0)
break;
}
if (j == 16)
return -ETIMEDOUT;
}
return 0;
}
int mv88e6xxx_phy_read(struct dsa_switch *ds, int addr, int regnum)
{
if (addr >= 0)
return mv88e6xxx_reg_read(ds, addr, regnum);
return 0xffff;
}
int mv88e6xxx_phy_write(struct dsa_switch *ds, int addr, int regnum, u16 val)
{
if (addr >= 0)
return mv88e6xxx_reg_write(ds, addr, regnum, val);
return 0;
}
#ifdef CONFIG_NET_DSA_MV88E6XXX_NEED_PPU
static int mv88e6xxx_ppu_disable(struct dsa_switch *ds)
{
int ret;
int i;
ret = REG_READ(REG_GLOBAL, 0x04);
REG_WRITE(REG_GLOBAL, 0x04, ret & ~0x4000);
for (i = 0; i < 1000; i++) {
ret = REG_READ(REG_GLOBAL, 0x00);
msleep(1);
if ((ret & 0xc000) != 0xc000)
return 0;
}
return -ETIMEDOUT;
}
static int mv88e6xxx_ppu_enable(struct dsa_switch *ds)
{
int ret;
int i;
ret = REG_READ(REG_GLOBAL, 0x04);
REG_WRITE(REG_GLOBAL, 0x04, ret | 0x4000);
for (i = 0; i < 1000; i++) {
ret = REG_READ(REG_GLOBAL, 0x00);
msleep(1);
if ((ret & 0xc000) == 0xc000)
return 0;
}
return -ETIMEDOUT;
}
static void mv88e6xxx_ppu_reenable_work(struct work_struct *ugly)
{
struct mv88e6xxx_priv_state *ps;
ps = container_of(ugly, struct mv88e6xxx_priv_state, ppu_work);
if (mutex_trylock(&ps->ppu_mutex)) {
struct dsa_switch *ds = ((struct dsa_switch *)ps) - 1;
if (mv88e6xxx_ppu_enable(ds) == 0)
ps->ppu_disabled = 0;
mutex_unlock(&ps->ppu_mutex);
}
}
static void mv88e6xxx_ppu_reenable_timer(unsigned long _ps)
{
struct mv88e6xxx_priv_state *ps = (void *)_ps;
schedule_work(&ps->ppu_work);
}
static int mv88e6xxx_ppu_access_get(struct dsa_switch *ds)
{
struct mv88e6xxx_priv_state *ps = (void *)(ds + 1);
int ret;
mutex_lock(&ps->ppu_mutex);
/*
* If the PHY polling unit is enabled, disable it so that
* we can access the PHY registers. If it was already
* disabled, cancel the timer that is going to re-enable
* it.
*/
if (!ps->ppu_disabled) {
ret = mv88e6xxx_ppu_disable(ds);
if (ret < 0) {
mutex_unlock(&ps->ppu_mutex);
return ret;
}
ps->ppu_disabled = 1;
} else {
del_timer(&ps->ppu_timer);
ret = 0;
}
return ret;
}
static void mv88e6xxx_ppu_access_put(struct dsa_switch *ds)
{
struct mv88e6xxx_priv_state *ps = (void *)(ds + 1);
/*
* Schedule a timer to re-enable the PHY polling unit.
*/
mod_timer(&ps->ppu_timer, jiffies + msecs_to_jiffies(10));
mutex_unlock(&ps->ppu_mutex);
}
void mv88e6xxx_ppu_state_init(struct dsa_switch *ds)
{
struct mv88e6xxx_priv_state *ps = (void *)(ds + 1);
mutex_init(&ps->ppu_mutex);
INIT_WORK(&ps->ppu_work, mv88e6xxx_ppu_reenable_work);
init_timer(&ps->ppu_timer);
ps->ppu_timer.data = (unsigned long)ps;
ps->ppu_timer.function = mv88e6xxx_ppu_reenable_timer;
}
int mv88e6xxx_phy_read_ppu(struct dsa_switch *ds, int addr, int regnum)
{
int ret;
ret = mv88e6xxx_ppu_access_get(ds);
if (ret >= 0) {
ret = mv88e6xxx_reg_read(ds, addr, regnum);
mv88e6xxx_ppu_access_put(ds);
}
return ret;
}
int mv88e6xxx_phy_write_ppu(struct dsa_switch *ds, int addr,
int regnum, u16 val)
{
int ret;
ret = mv88e6xxx_ppu_access_get(ds);
if (ret >= 0) {
ret = mv88e6xxx_reg_write(ds, addr, regnum, val);
mv88e6xxx_ppu_access_put(ds);
}
return ret;
}
#endif
void mv88e6xxx_poll_link(struct dsa_switch *ds)
{
int i;
for (i = 0; i < DSA_MAX_PORTS; i++) {
struct net_device *dev;
int port_status;
int link;
int speed;
int duplex;
int fc;
dev = ds->ports[i];
if (dev == NULL)
continue;
link = 0;
if (dev->flags & IFF_UP) {
port_status = mv88e6xxx_reg_read(ds, REG_PORT(i), 0x00);
if (port_status < 0)
continue;
link = !!(port_status & 0x0800);
}
if (!link) {
if (netif_carrier_ok(dev)) {
printk(KERN_INFO "%s: link down\n", dev->name);
netif_carrier_off(dev);
}
continue;
}
switch (port_status & 0x0300) {
case 0x0000:
speed = 10;
break;
case 0x0100:
speed = 100;
break;
case 0x0200:
speed = 1000;
break;
default:
speed = -1;
break;
}
duplex = (port_status & 0x0400) ? 1 : 0;
fc = (port_status & 0x8000) ? 1 : 0;
if (!netif_carrier_ok(dev)) {
printk(KERN_INFO "%s: link up, %d Mb/s, %s duplex, "
"flow control %sabled\n", dev->name,
speed, duplex ? "full" : "half",
fc ? "en" : "dis");
netif_carrier_on(dev);
}
}
}
static int mv88e6xxx_stats_wait(struct dsa_switch *ds)
{
int ret;
int i;
for (i = 0; i < 10; i++) {
ret = REG_READ(REG_GLOBAL2, 0x1d);
if ((ret & 0x8000) == 0)
return 0;
}
return -ETIMEDOUT;
}
static int mv88e6xxx_stats_snapshot(struct dsa_switch *ds, int port)
{
int ret;
/*
* Snapshot the hardware statistics counters for this port.
*/
REG_WRITE(REG_GLOBAL, 0x1d, 0xdc00 | port);
/*
* Wait for the snapshotting to complete.
*/
ret = mv88e6xxx_stats_wait(ds);
if (ret < 0)
return ret;
return 0;
}
static void mv88e6xxx_stats_read(struct dsa_switch *ds, int stat, u32 *val)
{
u32 _val;
int ret;
*val = 0;
ret = mv88e6xxx_reg_write(ds, REG_GLOBAL, 0x1d, 0xcc00 | stat);
if (ret < 0)
return;
ret = mv88e6xxx_stats_wait(ds);
if (ret < 0)
return;
ret = mv88e6xxx_reg_read(ds, REG_GLOBAL, 0x1e);
if (ret < 0)
return;
_val = ret << 16;
ret = mv88e6xxx_reg_read(ds, REG_GLOBAL, 0x1f);
if (ret < 0)
return;
*val = _val | ret;
}
void mv88e6xxx_get_strings(struct dsa_switch *ds,
int nr_stats, struct mv88e6xxx_hw_stat *stats,
int port, uint8_t *data)
{
int i;
for (i = 0; i < nr_stats; i++) {
memcpy(data + i * ETH_GSTRING_LEN,
stats[i].string, ETH_GSTRING_LEN);
}
}
void mv88e6xxx_get_ethtool_stats(struct dsa_switch *ds,
int nr_stats, struct mv88e6xxx_hw_stat *stats,
int port, uint64_t *data)
{
struct mv88e6xxx_priv_state *ps = (void *)(ds + 1);
int ret;
int i;
mutex_lock(&ps->stats_mutex);
ret = mv88e6xxx_stats_snapshot(ds, port);
if (ret < 0) {
mutex_unlock(&ps->stats_mutex);
return;
}
/*
* Read each of the counters.
*/
for (i = 0; i < nr_stats; i++) {
struct mv88e6xxx_hw_stat *s = stats + i;
u32 low;
u32 high;
mv88e6xxx_stats_read(ds, s->reg, &low);
if (s->sizeof_stat == 8)
mv88e6xxx_stats_read(ds, s->reg + 1, &high);
else
high = 0;
data[i] = (((u64)high) << 32) | low;
}
mutex_unlock(&ps->stats_mutex);
}