320 lines
8.7 KiB
C
320 lines
8.7 KiB
C
#ifndef _ASM_X86_MSR_H
|
|
#define _ASM_X86_MSR_H
|
|
|
|
#include "msr-index.h"
|
|
|
|
#ifndef __ASSEMBLY__
|
|
|
|
#include <asm/asm.h>
|
|
#include <asm/errno.h>
|
|
#include <asm/cpumask.h>
|
|
#include <uapi/asm/msr.h>
|
|
|
|
struct msr {
|
|
union {
|
|
struct {
|
|
u32 l;
|
|
u32 h;
|
|
};
|
|
u64 q;
|
|
};
|
|
};
|
|
|
|
struct msr_info {
|
|
u32 msr_no;
|
|
struct msr reg;
|
|
struct msr *msrs;
|
|
int err;
|
|
};
|
|
|
|
struct msr_regs_info {
|
|
u32 *regs;
|
|
int err;
|
|
};
|
|
|
|
static inline unsigned long long native_read_tscp(unsigned int *aux)
|
|
{
|
|
unsigned long low, high;
|
|
asm volatile(".byte 0x0f,0x01,0xf9"
|
|
: "=a" (low), "=d" (high), "=c" (*aux));
|
|
return low | ((u64)high << 32);
|
|
}
|
|
|
|
/*
|
|
* both i386 and x86_64 returns 64-bit value in edx:eax, but gcc's "A"
|
|
* constraint has different meanings. For i386, "A" means exactly
|
|
* edx:eax, while for x86_64 it doesn't mean rdx:rax or edx:eax. Instead,
|
|
* it means rax *or* rdx.
|
|
*/
|
|
#ifdef CONFIG_X86_64
|
|
/* Using 64-bit values saves one instruction clearing the high half of low */
|
|
#define DECLARE_ARGS(val, low, high) unsigned long low, high
|
|
#define EAX_EDX_VAL(val, low, high) ((low) | (high) << 32)
|
|
#define EAX_EDX_RET(val, low, high) "=a" (low), "=d" (high)
|
|
#else
|
|
#define DECLARE_ARGS(val, low, high) unsigned long long val
|
|
#define EAX_EDX_VAL(val, low, high) (val)
|
|
#define EAX_EDX_RET(val, low, high) "=A" (val)
|
|
#endif
|
|
|
|
static inline unsigned long long native_read_msr(unsigned int msr)
|
|
{
|
|
DECLARE_ARGS(val, low, high);
|
|
|
|
asm volatile("rdmsr" : EAX_EDX_RET(val, low, high) : "c" (msr));
|
|
return EAX_EDX_VAL(val, low, high);
|
|
}
|
|
|
|
static inline unsigned long long native_read_msr_safe(unsigned int msr,
|
|
int *err)
|
|
{
|
|
DECLARE_ARGS(val, low, high);
|
|
|
|
asm volatile("2: rdmsr ; xor %[err],%[err]\n"
|
|
"1:\n\t"
|
|
".section .fixup,\"ax\"\n\t"
|
|
"3: mov %[fault],%[err] ; jmp 1b\n\t"
|
|
".previous\n\t"
|
|
_ASM_EXTABLE(2b, 3b)
|
|
: [err] "=r" (*err), EAX_EDX_RET(val, low, high)
|
|
: "c" (msr), [fault] "i" (-EIO));
|
|
return EAX_EDX_VAL(val, low, high);
|
|
}
|
|
|
|
static inline void native_write_msr(unsigned int msr,
|
|
unsigned low, unsigned high)
|
|
{
|
|
asm volatile("wrmsr" : : "c" (msr), "a"(low), "d" (high) : "memory");
|
|
}
|
|
|
|
/* Can be uninlined because referenced by paravirt */
|
|
notrace static inline int native_write_msr_safe(unsigned int msr,
|
|
unsigned low, unsigned high)
|
|
{
|
|
int err;
|
|
asm volatile("2: wrmsr ; xor %[err],%[err]\n"
|
|
"1:\n\t"
|
|
".section .fixup,\"ax\"\n\t"
|
|
"3: mov %[fault],%[err] ; jmp 1b\n\t"
|
|
".previous\n\t"
|
|
_ASM_EXTABLE(2b, 3b)
|
|
: [err] "=a" (err)
|
|
: "c" (msr), "0" (low), "d" (high),
|
|
[fault] "i" (-EIO)
|
|
: "memory");
|
|
return err;
|
|
}
|
|
|
|
extern int rdmsr_safe_regs(u32 regs[8]);
|
|
extern int wrmsr_safe_regs(u32 regs[8]);
|
|
|
|
/**
|
|
* rdtsc() - returns the current TSC without ordering constraints
|
|
*
|
|
* rdtsc() returns the result of RDTSC as a 64-bit integer. The
|
|
* only ordering constraint it supplies is the ordering implied by
|
|
* "asm volatile": it will put the RDTSC in the place you expect. The
|
|
* CPU can and will speculatively execute that RDTSC, though, so the
|
|
* results can be non-monotonic if compared on different CPUs.
|
|
*/
|
|
static __always_inline unsigned long long rdtsc(void)
|
|
{
|
|
DECLARE_ARGS(val, low, high);
|
|
|
|
asm volatile("rdtsc" : EAX_EDX_RET(val, low, high));
|
|
|
|
return EAX_EDX_VAL(val, low, high);
|
|
}
|
|
|
|
/**
|
|
* rdtsc_ordered() - read the current TSC in program order
|
|
*
|
|
* rdtsc_ordered() returns the result of RDTSC as a 64-bit integer.
|
|
* It is ordered like a load to a global in-memory counter. It should
|
|
* be impossible to observe non-monotonic rdtsc_unordered() behavior
|
|
* across multiple CPUs as long as the TSC is synced.
|
|
*/
|
|
static __always_inline unsigned long long rdtsc_ordered(void)
|
|
{
|
|
/*
|
|
* The RDTSC instruction is not ordered relative to memory
|
|
* access. The Intel SDM and the AMD APM are both vague on this
|
|
* point, but empirically an RDTSC instruction can be
|
|
* speculatively executed before prior loads. An RDTSC
|
|
* immediately after an appropriate barrier appears to be
|
|
* ordered as a normal load, that is, it provides the same
|
|
* ordering guarantees as reading from a global memory location
|
|
* that some other imaginary CPU is updating continuously with a
|
|
* time stamp.
|
|
*/
|
|
alternative_2("", "mfence", X86_FEATURE_MFENCE_RDTSC,
|
|
"lfence", X86_FEATURE_LFENCE_RDTSC);
|
|
return rdtsc();
|
|
}
|
|
|
|
/* Deprecated, keep it for a cycle for easier merging: */
|
|
#define rdtscll(now) do { (now) = rdtsc_ordered(); } while (0)
|
|
|
|
static inline unsigned long long native_read_pmc(int counter)
|
|
{
|
|
DECLARE_ARGS(val, low, high);
|
|
|
|
asm volatile("rdpmc" : EAX_EDX_RET(val, low, high) : "c" (counter));
|
|
return EAX_EDX_VAL(val, low, high);
|
|
}
|
|
|
|
#ifdef CONFIG_PARAVIRT
|
|
#include <asm/paravirt.h>
|
|
#else
|
|
#include <linux/errno.h>
|
|
/*
|
|
* Access to machine-specific registers (available on 586 and better only)
|
|
* Note: the rd* operations modify the parameters directly (without using
|
|
* pointer indirection), this allows gcc to optimize better
|
|
*/
|
|
|
|
#define rdmsr(msr, low, high) \
|
|
do { \
|
|
u64 __val = native_read_msr((msr)); \
|
|
(void)((low) = (u32)__val); \
|
|
(void)((high) = (u32)(__val >> 32)); \
|
|
} while (0)
|
|
|
|
static inline void wrmsr(unsigned msr, unsigned low, unsigned high)
|
|
{
|
|
native_write_msr(msr, low, high);
|
|
}
|
|
|
|
#define rdmsrl(msr, val) \
|
|
((val) = native_read_msr((msr)))
|
|
|
|
static inline void wrmsrl(unsigned msr, u64 val)
|
|
{
|
|
native_write_msr(msr, (u32)val, (u32)(val >> 32));
|
|
}
|
|
|
|
/* wrmsr with exception handling */
|
|
static inline int wrmsr_safe(unsigned msr, unsigned low, unsigned high)
|
|
{
|
|
return native_write_msr_safe(msr, low, high);
|
|
}
|
|
|
|
/* rdmsr with exception handling */
|
|
#define rdmsr_safe(msr, low, high) \
|
|
({ \
|
|
int __err; \
|
|
u64 __val = native_read_msr_safe((msr), &__err); \
|
|
(*low) = (u32)__val; \
|
|
(*high) = (u32)(__val >> 32); \
|
|
__err; \
|
|
})
|
|
|
|
static inline int rdmsrl_safe(unsigned msr, unsigned long long *p)
|
|
{
|
|
int err;
|
|
|
|
*p = native_read_msr_safe(msr, &err);
|
|
return err;
|
|
}
|
|
|
|
#define rdpmc(counter, low, high) \
|
|
do { \
|
|
u64 _l = native_read_pmc((counter)); \
|
|
(low) = (u32)_l; \
|
|
(high) = (u32)(_l >> 32); \
|
|
} while (0)
|
|
|
|
#define rdpmcl(counter, val) ((val) = native_read_pmc(counter))
|
|
|
|
#endif /* !CONFIG_PARAVIRT */
|
|
|
|
/*
|
|
* 64-bit version of wrmsr_safe():
|
|
*/
|
|
static inline int wrmsrl_safe(u32 msr, u64 val)
|
|
{
|
|
return wrmsr_safe(msr, (u32)val, (u32)(val >> 32));
|
|
}
|
|
|
|
#define write_tsc(low, high) wrmsr(MSR_IA32_TSC, (low), (high))
|
|
|
|
#define write_rdtscp_aux(val) wrmsr(MSR_TSC_AUX, (val), 0)
|
|
|
|
struct msr *msrs_alloc(void);
|
|
void msrs_free(struct msr *msrs);
|
|
int msr_set_bit(u32 msr, u8 bit);
|
|
int msr_clear_bit(u32 msr, u8 bit);
|
|
|
|
#ifdef CONFIG_SMP
|
|
int rdmsr_on_cpu(unsigned int cpu, u32 msr_no, u32 *l, u32 *h);
|
|
int wrmsr_on_cpu(unsigned int cpu, u32 msr_no, u32 l, u32 h);
|
|
int rdmsrl_on_cpu(unsigned int cpu, u32 msr_no, u64 *q);
|
|
int wrmsrl_on_cpu(unsigned int cpu, u32 msr_no, u64 q);
|
|
void rdmsr_on_cpus(const struct cpumask *mask, u32 msr_no, struct msr *msrs);
|
|
void wrmsr_on_cpus(const struct cpumask *mask, u32 msr_no, struct msr *msrs);
|
|
int rdmsr_safe_on_cpu(unsigned int cpu, u32 msr_no, u32 *l, u32 *h);
|
|
int wrmsr_safe_on_cpu(unsigned int cpu, u32 msr_no, u32 l, u32 h);
|
|
int rdmsrl_safe_on_cpu(unsigned int cpu, u32 msr_no, u64 *q);
|
|
int wrmsrl_safe_on_cpu(unsigned int cpu, u32 msr_no, u64 q);
|
|
int rdmsr_safe_regs_on_cpu(unsigned int cpu, u32 regs[8]);
|
|
int wrmsr_safe_regs_on_cpu(unsigned int cpu, u32 regs[8]);
|
|
#else /* CONFIG_SMP */
|
|
static inline int rdmsr_on_cpu(unsigned int cpu, u32 msr_no, u32 *l, u32 *h)
|
|
{
|
|
rdmsr(msr_no, *l, *h);
|
|
return 0;
|
|
}
|
|
static inline int wrmsr_on_cpu(unsigned int cpu, u32 msr_no, u32 l, u32 h)
|
|
{
|
|
wrmsr(msr_no, l, h);
|
|
return 0;
|
|
}
|
|
static inline int rdmsrl_on_cpu(unsigned int cpu, u32 msr_no, u64 *q)
|
|
{
|
|
rdmsrl(msr_no, *q);
|
|
return 0;
|
|
}
|
|
static inline int wrmsrl_on_cpu(unsigned int cpu, u32 msr_no, u64 q)
|
|
{
|
|
wrmsrl(msr_no, q);
|
|
return 0;
|
|
}
|
|
static inline void rdmsr_on_cpus(const struct cpumask *m, u32 msr_no,
|
|
struct msr *msrs)
|
|
{
|
|
rdmsr_on_cpu(0, msr_no, &(msrs[0].l), &(msrs[0].h));
|
|
}
|
|
static inline void wrmsr_on_cpus(const struct cpumask *m, u32 msr_no,
|
|
struct msr *msrs)
|
|
{
|
|
wrmsr_on_cpu(0, msr_no, msrs[0].l, msrs[0].h);
|
|
}
|
|
static inline int rdmsr_safe_on_cpu(unsigned int cpu, u32 msr_no,
|
|
u32 *l, u32 *h)
|
|
{
|
|
return rdmsr_safe(msr_no, l, h);
|
|
}
|
|
static inline int wrmsr_safe_on_cpu(unsigned int cpu, u32 msr_no, u32 l, u32 h)
|
|
{
|
|
return wrmsr_safe(msr_no, l, h);
|
|
}
|
|
static inline int rdmsrl_safe_on_cpu(unsigned int cpu, u32 msr_no, u64 *q)
|
|
{
|
|
return rdmsrl_safe(msr_no, q);
|
|
}
|
|
static inline int wrmsrl_safe_on_cpu(unsigned int cpu, u32 msr_no, u64 q)
|
|
{
|
|
return wrmsrl_safe(msr_no, q);
|
|
}
|
|
static inline int rdmsr_safe_regs_on_cpu(unsigned int cpu, u32 regs[8])
|
|
{
|
|
return rdmsr_safe_regs(regs);
|
|
}
|
|
static inline int wrmsr_safe_regs_on_cpu(unsigned int cpu, u32 regs[8])
|
|
{
|
|
return wrmsr_safe_regs(regs);
|
|
}
|
|
#endif /* CONFIG_SMP */
|
|
#endif /* __ASSEMBLY__ */
|
|
#endif /* _ASM_X86_MSR_H */
|