713 lines
18 KiB
C
713 lines
18 KiB
C
// SPDX-License-Identifier: GPL-2.0+
|
|
// Copyright 2017 IBM Corp.
|
|
#include <linux/sched/mm.h>
|
|
#include <linux/mutex.h>
|
|
#include <linux/mm_types.h>
|
|
#include <linux/mmu_context.h>
|
|
#include <asm/copro.h>
|
|
#include <asm/pnv-ocxl.h>
|
|
#include <asm/xive.h>
|
|
#include <misc/ocxl.h>
|
|
#include "ocxl_internal.h"
|
|
#include "trace.h"
|
|
|
|
|
|
#define SPA_PASID_BITS 15
|
|
#define SPA_PASID_MAX ((1 << SPA_PASID_BITS) - 1)
|
|
#define SPA_PE_MASK SPA_PASID_MAX
|
|
#define SPA_SPA_SIZE_LOG 22 /* Each SPA is 4 Mb */
|
|
|
|
#define SPA_CFG_SF (1ull << (63-0))
|
|
#define SPA_CFG_TA (1ull << (63-1))
|
|
#define SPA_CFG_HV (1ull << (63-3))
|
|
#define SPA_CFG_UV (1ull << (63-4))
|
|
#define SPA_CFG_XLAT_hpt (0ull << (63-6)) /* Hashed page table (HPT) mode */
|
|
#define SPA_CFG_XLAT_roh (2ull << (63-6)) /* Radix on HPT mode */
|
|
#define SPA_CFG_XLAT_ror (3ull << (63-6)) /* Radix on Radix mode */
|
|
#define SPA_CFG_PR (1ull << (63-49))
|
|
#define SPA_CFG_TC (1ull << (63-54))
|
|
#define SPA_CFG_DR (1ull << (63-59))
|
|
|
|
#define SPA_XSL_TF (1ull << (63-3)) /* Translation fault */
|
|
#define SPA_XSL_S (1ull << (63-38)) /* Store operation */
|
|
|
|
#define SPA_PE_VALID 0x80000000
|
|
|
|
|
|
struct pe_data {
|
|
struct mm_struct *mm;
|
|
/* callback to trigger when a translation fault occurs */
|
|
void (*xsl_err_cb)(void *data, u64 addr, u64 dsisr);
|
|
/* opaque pointer to be passed to the above callback */
|
|
void *xsl_err_data;
|
|
struct rcu_head rcu;
|
|
};
|
|
|
|
struct spa {
|
|
struct ocxl_process_element *spa_mem;
|
|
int spa_order;
|
|
struct mutex spa_lock;
|
|
struct radix_tree_root pe_tree; /* Maps PE handles to pe_data */
|
|
char *irq_name;
|
|
int virq;
|
|
void __iomem *reg_dsisr;
|
|
void __iomem *reg_dar;
|
|
void __iomem *reg_tfc;
|
|
void __iomem *reg_pe_handle;
|
|
/*
|
|
* The following field are used by the memory fault
|
|
* interrupt handler. We can only have one interrupt at a
|
|
* time. The NPU won't raise another interrupt until the
|
|
* previous one has been ack'd by writing to the TFC register
|
|
*/
|
|
struct xsl_fault {
|
|
struct work_struct fault_work;
|
|
u64 pe;
|
|
u64 dsisr;
|
|
u64 dar;
|
|
struct pe_data pe_data;
|
|
} xsl_fault;
|
|
};
|
|
|
|
/*
|
|
* A opencapi link can be used be by several PCI functions. We have
|
|
* one link per device slot.
|
|
*
|
|
* A linked list of opencapi links should suffice, as there's a
|
|
* limited number of opencapi slots on a system and lookup is only
|
|
* done when the device is probed
|
|
*/
|
|
struct ocxl_link {
|
|
struct list_head list;
|
|
struct kref ref;
|
|
int domain;
|
|
int bus;
|
|
int dev;
|
|
atomic_t irq_available;
|
|
struct spa *spa;
|
|
void *platform_data;
|
|
};
|
|
static struct list_head links_list = LIST_HEAD_INIT(links_list);
|
|
static DEFINE_MUTEX(links_list_lock);
|
|
|
|
enum xsl_response {
|
|
CONTINUE,
|
|
ADDRESS_ERROR,
|
|
RESTART,
|
|
};
|
|
|
|
|
|
static void read_irq(struct spa *spa, u64 *dsisr, u64 *dar, u64 *pe)
|
|
{
|
|
u64 reg;
|
|
|
|
*dsisr = in_be64(spa->reg_dsisr);
|
|
*dar = in_be64(spa->reg_dar);
|
|
reg = in_be64(spa->reg_pe_handle);
|
|
*pe = reg & SPA_PE_MASK;
|
|
}
|
|
|
|
static void ack_irq(struct spa *spa, enum xsl_response r)
|
|
{
|
|
u64 reg = 0;
|
|
|
|
/* continue is not supported */
|
|
if (r == RESTART)
|
|
reg = PPC_BIT(31);
|
|
else if (r == ADDRESS_ERROR)
|
|
reg = PPC_BIT(30);
|
|
else
|
|
WARN(1, "Invalid irq response %d\n", r);
|
|
|
|
if (reg) {
|
|
trace_ocxl_fault_ack(spa->spa_mem, spa->xsl_fault.pe,
|
|
spa->xsl_fault.dsisr, spa->xsl_fault.dar, reg);
|
|
out_be64(spa->reg_tfc, reg);
|
|
}
|
|
}
|
|
|
|
static void xsl_fault_handler_bh(struct work_struct *fault_work)
|
|
{
|
|
vm_fault_t flt = 0;
|
|
unsigned long access, flags, inv_flags = 0;
|
|
enum xsl_response r;
|
|
struct xsl_fault *fault = container_of(fault_work, struct xsl_fault,
|
|
fault_work);
|
|
struct spa *spa = container_of(fault, struct spa, xsl_fault);
|
|
|
|
int rc;
|
|
|
|
/*
|
|
* We must release a reference on mm_users whenever exiting this
|
|
* function (taken in the memory fault interrupt handler)
|
|
*/
|
|
rc = copro_handle_mm_fault(fault->pe_data.mm, fault->dar, fault->dsisr,
|
|
&flt);
|
|
if (rc) {
|
|
pr_debug("copro_handle_mm_fault failed: %d\n", rc);
|
|
if (fault->pe_data.xsl_err_cb) {
|
|
fault->pe_data.xsl_err_cb(
|
|
fault->pe_data.xsl_err_data,
|
|
fault->dar, fault->dsisr);
|
|
}
|
|
r = ADDRESS_ERROR;
|
|
goto ack;
|
|
}
|
|
|
|
if (!radix_enabled()) {
|
|
/*
|
|
* update_mmu_cache() will not have loaded the hash
|
|
* since current->trap is not a 0x400 or 0x300, so
|
|
* just call hash_page_mm() here.
|
|
*/
|
|
access = _PAGE_PRESENT | _PAGE_READ;
|
|
if (fault->dsisr & SPA_XSL_S)
|
|
access |= _PAGE_WRITE;
|
|
|
|
if (get_region_id(fault->dar) != USER_REGION_ID)
|
|
access |= _PAGE_PRIVILEGED;
|
|
|
|
local_irq_save(flags);
|
|
hash_page_mm(fault->pe_data.mm, fault->dar, access, 0x300,
|
|
inv_flags);
|
|
local_irq_restore(flags);
|
|
}
|
|
r = RESTART;
|
|
ack:
|
|
mmput(fault->pe_data.mm);
|
|
ack_irq(spa, r);
|
|
}
|
|
|
|
static irqreturn_t xsl_fault_handler(int irq, void *data)
|
|
{
|
|
struct ocxl_link *link = (struct ocxl_link *) data;
|
|
struct spa *spa = link->spa;
|
|
u64 dsisr, dar, pe_handle;
|
|
struct pe_data *pe_data;
|
|
struct ocxl_process_element *pe;
|
|
int pid;
|
|
bool schedule = false;
|
|
|
|
read_irq(spa, &dsisr, &dar, &pe_handle);
|
|
trace_ocxl_fault(spa->spa_mem, pe_handle, dsisr, dar, -1);
|
|
|
|
WARN_ON(pe_handle > SPA_PE_MASK);
|
|
pe = spa->spa_mem + pe_handle;
|
|
pid = be32_to_cpu(pe->pid);
|
|
/* We could be reading all null values here if the PE is being
|
|
* removed while an interrupt kicks in. It's not supposed to
|
|
* happen if the driver notified the AFU to terminate the
|
|
* PASID, and the AFU waited for pending operations before
|
|
* acknowledging. But even if it happens, we won't find a
|
|
* memory context below and fail silently, so it should be ok.
|
|
*/
|
|
if (!(dsisr & SPA_XSL_TF)) {
|
|
WARN(1, "Invalid xsl interrupt fault register %#llx\n", dsisr);
|
|
ack_irq(spa, ADDRESS_ERROR);
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
rcu_read_lock();
|
|
pe_data = radix_tree_lookup(&spa->pe_tree, pe_handle);
|
|
if (!pe_data) {
|
|
/*
|
|
* Could only happen if the driver didn't notify the
|
|
* AFU about PASID termination before removing the PE,
|
|
* or the AFU didn't wait for all memory access to
|
|
* have completed.
|
|
*
|
|
* Either way, we fail early, but we shouldn't log an
|
|
* error message, as it is a valid (if unexpected)
|
|
* scenario
|
|
*/
|
|
rcu_read_unlock();
|
|
pr_debug("Unknown mm context for xsl interrupt\n");
|
|
ack_irq(spa, ADDRESS_ERROR);
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
if (!pe_data->mm) {
|
|
/*
|
|
* translation fault from a kernel context - an OpenCAPI
|
|
* device tried to access a bad kernel address
|
|
*/
|
|
rcu_read_unlock();
|
|
pr_warn("Unresolved OpenCAPI xsl fault in kernel context\n");
|
|
ack_irq(spa, ADDRESS_ERROR);
|
|
return IRQ_HANDLED;
|
|
}
|
|
WARN_ON(pe_data->mm->context.id != pid);
|
|
|
|
if (mmget_not_zero(pe_data->mm)) {
|
|
spa->xsl_fault.pe = pe_handle;
|
|
spa->xsl_fault.dar = dar;
|
|
spa->xsl_fault.dsisr = dsisr;
|
|
spa->xsl_fault.pe_data = *pe_data;
|
|
schedule = true;
|
|
/* mm_users count released by bottom half */
|
|
}
|
|
rcu_read_unlock();
|
|
if (schedule)
|
|
schedule_work(&spa->xsl_fault.fault_work);
|
|
else
|
|
ack_irq(spa, ADDRESS_ERROR);
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static void unmap_irq_registers(struct spa *spa)
|
|
{
|
|
pnv_ocxl_unmap_xsl_regs(spa->reg_dsisr, spa->reg_dar, spa->reg_tfc,
|
|
spa->reg_pe_handle);
|
|
}
|
|
|
|
static int map_irq_registers(struct pci_dev *dev, struct spa *spa)
|
|
{
|
|
return pnv_ocxl_map_xsl_regs(dev, &spa->reg_dsisr, &spa->reg_dar,
|
|
&spa->reg_tfc, &spa->reg_pe_handle);
|
|
}
|
|
|
|
static int setup_xsl_irq(struct pci_dev *dev, struct ocxl_link *link)
|
|
{
|
|
struct spa *spa = link->spa;
|
|
int rc;
|
|
int hwirq;
|
|
|
|
rc = pnv_ocxl_get_xsl_irq(dev, &hwirq);
|
|
if (rc)
|
|
return rc;
|
|
|
|
rc = map_irq_registers(dev, spa);
|
|
if (rc)
|
|
return rc;
|
|
|
|
spa->irq_name = kasprintf(GFP_KERNEL, "ocxl-xsl-%x-%x-%x",
|
|
link->domain, link->bus, link->dev);
|
|
if (!spa->irq_name) {
|
|
dev_err(&dev->dev, "Can't allocate name for xsl interrupt\n");
|
|
rc = -ENOMEM;
|
|
goto err_xsl;
|
|
}
|
|
/*
|
|
* At some point, we'll need to look into allowing a higher
|
|
* number of interrupts. Could we have an IRQ domain per link?
|
|
*/
|
|
spa->virq = irq_create_mapping(NULL, hwirq);
|
|
if (!spa->virq) {
|
|
dev_err(&dev->dev,
|
|
"irq_create_mapping failed for translation interrupt\n");
|
|
rc = -EINVAL;
|
|
goto err_name;
|
|
}
|
|
|
|
dev_dbg(&dev->dev, "hwirq %d mapped to virq %d\n", hwirq, spa->virq);
|
|
|
|
rc = request_irq(spa->virq, xsl_fault_handler, 0, spa->irq_name,
|
|
link);
|
|
if (rc) {
|
|
dev_err(&dev->dev,
|
|
"request_irq failed for translation interrupt: %d\n",
|
|
rc);
|
|
rc = -EINVAL;
|
|
goto err_mapping;
|
|
}
|
|
return 0;
|
|
|
|
err_mapping:
|
|
irq_dispose_mapping(spa->virq);
|
|
err_name:
|
|
kfree(spa->irq_name);
|
|
err_xsl:
|
|
unmap_irq_registers(spa);
|
|
return rc;
|
|
}
|
|
|
|
static void release_xsl_irq(struct ocxl_link *link)
|
|
{
|
|
struct spa *spa = link->spa;
|
|
|
|
if (spa->virq) {
|
|
free_irq(spa->virq, link);
|
|
irq_dispose_mapping(spa->virq);
|
|
}
|
|
kfree(spa->irq_name);
|
|
unmap_irq_registers(spa);
|
|
}
|
|
|
|
static int alloc_spa(struct pci_dev *dev, struct ocxl_link *link)
|
|
{
|
|
struct spa *spa;
|
|
|
|
spa = kzalloc(sizeof(struct spa), GFP_KERNEL);
|
|
if (!spa)
|
|
return -ENOMEM;
|
|
|
|
mutex_init(&spa->spa_lock);
|
|
INIT_RADIX_TREE(&spa->pe_tree, GFP_KERNEL);
|
|
INIT_WORK(&spa->xsl_fault.fault_work, xsl_fault_handler_bh);
|
|
|
|
spa->spa_order = SPA_SPA_SIZE_LOG - PAGE_SHIFT;
|
|
spa->spa_mem = (struct ocxl_process_element *)
|
|
__get_free_pages(GFP_KERNEL | __GFP_ZERO, spa->spa_order);
|
|
if (!spa->spa_mem) {
|
|
dev_err(&dev->dev, "Can't allocate Shared Process Area\n");
|
|
kfree(spa);
|
|
return -ENOMEM;
|
|
}
|
|
pr_debug("Allocated SPA for %x:%x:%x at %p\n", link->domain, link->bus,
|
|
link->dev, spa->spa_mem);
|
|
|
|
link->spa = spa;
|
|
return 0;
|
|
}
|
|
|
|
static void free_spa(struct ocxl_link *link)
|
|
{
|
|
struct spa *spa = link->spa;
|
|
|
|
pr_debug("Freeing SPA for %x:%x:%x\n", link->domain, link->bus,
|
|
link->dev);
|
|
|
|
if (spa && spa->spa_mem) {
|
|
free_pages((unsigned long) spa->spa_mem, spa->spa_order);
|
|
kfree(spa);
|
|
link->spa = NULL;
|
|
}
|
|
}
|
|
|
|
static int alloc_link(struct pci_dev *dev, int PE_mask, struct ocxl_link **out_link)
|
|
{
|
|
struct ocxl_link *link;
|
|
int rc;
|
|
|
|
link = kzalloc(sizeof(struct ocxl_link), GFP_KERNEL);
|
|
if (!link)
|
|
return -ENOMEM;
|
|
|
|
kref_init(&link->ref);
|
|
link->domain = pci_domain_nr(dev->bus);
|
|
link->bus = dev->bus->number;
|
|
link->dev = PCI_SLOT(dev->devfn);
|
|
atomic_set(&link->irq_available, MAX_IRQ_PER_LINK);
|
|
|
|
rc = alloc_spa(dev, link);
|
|
if (rc)
|
|
goto err_free;
|
|
|
|
rc = setup_xsl_irq(dev, link);
|
|
if (rc)
|
|
goto err_spa;
|
|
|
|
/* platform specific hook */
|
|
rc = pnv_ocxl_spa_setup(dev, link->spa->spa_mem, PE_mask,
|
|
&link->platform_data);
|
|
if (rc)
|
|
goto err_xsl_irq;
|
|
|
|
*out_link = link;
|
|
return 0;
|
|
|
|
err_xsl_irq:
|
|
release_xsl_irq(link);
|
|
err_spa:
|
|
free_spa(link);
|
|
err_free:
|
|
kfree(link);
|
|
return rc;
|
|
}
|
|
|
|
static void free_link(struct ocxl_link *link)
|
|
{
|
|
release_xsl_irq(link);
|
|
free_spa(link);
|
|
kfree(link);
|
|
}
|
|
|
|
int ocxl_link_setup(struct pci_dev *dev, int PE_mask, void **link_handle)
|
|
{
|
|
int rc = 0;
|
|
struct ocxl_link *link;
|
|
|
|
mutex_lock(&links_list_lock);
|
|
list_for_each_entry(link, &links_list, list) {
|
|
/* The functions of a device all share the same link */
|
|
if (link->domain == pci_domain_nr(dev->bus) &&
|
|
link->bus == dev->bus->number &&
|
|
link->dev == PCI_SLOT(dev->devfn)) {
|
|
kref_get(&link->ref);
|
|
*link_handle = link;
|
|
goto unlock;
|
|
}
|
|
}
|
|
rc = alloc_link(dev, PE_mask, &link);
|
|
if (rc)
|
|
goto unlock;
|
|
|
|
list_add(&link->list, &links_list);
|
|
*link_handle = link;
|
|
unlock:
|
|
mutex_unlock(&links_list_lock);
|
|
return rc;
|
|
}
|
|
EXPORT_SYMBOL_GPL(ocxl_link_setup);
|
|
|
|
static void release_xsl(struct kref *ref)
|
|
{
|
|
struct ocxl_link *link = container_of(ref, struct ocxl_link, ref);
|
|
|
|
list_del(&link->list);
|
|
/* call platform code before releasing data */
|
|
pnv_ocxl_spa_release(link->platform_data);
|
|
free_link(link);
|
|
}
|
|
|
|
void ocxl_link_release(struct pci_dev *dev, void *link_handle)
|
|
{
|
|
struct ocxl_link *link = (struct ocxl_link *) link_handle;
|
|
|
|
mutex_lock(&links_list_lock);
|
|
kref_put(&link->ref, release_xsl);
|
|
mutex_unlock(&links_list_lock);
|
|
}
|
|
EXPORT_SYMBOL_GPL(ocxl_link_release);
|
|
|
|
static u64 calculate_cfg_state(bool kernel)
|
|
{
|
|
u64 state;
|
|
|
|
state = SPA_CFG_DR;
|
|
if (mfspr(SPRN_LPCR) & LPCR_TC)
|
|
state |= SPA_CFG_TC;
|
|
if (radix_enabled())
|
|
state |= SPA_CFG_XLAT_ror;
|
|
else
|
|
state |= SPA_CFG_XLAT_hpt;
|
|
state |= SPA_CFG_HV;
|
|
if (kernel) {
|
|
if (mfmsr() & MSR_SF)
|
|
state |= SPA_CFG_SF;
|
|
} else {
|
|
state |= SPA_CFG_PR;
|
|
if (!test_tsk_thread_flag(current, TIF_32BIT))
|
|
state |= SPA_CFG_SF;
|
|
}
|
|
return state;
|
|
}
|
|
|
|
int ocxl_link_add_pe(void *link_handle, int pasid, u32 pidr, u32 tidr,
|
|
u64 amr, struct mm_struct *mm,
|
|
void (*xsl_err_cb)(void *data, u64 addr, u64 dsisr),
|
|
void *xsl_err_data)
|
|
{
|
|
struct ocxl_link *link = (struct ocxl_link *) link_handle;
|
|
struct spa *spa = link->spa;
|
|
struct ocxl_process_element *pe;
|
|
int pe_handle, rc = 0;
|
|
struct pe_data *pe_data;
|
|
|
|
BUILD_BUG_ON(sizeof(struct ocxl_process_element) != 128);
|
|
if (pasid > SPA_PASID_MAX)
|
|
return -EINVAL;
|
|
|
|
mutex_lock(&spa->spa_lock);
|
|
pe_handle = pasid & SPA_PE_MASK;
|
|
pe = spa->spa_mem + pe_handle;
|
|
|
|
if (pe->software_state) {
|
|
rc = -EBUSY;
|
|
goto unlock;
|
|
}
|
|
|
|
pe_data = kmalloc(sizeof(*pe_data), GFP_KERNEL);
|
|
if (!pe_data) {
|
|
rc = -ENOMEM;
|
|
goto unlock;
|
|
}
|
|
|
|
pe_data->mm = mm;
|
|
pe_data->xsl_err_cb = xsl_err_cb;
|
|
pe_data->xsl_err_data = xsl_err_data;
|
|
|
|
memset(pe, 0, sizeof(struct ocxl_process_element));
|
|
pe->config_state = cpu_to_be64(calculate_cfg_state(pidr == 0));
|
|
pe->lpid = cpu_to_be32(mfspr(SPRN_LPID));
|
|
pe->pid = cpu_to_be32(pidr);
|
|
pe->tid = cpu_to_be32(tidr);
|
|
pe->amr = cpu_to_be64(amr);
|
|
pe->software_state = cpu_to_be32(SPA_PE_VALID);
|
|
|
|
/*
|
|
* For user contexts, register a copro so that TLBIs are seen
|
|
* by the nest MMU. If we have a kernel context, TLBIs are
|
|
* already global.
|
|
*/
|
|
if (mm)
|
|
mm_context_add_copro(mm);
|
|
/*
|
|
* Barrier is to make sure PE is visible in the SPA before it
|
|
* is used by the device. It also helps with the global TLBI
|
|
* invalidation
|
|
*/
|
|
mb();
|
|
radix_tree_insert(&spa->pe_tree, pe_handle, pe_data);
|
|
|
|
/*
|
|
* The mm must stay valid for as long as the device uses it. We
|
|
* lower the count when the context is removed from the SPA.
|
|
*
|
|
* We grab mm_count (and not mm_users), as we don't want to
|
|
* end up in a circular dependency if a process mmaps its
|
|
* mmio, therefore incrementing the file ref count when
|
|
* calling mmap(), and forgets to unmap before exiting. In
|
|
* that scenario, when the kernel handles the death of the
|
|
* process, the file is not cleaned because unmap was not
|
|
* called, and the mm wouldn't be freed because we would still
|
|
* have a reference on mm_users. Incrementing mm_count solves
|
|
* the problem.
|
|
*/
|
|
if (mm)
|
|
mmgrab(mm);
|
|
trace_ocxl_context_add(current->pid, spa->spa_mem, pasid, pidr, tidr);
|
|
unlock:
|
|
mutex_unlock(&spa->spa_lock);
|
|
return rc;
|
|
}
|
|
EXPORT_SYMBOL_GPL(ocxl_link_add_pe);
|
|
|
|
int ocxl_link_update_pe(void *link_handle, int pasid, __u16 tid)
|
|
{
|
|
struct ocxl_link *link = (struct ocxl_link *) link_handle;
|
|
struct spa *spa = link->spa;
|
|
struct ocxl_process_element *pe;
|
|
int pe_handle, rc;
|
|
|
|
if (pasid > SPA_PASID_MAX)
|
|
return -EINVAL;
|
|
|
|
pe_handle = pasid & SPA_PE_MASK;
|
|
pe = spa->spa_mem + pe_handle;
|
|
|
|
mutex_lock(&spa->spa_lock);
|
|
|
|
pe->tid = cpu_to_be32(tid);
|
|
|
|
/*
|
|
* The barrier makes sure the PE is updated
|
|
* before we clear the NPU context cache below, so that the
|
|
* old PE cannot be reloaded erroneously.
|
|
*/
|
|
mb();
|
|
|
|
/*
|
|
* hook to platform code
|
|
* On powerpc, the entry needs to be cleared from the context
|
|
* cache of the NPU.
|
|
*/
|
|
rc = pnv_ocxl_spa_remove_pe_from_cache(link->platform_data, pe_handle);
|
|
WARN_ON(rc);
|
|
|
|
mutex_unlock(&spa->spa_lock);
|
|
return rc;
|
|
}
|
|
|
|
int ocxl_link_remove_pe(void *link_handle, int pasid)
|
|
{
|
|
struct ocxl_link *link = (struct ocxl_link *) link_handle;
|
|
struct spa *spa = link->spa;
|
|
struct ocxl_process_element *pe;
|
|
struct pe_data *pe_data;
|
|
int pe_handle, rc;
|
|
|
|
if (pasid > SPA_PASID_MAX)
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* About synchronization with our memory fault handler:
|
|
*
|
|
* Before removing the PE, the driver is supposed to have
|
|
* notified the AFU, which should have cleaned up and make
|
|
* sure the PASID is no longer in use, including pending
|
|
* interrupts. However, there's no way to be sure...
|
|
*
|
|
* We clear the PE and remove the context from our radix
|
|
* tree. From that point on, any new interrupt for that
|
|
* context will fail silently, which is ok. As mentioned
|
|
* above, that's not expected, but it could happen if the
|
|
* driver or AFU didn't do the right thing.
|
|
*
|
|
* There could still be a bottom half running, but we don't
|
|
* need to wait/flush, as it is managing a reference count on
|
|
* the mm it reads from the radix tree.
|
|
*/
|
|
pe_handle = pasid & SPA_PE_MASK;
|
|
pe = spa->spa_mem + pe_handle;
|
|
|
|
mutex_lock(&spa->spa_lock);
|
|
|
|
if (!(be32_to_cpu(pe->software_state) & SPA_PE_VALID)) {
|
|
rc = -EINVAL;
|
|
goto unlock;
|
|
}
|
|
|
|
trace_ocxl_context_remove(current->pid, spa->spa_mem, pasid,
|
|
be32_to_cpu(pe->pid), be32_to_cpu(pe->tid));
|
|
|
|
memset(pe, 0, sizeof(struct ocxl_process_element));
|
|
/*
|
|
* The barrier makes sure the PE is removed from the SPA
|
|
* before we clear the NPU context cache below, so that the
|
|
* old PE cannot be reloaded erroneously.
|
|
*/
|
|
mb();
|
|
|
|
/*
|
|
* hook to platform code
|
|
* On powerpc, the entry needs to be cleared from the context
|
|
* cache of the NPU.
|
|
*/
|
|
rc = pnv_ocxl_spa_remove_pe_from_cache(link->platform_data, pe_handle);
|
|
WARN_ON(rc);
|
|
|
|
pe_data = radix_tree_delete(&spa->pe_tree, pe_handle);
|
|
if (!pe_data) {
|
|
WARN(1, "Couldn't find pe data when removing PE\n");
|
|
} else {
|
|
if (pe_data->mm) {
|
|
mm_context_remove_copro(pe_data->mm);
|
|
mmdrop(pe_data->mm);
|
|
}
|
|
kfree_rcu(pe_data, rcu);
|
|
}
|
|
unlock:
|
|
mutex_unlock(&spa->spa_lock);
|
|
return rc;
|
|
}
|
|
EXPORT_SYMBOL_GPL(ocxl_link_remove_pe);
|
|
|
|
int ocxl_link_irq_alloc(void *link_handle, int *hw_irq)
|
|
{
|
|
struct ocxl_link *link = (struct ocxl_link *) link_handle;
|
|
int irq;
|
|
|
|
if (atomic_dec_if_positive(&link->irq_available) < 0)
|
|
return -ENOSPC;
|
|
|
|
irq = xive_native_alloc_irq();
|
|
if (!irq) {
|
|
atomic_inc(&link->irq_available);
|
|
return -ENXIO;
|
|
}
|
|
|
|
*hw_irq = irq;
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(ocxl_link_irq_alloc);
|
|
|
|
void ocxl_link_free_irq(void *link_handle, int hw_irq)
|
|
{
|
|
struct ocxl_link *link = (struct ocxl_link *) link_handle;
|
|
|
|
xive_native_free_irq(hw_irq);
|
|
atomic_inc(&link->irq_available);
|
|
}
|
|
EXPORT_SYMBOL_GPL(ocxl_link_free_irq);
|