linux-sg2042/drivers/media/i2c/ml86v7667.c

432 lines
11 KiB
C

/*
* OKI Semiconductor ML86V7667 video decoder driver
*
* Author: Vladimir Barinov <source@cogentembedded.com>
* Copyright (C) 2013 Cogent Embedded, Inc.
* Copyright (C) 2013 Renesas Solutions Corp.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*/
#include <linux/init.h>
#include <linux/module.h>
#include <linux/i2c.h>
#include <linux/slab.h>
#include <linux/videodev2.h>
#include <media/v4l2-subdev.h>
#include <media/v4l2-device.h>
#include <media/v4l2-ioctl.h>
#include <media/v4l2-ctrls.h>
#define DRV_NAME "ml86v7667"
/* Subaddresses */
#define MRA_REG 0x00 /* Mode Register A */
#define MRC_REG 0x02 /* Mode Register C */
#define LUMC_REG 0x0C /* Luminance Control */
#define CLC_REG 0x10 /* Contrast level control */
#define SSEPL_REG 0x11 /* Sync separation level */
#define CHRCA_REG 0x12 /* Chrominance Control A */
#define ACCC_REG 0x14 /* ACC Loop filter & Chrominance control */
#define ACCRC_REG 0x15 /* ACC Reference level control */
#define HUE_REG 0x16 /* Hue control */
#define ADC2_REG 0x1F /* ADC Register 2 */
#define PLLR1_REG 0x20 /* PLL Register 1 */
#define STATUS_REG 0x2C /* STATUS Register */
/* Mode Register A register bits */
#define MRA_OUTPUT_MODE_MASK (3 << 6)
#define MRA_ITUR_BT601 (1 << 6)
#define MRA_ITUR_BT656 (0 << 6)
#define MRA_INPUT_MODE_MASK (7 << 3)
#define MRA_PAL_BT601 (4 << 3)
#define MRA_NTSC_BT601 (0 << 3)
#define MRA_REGISTER_MODE (1 << 0)
/* Mode Register C register bits */
#define MRC_AUTOSELECT (1 << 7)
/* Luminance Control register bits */
#define LUMC_ONOFF_SHIFT 7
#define LUMC_ONOFF_MASK (1 << 7)
/* Contrast level control register bits */
#define CLC_CONTRAST_ONOFF (1 << 7)
#define CLC_CONTRAST_MASK 0x0F
/* Sync separation level register bits */
#define SSEPL_LUMINANCE_ONOFF (1 << 7)
#define SSEPL_LUMINANCE_MASK 0x7F
/* Chrominance Control A register bits */
#define CHRCA_MODE_SHIFT 6
#define CHRCA_MODE_MASK (1 << 6)
/* ACC Loop filter & Chrominance control register bits */
#define ACCC_CHROMA_CR_SHIFT 3
#define ACCC_CHROMA_CR_MASK (7 << 3)
#define ACCC_CHROMA_CB_SHIFT 0
#define ACCC_CHROMA_CB_MASK (7 << 0)
/* ACC Reference level control register bits */
#define ACCRC_CHROMA_MASK 0xfc
#define ACCRC_CHROMA_SHIFT 2
/* ADC Register 2 register bits */
#define ADC2_CLAMP_VOLTAGE_MASK (7 << 1)
#define ADC2_CLAMP_VOLTAGE(n) ((n & 7) << 1)
/* PLL Register 1 register bits */
#define PLLR1_FIXED_CLOCK (1 << 7)
/* STATUS Register register bits */
#define STATUS_HLOCK_DETECT (1 << 3)
#define STATUS_NTSCPAL (1 << 2)
struct ml86v7667_priv {
struct v4l2_subdev sd;
struct v4l2_ctrl_handler hdl;
v4l2_std_id std;
};
static inline struct ml86v7667_priv *to_ml86v7667(struct v4l2_subdev *subdev)
{
return container_of(subdev, struct ml86v7667_priv, sd);
}
static inline struct v4l2_subdev *to_sd(struct v4l2_ctrl *ctrl)
{
return &container_of(ctrl->handler, struct ml86v7667_priv, hdl)->sd;
}
static int ml86v7667_mask_set(struct i2c_client *client, const u8 reg,
const u8 mask, const u8 data)
{
int val = i2c_smbus_read_byte_data(client, reg);
if (val < 0)
return val;
val = (val & ~mask) | (data & mask);
return i2c_smbus_write_byte_data(client, reg, val);
}
static int ml86v7667_s_ctrl(struct v4l2_ctrl *ctrl)
{
struct v4l2_subdev *sd = to_sd(ctrl);
struct i2c_client *client = v4l2_get_subdevdata(sd);
int ret = 0;
switch (ctrl->id) {
case V4L2_CID_BRIGHTNESS:
ret = ml86v7667_mask_set(client, SSEPL_REG,
SSEPL_LUMINANCE_MASK, ctrl->val);
break;
case V4L2_CID_CONTRAST:
ret = ml86v7667_mask_set(client, CLC_REG,
CLC_CONTRAST_MASK, ctrl->val);
break;
case V4L2_CID_CHROMA_GAIN:
ret = ml86v7667_mask_set(client, ACCRC_REG, ACCRC_CHROMA_MASK,
ctrl->val << ACCRC_CHROMA_SHIFT);
break;
case V4L2_CID_HUE:
ret = ml86v7667_mask_set(client, HUE_REG, ~0, ctrl->val);
break;
case V4L2_CID_RED_BALANCE:
ret = ml86v7667_mask_set(client, ACCC_REG,
ACCC_CHROMA_CR_MASK,
ctrl->val << ACCC_CHROMA_CR_SHIFT);
break;
case V4L2_CID_BLUE_BALANCE:
ret = ml86v7667_mask_set(client, ACCC_REG,
ACCC_CHROMA_CB_MASK,
ctrl->val << ACCC_CHROMA_CB_SHIFT);
break;
case V4L2_CID_SHARPNESS:
ret = ml86v7667_mask_set(client, LUMC_REG,
LUMC_ONOFF_MASK,
ctrl->val << LUMC_ONOFF_SHIFT);
break;
case V4L2_CID_COLOR_KILLER:
ret = ml86v7667_mask_set(client, CHRCA_REG,
CHRCA_MODE_MASK,
ctrl->val << CHRCA_MODE_SHIFT);
break;
}
return 0;
}
static int ml86v7667_querystd(struct v4l2_subdev *sd, v4l2_std_id *std)
{
struct i2c_client *client = v4l2_get_subdevdata(sd);
int status;
status = i2c_smbus_read_byte_data(client, STATUS_REG);
if (status < 0)
return status;
if (!(status & STATUS_HLOCK_DETECT))
return V4L2_STD_UNKNOWN;
*std = status & STATUS_NTSCPAL ? V4L2_STD_625_50 : V4L2_STD_525_60;
return 0;
}
static int ml86v7667_g_input_status(struct v4l2_subdev *sd, u32 *status)
{
struct i2c_client *client = v4l2_get_subdevdata(sd);
int status_reg;
status_reg = i2c_smbus_read_byte_data(client, STATUS_REG);
if (status_reg < 0)
return status_reg;
*status = status_reg & STATUS_HLOCK_DETECT ? 0 : V4L2_IN_ST_NO_SIGNAL;
return 0;
}
static int ml86v7667_enum_mbus_fmt(struct v4l2_subdev *sd, unsigned int index,
enum v4l2_mbus_pixelcode *code)
{
if (index > 0)
return -EINVAL;
*code = V4L2_MBUS_FMT_YUYV8_2X8;
return 0;
}
static int ml86v7667_mbus_fmt(struct v4l2_subdev *sd,
struct v4l2_mbus_framefmt *fmt)
{
struct ml86v7667_priv *priv = to_ml86v7667(sd);
fmt->code = V4L2_MBUS_FMT_YUYV8_2X8;
fmt->colorspace = V4L2_COLORSPACE_SMPTE170M;
fmt->field = V4L2_FIELD_INTERLACED;
fmt->width = 720;
fmt->height = priv->std & V4L2_STD_525_60 ? 480 : 576;
return 0;
}
static int ml86v7667_g_mbus_config(struct v4l2_subdev *sd,
struct v4l2_mbus_config *cfg)
{
cfg->flags = V4L2_MBUS_MASTER | V4L2_MBUS_PCLK_SAMPLE_RISING |
V4L2_MBUS_DATA_ACTIVE_HIGH;
cfg->type = V4L2_MBUS_BT656;
return 0;
}
static int ml86v7667_s_std(struct v4l2_subdev *sd, v4l2_std_id std)
{
struct ml86v7667_priv *priv = to_ml86v7667(sd);
struct i2c_client *client = v4l2_get_subdevdata(&priv->sd);
int ret;
u8 mode;
/* PAL/NTSC ITU-R BT.601 input mode */
mode = std & V4L2_STD_525_60 ? MRA_NTSC_BT601 : MRA_PAL_BT601;
ret = ml86v7667_mask_set(client, MRA_REG, MRA_INPUT_MODE_MASK, mode);
if (ret < 0)
return ret;
priv->std = std;
return 0;
}
#ifdef CONFIG_VIDEO_ADV_DEBUG
static int ml86v7667_g_register(struct v4l2_subdev *sd,
struct v4l2_dbg_register *reg)
{
struct i2c_client *client = v4l2_get_subdevdata(sd);
int ret;
ret = i2c_smbus_read_byte_data(client, (u8)reg->reg);
if (ret < 0)
return ret;
reg->val = ret;
reg->size = sizeof(u8);
return 0;
}
static int ml86v7667_s_register(struct v4l2_subdev *sd,
const struct v4l2_dbg_register *reg)
{
struct i2c_client *client = v4l2_get_subdevdata(sd);
return i2c_smbus_write_byte_data(client, (u8)reg->reg, (u8)reg->val);
}
#endif
static const struct v4l2_ctrl_ops ml86v7667_ctrl_ops = {
.s_ctrl = ml86v7667_s_ctrl,
};
static struct v4l2_subdev_video_ops ml86v7667_subdev_video_ops = {
.querystd = ml86v7667_querystd,
.g_input_status = ml86v7667_g_input_status,
.enum_mbus_fmt = ml86v7667_enum_mbus_fmt,
.try_mbus_fmt = ml86v7667_mbus_fmt,
.g_mbus_fmt = ml86v7667_mbus_fmt,
.s_mbus_fmt = ml86v7667_mbus_fmt,
.g_mbus_config = ml86v7667_g_mbus_config,
};
static struct v4l2_subdev_core_ops ml86v7667_subdev_core_ops = {
.s_std = ml86v7667_s_std,
#ifdef CONFIG_VIDEO_ADV_DEBUG
.g_register = ml86v7667_g_register,
.s_register = ml86v7667_s_register,
#endif
};
static struct v4l2_subdev_ops ml86v7667_subdev_ops = {
.core = &ml86v7667_subdev_core_ops,
.video = &ml86v7667_subdev_video_ops,
};
static int ml86v7667_init(struct ml86v7667_priv *priv)
{
struct i2c_client *client = v4l2_get_subdevdata(&priv->sd);
int val;
int ret;
/* BT.656-4 output mode, register mode */
ret = ml86v7667_mask_set(client, MRA_REG,
MRA_OUTPUT_MODE_MASK | MRA_REGISTER_MODE,
MRA_ITUR_BT656 | MRA_REGISTER_MODE);
/* PLL circuit fixed clock, 32MHz */
ret |= ml86v7667_mask_set(client, PLLR1_REG, PLLR1_FIXED_CLOCK,
PLLR1_FIXED_CLOCK);
/* ADC2 clamping voltage maximum */
ret |= ml86v7667_mask_set(client, ADC2_REG, ADC2_CLAMP_VOLTAGE_MASK,
ADC2_CLAMP_VOLTAGE(7));
/* enable luminance function */
ret |= ml86v7667_mask_set(client, SSEPL_REG, SSEPL_LUMINANCE_ONOFF,
SSEPL_LUMINANCE_ONOFF);
/* enable contrast function */
ret |= ml86v7667_mask_set(client, CLC_REG, CLC_CONTRAST_ONOFF, 0);
/*
* PAL/NTSC autodetection is enabled after reset,
* set the autodetected std in manual std mode and
* disable autodetection
*/
val = i2c_smbus_read_byte_data(client, STATUS_REG);
if (val < 0)
return val;
priv->std = val & STATUS_NTSCPAL ? V4L2_STD_625_50 : V4L2_STD_525_60;
ret |= ml86v7667_mask_set(client, MRC_REG, MRC_AUTOSELECT, 0);
val = priv->std & V4L2_STD_525_60 ? MRA_NTSC_BT601 : MRA_PAL_BT601;
ret |= ml86v7667_mask_set(client, MRA_REG, MRA_INPUT_MODE_MASK, val);
return ret;
}
static int ml86v7667_probe(struct i2c_client *client,
const struct i2c_device_id *did)
{
struct ml86v7667_priv *priv;
int ret;
if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_BYTE_DATA))
return -EIO;
priv = devm_kzalloc(&client->dev, sizeof(*priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
v4l2_i2c_subdev_init(&priv->sd, client, &ml86v7667_subdev_ops);
v4l2_ctrl_handler_init(&priv->hdl, 8);
v4l2_ctrl_new_std(&priv->hdl, &ml86v7667_ctrl_ops,
V4L2_CID_BRIGHTNESS, -64, 63, 1, 0);
v4l2_ctrl_new_std(&priv->hdl, &ml86v7667_ctrl_ops,
V4L2_CID_CONTRAST, -8, 7, 1, 0);
v4l2_ctrl_new_std(&priv->hdl, &ml86v7667_ctrl_ops,
V4L2_CID_CHROMA_GAIN, -32, 31, 1, 0);
v4l2_ctrl_new_std(&priv->hdl, &ml86v7667_ctrl_ops,
V4L2_CID_HUE, -128, 127, 1, 0);
v4l2_ctrl_new_std(&priv->hdl, &ml86v7667_ctrl_ops,
V4L2_CID_RED_BALANCE, -4, 3, 1, 0);
v4l2_ctrl_new_std(&priv->hdl, &ml86v7667_ctrl_ops,
V4L2_CID_BLUE_BALANCE, -4, 3, 1, 0);
v4l2_ctrl_new_std(&priv->hdl, &ml86v7667_ctrl_ops,
V4L2_CID_SHARPNESS, 0, 1, 1, 0);
v4l2_ctrl_new_std(&priv->hdl, &ml86v7667_ctrl_ops,
V4L2_CID_COLOR_KILLER, 0, 1, 1, 0);
priv->sd.ctrl_handler = &priv->hdl;
ret = priv->hdl.error;
if (ret)
goto cleanup;
v4l2_ctrl_handler_setup(&priv->hdl);
ret = ml86v7667_init(priv);
if (ret)
goto cleanup;
v4l_info(client, "chip found @ 0x%02x (%s)\n",
client->addr, client->adapter->name);
return 0;
cleanup:
v4l2_ctrl_handler_free(&priv->hdl);
v4l2_device_unregister_subdev(&priv->sd);
v4l_err(client, "failed to probe @ 0x%02x (%s)\n",
client->addr, client->adapter->name);
return ret;
}
static int ml86v7667_remove(struct i2c_client *client)
{
struct v4l2_subdev *sd = i2c_get_clientdata(client);
struct ml86v7667_priv *priv = to_ml86v7667(sd);
v4l2_ctrl_handler_free(&priv->hdl);
v4l2_device_unregister_subdev(&priv->sd);
return 0;
}
static const struct i2c_device_id ml86v7667_id[] = {
{DRV_NAME, 0},
{},
};
MODULE_DEVICE_TABLE(i2c, ml86v7667_id);
static struct i2c_driver ml86v7667_i2c_driver = {
.driver = {
.name = DRV_NAME,
.owner = THIS_MODULE,
},
.probe = ml86v7667_probe,
.remove = ml86v7667_remove,
.id_table = ml86v7667_id,
};
module_i2c_driver(ml86v7667_i2c_driver);
MODULE_DESCRIPTION("OKI Semiconductor ML86V7667 video decoder driver");
MODULE_AUTHOR("Vladimir Barinov");
MODULE_LICENSE("GPL");