linux-sg2042/arch/mips/kernel/setup.c

923 lines
22 KiB
C

/*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*
* Copyright (C) 1995 Linus Torvalds
* Copyright (C) 1995 Waldorf Electronics
* Copyright (C) 1994, 95, 96, 97, 98, 99, 2000, 01, 02, 03 Ralf Baechle
* Copyright (C) 1996 Stoned Elipot
* Copyright (C) 1999 Silicon Graphics, Inc.
* Copyright (C) 2000, 2001, 2002, 2007 Maciej W. Rozycki
*/
#include <linux/init.h>
#include <linux/ioport.h>
#include <linux/export.h>
#include <linux/screen_info.h>
#include <linux/memblock.h>
#include <linux/bootmem.h>
#include <linux/initrd.h>
#include <linux/root_dev.h>
#include <linux/highmem.h>
#include <linux/console.h>
#include <linux/pfn.h>
#include <linux/debugfs.h>
#include <linux/kexec.h>
#include <linux/sizes.h>
#include <linux/device.h>
#include <linux/dma-contiguous.h>
#include <linux/decompress/generic.h>
#include <asm/addrspace.h>
#include <asm/bootinfo.h>
#include <asm/bugs.h>
#include <asm/cache.h>
#include <asm/cdmm.h>
#include <asm/cpu.h>
#include <asm/debug.h>
#include <asm/sections.h>
#include <asm/setup.h>
#include <asm/smp-ops.h>
#include <asm/prom.h>
#ifdef CONFIG_MIPS_ELF_APPENDED_DTB
const char __section(.appended_dtb) __appended_dtb[0x100000];
#endif /* CONFIG_MIPS_ELF_APPENDED_DTB */
struct cpuinfo_mips cpu_data[NR_CPUS] __read_mostly;
EXPORT_SYMBOL(cpu_data);
#ifdef CONFIG_VT
struct screen_info screen_info;
#endif
/*
* Setup information
*
* These are initialized so they are in the .data section
*/
unsigned long mips_machtype __read_mostly = MACH_UNKNOWN;
EXPORT_SYMBOL(mips_machtype);
struct boot_mem_map boot_mem_map;
static char __initdata command_line[COMMAND_LINE_SIZE];
char __initdata arcs_cmdline[COMMAND_LINE_SIZE];
#ifdef CONFIG_CMDLINE_BOOL
static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE;
#endif
/*
* mips_io_port_base is the begin of the address space to which x86 style
* I/O ports are mapped.
*/
const unsigned long mips_io_port_base = -1;
EXPORT_SYMBOL(mips_io_port_base);
static struct resource code_resource = { .name = "Kernel code", };
static struct resource data_resource = { .name = "Kernel data", };
static void *detect_magic __initdata = detect_memory_region;
void __init add_memory_region(phys_addr_t start, phys_addr_t size, long type)
{
int x = boot_mem_map.nr_map;
int i;
/*
* If the region reaches the top of the physical address space, adjust
* the size slightly so that (start + size) doesn't overflow
*/
if (start + size - 1 == (phys_addr_t)ULLONG_MAX)
--size;
/* Sanity check */
if (start + size < start) {
pr_warn("Trying to add an invalid memory region, skipped\n");
return;
}
/*
* Try to merge with existing entry, if any.
*/
for (i = 0; i < boot_mem_map.nr_map; i++) {
struct boot_mem_map_entry *entry = boot_mem_map.map + i;
unsigned long top;
if (entry->type != type)
continue;
if (start + size < entry->addr)
continue; /* no overlap */
if (entry->addr + entry->size < start)
continue; /* no overlap */
top = max(entry->addr + entry->size, start + size);
entry->addr = min(entry->addr, start);
entry->size = top - entry->addr;
return;
}
if (boot_mem_map.nr_map == BOOT_MEM_MAP_MAX) {
pr_err("Ooops! Too many entries in the memory map!\n");
return;
}
boot_mem_map.map[x].addr = start;
boot_mem_map.map[x].size = size;
boot_mem_map.map[x].type = type;
boot_mem_map.nr_map++;
}
void __init detect_memory_region(phys_addr_t start, phys_addr_t sz_min, phys_addr_t sz_max)
{
void *dm = &detect_magic;
phys_addr_t size;
for (size = sz_min; size < sz_max; size <<= 1) {
if (!memcmp(dm, dm + size, sizeof(detect_magic)))
break;
}
pr_debug("Memory: %lluMB of RAM detected at 0x%llx (min: %lluMB, max: %lluMB)\n",
((unsigned long long) size) / SZ_1M,
(unsigned long long) start,
((unsigned long long) sz_min) / SZ_1M,
((unsigned long long) sz_max) / SZ_1M);
add_memory_region(start, size, BOOT_MEM_RAM);
}
static void __init print_memory_map(void)
{
int i;
const int field = 2 * sizeof(unsigned long);
for (i = 0; i < boot_mem_map.nr_map; i++) {
printk(KERN_INFO " memory: %0*Lx @ %0*Lx ",
field, (unsigned long long) boot_mem_map.map[i].size,
field, (unsigned long long) boot_mem_map.map[i].addr);
switch (boot_mem_map.map[i].type) {
case BOOT_MEM_RAM:
printk(KERN_CONT "(usable)\n");
break;
case BOOT_MEM_INIT_RAM:
printk(KERN_CONT "(usable after init)\n");
break;
case BOOT_MEM_ROM_DATA:
printk(KERN_CONT "(ROM data)\n");
break;
case BOOT_MEM_RESERVED:
printk(KERN_CONT "(reserved)\n");
break;
default:
printk(KERN_CONT "type %lu\n", boot_mem_map.map[i].type);
break;
}
}
}
/*
* Manage initrd
*/
#ifdef CONFIG_BLK_DEV_INITRD
static int __init rd_start_early(char *p)
{
unsigned long start = memparse(p, &p);
#ifdef CONFIG_64BIT
/* Guess if the sign extension was forgotten by bootloader */
if (start < XKPHYS)
start = (int)start;
#endif
initrd_start = start;
initrd_end += start;
return 0;
}
early_param("rd_start", rd_start_early);
static int __init rd_size_early(char *p)
{
initrd_end += memparse(p, &p);
return 0;
}
early_param("rd_size", rd_size_early);
/* it returns the next free pfn after initrd */
static unsigned long __init init_initrd(void)
{
unsigned long end;
/*
* Board specific code or command line parser should have
* already set up initrd_start and initrd_end. In these cases
* perfom sanity checks and use them if all looks good.
*/
if (!initrd_start || initrd_end <= initrd_start)
goto disable;
if (initrd_start & ~PAGE_MASK) {
pr_err("initrd start must be page aligned\n");
goto disable;
}
if (initrd_start < PAGE_OFFSET) {
pr_err("initrd start < PAGE_OFFSET\n");
goto disable;
}
/*
* Sanitize initrd addresses. For example firmware
* can't guess if they need to pass them through
* 64-bits values if the kernel has been built in pure
* 32-bit. We need also to switch from KSEG0 to XKPHYS
* addresses now, so the code can now safely use __pa().
*/
end = __pa(initrd_end);
initrd_end = (unsigned long)__va(end);
initrd_start = (unsigned long)__va(__pa(initrd_start));
ROOT_DEV = Root_RAM0;
return PFN_UP(end);
disable:
initrd_start = 0;
initrd_end = 0;
return 0;
}
/* In some conditions (e.g. big endian bootloader with a little endian
kernel), the initrd might appear byte swapped. Try to detect this and
byte swap it if needed. */
static void __init maybe_bswap_initrd(void)
{
#if defined(CONFIG_CPU_CAVIUM_OCTEON)
u64 buf;
/* Check for CPIO signature */
if (!memcmp((void *)initrd_start, "070701", 6))
return;
/* Check for compressed initrd */
if (decompress_method((unsigned char *)initrd_start, 8, NULL))
return;
/* Try again with a byte swapped header */
buf = swab64p((u64 *)initrd_start);
if (!memcmp(&buf, "070701", 6) ||
decompress_method((unsigned char *)(&buf), 8, NULL)) {
unsigned long i;
pr_info("Byteswapped initrd detected\n");
for (i = initrd_start; i < ALIGN(initrd_end, 8); i += 8)
swab64s((u64 *)i);
}
#endif
}
static void __init finalize_initrd(void)
{
unsigned long size = initrd_end - initrd_start;
if (size == 0) {
printk(KERN_INFO "Initrd not found or empty");
goto disable;
}
if (__pa(initrd_end) > PFN_PHYS(max_low_pfn)) {
printk(KERN_ERR "Initrd extends beyond end of memory");
goto disable;
}
maybe_bswap_initrd();
reserve_bootmem(__pa(initrd_start), size, BOOTMEM_DEFAULT);
initrd_below_start_ok = 1;
pr_info("Initial ramdisk at: 0x%lx (%lu bytes)\n",
initrd_start, size);
return;
disable:
printk(KERN_CONT " - disabling initrd\n");
initrd_start = 0;
initrd_end = 0;
}
#else /* !CONFIG_BLK_DEV_INITRD */
static unsigned long __init init_initrd(void)
{
return 0;
}
#define finalize_initrd() do {} while (0)
#endif
/*
* Initialize the bootmem allocator. It also setup initrd related data
* if needed.
*/
#if defined(CONFIG_SGI_IP27) || (defined(CONFIG_CPU_LOONGSON3) && defined(CONFIG_NUMA))
static void __init bootmem_init(void)
{
init_initrd();
finalize_initrd();
}
#else /* !CONFIG_SGI_IP27 */
static void __init bootmem_init(void)
{
unsigned long reserved_end;
unsigned long mapstart = ~0UL;
unsigned long bootmap_size;
int i;
/*
* Sanity check any INITRD first. We don't take it into account
* for bootmem setup initially, rely on the end-of-kernel-code
* as our memory range starting point. Once bootmem is inited we
* will reserve the area used for the initrd.
*/
init_initrd();
reserved_end = (unsigned long) PFN_UP(__pa_symbol(&_end));
/*
* max_low_pfn is not a number of pages. The number of pages
* of the system is given by 'max_low_pfn - min_low_pfn'.
*/
min_low_pfn = ~0UL;
max_low_pfn = 0;
/*
* Find the highest page frame number we have available.
*/
for (i = 0; i < boot_mem_map.nr_map; i++) {
unsigned long start, end;
if (boot_mem_map.map[i].type != BOOT_MEM_RAM)
continue;
start = PFN_UP(boot_mem_map.map[i].addr);
end = PFN_DOWN(boot_mem_map.map[i].addr
+ boot_mem_map.map[i].size);
#ifndef CONFIG_HIGHMEM
/*
* Skip highmem here so we get an accurate max_low_pfn if low
* memory stops short of high memory.
* If the region overlaps HIGHMEM_START, end is clipped so
* max_pfn excludes the highmem portion.
*/
if (start >= PFN_DOWN(HIGHMEM_START))
continue;
if (end > PFN_DOWN(HIGHMEM_START))
end = PFN_DOWN(HIGHMEM_START);
#endif
if (end > max_low_pfn)
max_low_pfn = end;
if (start < min_low_pfn)
min_low_pfn = start;
if (end <= reserved_end)
continue;
#ifdef CONFIG_BLK_DEV_INITRD
/* Skip zones before initrd and initrd itself */
if (initrd_end && end <= (unsigned long)PFN_UP(__pa(initrd_end)))
continue;
#endif
if (start >= mapstart)
continue;
mapstart = max(reserved_end, start);
}
if (min_low_pfn >= max_low_pfn)
panic("Incorrect memory mapping !!!");
if (min_low_pfn > ARCH_PFN_OFFSET) {
pr_info("Wasting %lu bytes for tracking %lu unused pages\n",
(min_low_pfn - ARCH_PFN_OFFSET) * sizeof(struct page),
min_low_pfn - ARCH_PFN_OFFSET);
} else if (min_low_pfn < ARCH_PFN_OFFSET) {
pr_info("%lu free pages won't be used\n",
ARCH_PFN_OFFSET - min_low_pfn);
}
min_low_pfn = ARCH_PFN_OFFSET;
/*
* Determine low and high memory ranges
*/
max_pfn = max_low_pfn;
if (max_low_pfn > PFN_DOWN(HIGHMEM_START)) {
#ifdef CONFIG_HIGHMEM
highstart_pfn = PFN_DOWN(HIGHMEM_START);
highend_pfn = max_low_pfn;
#endif
max_low_pfn = PFN_DOWN(HIGHMEM_START);
}
#ifdef CONFIG_BLK_DEV_INITRD
/*
* mapstart should be after initrd_end
*/
if (initrd_end)
mapstart = max(mapstart, (unsigned long)PFN_UP(__pa(initrd_end)));
#endif
/*
* Initialize the boot-time allocator with low memory only.
*/
bootmap_size = init_bootmem_node(NODE_DATA(0), mapstart,
min_low_pfn, max_low_pfn);
for (i = 0; i < boot_mem_map.nr_map; i++) {
unsigned long start, end;
start = PFN_UP(boot_mem_map.map[i].addr);
end = PFN_DOWN(boot_mem_map.map[i].addr
+ boot_mem_map.map[i].size);
if (start <= min_low_pfn)
start = min_low_pfn;
if (start >= end)
continue;
#ifndef CONFIG_HIGHMEM
if (end > max_low_pfn)
end = max_low_pfn;
/*
* ... finally, is the area going away?
*/
if (end <= start)
continue;
#endif
memblock_add_node(PFN_PHYS(start), PFN_PHYS(end - start), 0);
}
/*
* Register fully available low RAM pages with the bootmem allocator.
*/
for (i = 0; i < boot_mem_map.nr_map; i++) {
unsigned long start, end, size;
start = PFN_UP(boot_mem_map.map[i].addr);
end = PFN_DOWN(boot_mem_map.map[i].addr
+ boot_mem_map.map[i].size);
/*
* Reserve usable memory.
*/
switch (boot_mem_map.map[i].type) {
case BOOT_MEM_RAM:
break;
case BOOT_MEM_INIT_RAM:
memory_present(0, start, end);
continue;
default:
/* Not usable memory */
if (start > min_low_pfn && end < max_low_pfn)
reserve_bootmem(boot_mem_map.map[i].addr,
boot_mem_map.map[i].size,
BOOTMEM_DEFAULT);
continue;
}
/*
* We are rounding up the start address of usable memory
* and at the end of the usable range downwards.
*/
if (start >= max_low_pfn)
continue;
if (start < reserved_end)
start = reserved_end;
if (end > max_low_pfn)
end = max_low_pfn;
/*
* ... finally, is the area going away?
*/
if (end <= start)
continue;
size = end - start;
/* Register lowmem ranges */
free_bootmem(PFN_PHYS(start), size << PAGE_SHIFT);
memory_present(0, start, end);
}
/*
* Reserve the bootmap memory.
*/
reserve_bootmem(PFN_PHYS(mapstart), bootmap_size, BOOTMEM_DEFAULT);
#ifdef CONFIG_RELOCATABLE
/*
* The kernel reserves all memory below its _end symbol as bootmem,
* but the kernel may now be at a much higher address. The memory
* between the original and new locations may be returned to the system.
*/
if (__pa_symbol(_text) > __pa_symbol(VMLINUX_LOAD_ADDRESS)) {
unsigned long offset;
extern void show_kernel_relocation(const char *level);
offset = __pa_symbol(_text) - __pa_symbol(VMLINUX_LOAD_ADDRESS);
free_bootmem(__pa_symbol(VMLINUX_LOAD_ADDRESS), offset);
#if defined(CONFIG_DEBUG_KERNEL) && defined(CONFIG_DEBUG_INFO)
/*
* This information is necessary when debugging the kernel
* But is a security vulnerability otherwise!
*/
show_kernel_relocation(KERN_INFO);
#endif
}
#endif
/*
* Reserve initrd memory if needed.
*/
finalize_initrd();
}
#endif /* CONFIG_SGI_IP27 */
/*
* arch_mem_init - initialize memory management subsystem
*
* o plat_mem_setup() detects the memory configuration and will record detected
* memory areas using add_memory_region.
*
* At this stage the memory configuration of the system is known to the
* kernel but generic memory management system is still entirely uninitialized.
*
* o bootmem_init()
* o sparse_init()
* o paging_init()
* o dma_contiguous_reserve()
*
* At this stage the bootmem allocator is ready to use.
*
* NOTE: historically plat_mem_setup did the entire platform initialization.
* This was rather impractical because it meant plat_mem_setup had to
* get away without any kind of memory allocator. To keep old code from
* breaking plat_setup was just renamed to plat_mem_setup and a second platform
* initialization hook for anything else was introduced.
*/
static int usermem __initdata;
static int __init early_parse_mem(char *p)
{
phys_addr_t start, size;
/*
* If a user specifies memory size, we
* blow away any automatically generated
* size.
*/
if (usermem == 0) {
boot_mem_map.nr_map = 0;
usermem = 1;
}
start = 0;
size = memparse(p, &p);
if (*p == '@')
start = memparse(p + 1, &p);
add_memory_region(start, size, BOOT_MEM_RAM);
return 0;
}
early_param("mem", early_parse_mem);
#ifdef CONFIG_PROC_VMCORE
unsigned long setup_elfcorehdr, setup_elfcorehdr_size;
static int __init early_parse_elfcorehdr(char *p)
{
int i;
setup_elfcorehdr = memparse(p, &p);
for (i = 0; i < boot_mem_map.nr_map; i++) {
unsigned long start = boot_mem_map.map[i].addr;
unsigned long end = (boot_mem_map.map[i].addr +
boot_mem_map.map[i].size);
if (setup_elfcorehdr >= start && setup_elfcorehdr < end) {
/*
* Reserve from the elf core header to the end of
* the memory segment, that should all be kdump
* reserved memory.
*/
setup_elfcorehdr_size = end - setup_elfcorehdr;
break;
}
}
/*
* If we don't find it in the memory map, then we shouldn't
* have to worry about it, as the new kernel won't use it.
*/
return 0;
}
early_param("elfcorehdr", early_parse_elfcorehdr);
#endif
static void __init arch_mem_addpart(phys_addr_t mem, phys_addr_t end, int type)
{
phys_addr_t size;
int i;
size = end - mem;
if (!size)
return;
/* Make sure it is in the boot_mem_map */
for (i = 0; i < boot_mem_map.nr_map; i++) {
if (mem >= boot_mem_map.map[i].addr &&
mem < (boot_mem_map.map[i].addr +
boot_mem_map.map[i].size))
return;
}
add_memory_region(mem, size, type);
}
#ifdef CONFIG_KEXEC
static inline unsigned long long get_total_mem(void)
{
unsigned long long total;
total = max_pfn - min_low_pfn;
return total << PAGE_SHIFT;
}
static void __init mips_parse_crashkernel(void)
{
unsigned long long total_mem;
unsigned long long crash_size, crash_base;
int ret;
total_mem = get_total_mem();
ret = parse_crashkernel(boot_command_line, total_mem,
&crash_size, &crash_base);
if (ret != 0 || crash_size <= 0)
return;
crashk_res.start = crash_base;
crashk_res.end = crash_base + crash_size - 1;
}
static void __init request_crashkernel(struct resource *res)
{
int ret;
if (crashk_res.start == crashk_res.end)
return;
ret = request_resource(res, &crashk_res);
if (!ret)
pr_info("Reserving %ldMB of memory at %ldMB for crashkernel\n",
(unsigned long)((crashk_res.end -
crashk_res.start + 1) >> 20),
(unsigned long)(crashk_res.start >> 20));
}
#else /* !defined(CONFIG_KEXEC) */
static void __init mips_parse_crashkernel(void)
{
}
static void __init request_crashkernel(struct resource *res)
{
}
#endif /* !defined(CONFIG_KEXEC) */
#define USE_PROM_CMDLINE IS_ENABLED(CONFIG_MIPS_CMDLINE_FROM_BOOTLOADER)
#define USE_DTB_CMDLINE IS_ENABLED(CONFIG_MIPS_CMDLINE_FROM_DTB)
#define EXTEND_WITH_PROM IS_ENABLED(CONFIG_MIPS_CMDLINE_DTB_EXTEND)
#define BUILTIN_EXTEND_WITH_PROM \
IS_ENABLED(CONFIG_MIPS_CMDLINE_BUILTIN_EXTEND)
static void __init arch_mem_init(char **cmdline_p)
{
struct memblock_region *reg;
extern void plat_mem_setup(void);
/* call board setup routine */
plat_mem_setup();
/*
* Make sure all kernel memory is in the maps. The "UP" and
* "DOWN" are opposite for initdata since if it crosses over
* into another memory section you don't want that to be
* freed when the initdata is freed.
*/
arch_mem_addpart(PFN_DOWN(__pa_symbol(&_text)) << PAGE_SHIFT,
PFN_UP(__pa_symbol(&_edata)) << PAGE_SHIFT,
BOOT_MEM_RAM);
arch_mem_addpart(PFN_UP(__pa_symbol(&__init_begin)) << PAGE_SHIFT,
PFN_DOWN(__pa_symbol(&__init_end)) << PAGE_SHIFT,
BOOT_MEM_INIT_RAM);
pr_info("Determined physical RAM map:\n");
print_memory_map();
#if defined(CONFIG_CMDLINE_BOOL) && defined(CONFIG_CMDLINE_OVERRIDE)
strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
#else
if ((USE_PROM_CMDLINE && arcs_cmdline[0]) ||
(USE_DTB_CMDLINE && !boot_command_line[0]))
strlcpy(boot_command_line, arcs_cmdline, COMMAND_LINE_SIZE);
if (EXTEND_WITH_PROM && arcs_cmdline[0]) {
if (boot_command_line[0])
strlcat(boot_command_line, " ", COMMAND_LINE_SIZE);
strlcat(boot_command_line, arcs_cmdline, COMMAND_LINE_SIZE);
}
#if defined(CONFIG_CMDLINE_BOOL)
if (builtin_cmdline[0]) {
if (boot_command_line[0])
strlcat(boot_command_line, " ", COMMAND_LINE_SIZE);
strlcat(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
}
if (BUILTIN_EXTEND_WITH_PROM && arcs_cmdline[0]) {
if (boot_command_line[0])
strlcat(boot_command_line, " ", COMMAND_LINE_SIZE);
strlcat(boot_command_line, arcs_cmdline, COMMAND_LINE_SIZE);
}
#endif
#endif
strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
*cmdline_p = command_line;
parse_early_param();
if (usermem) {
pr_info("User-defined physical RAM map:\n");
print_memory_map();
}
bootmem_init();
#ifdef CONFIG_PROC_VMCORE
if (setup_elfcorehdr && setup_elfcorehdr_size) {
printk(KERN_INFO "kdump reserved memory at %lx-%lx\n",
setup_elfcorehdr, setup_elfcorehdr_size);
reserve_bootmem(setup_elfcorehdr, setup_elfcorehdr_size,
BOOTMEM_DEFAULT);
}
#endif
mips_parse_crashkernel();
#ifdef CONFIG_KEXEC
if (crashk_res.start != crashk_res.end)
reserve_bootmem(crashk_res.start,
crashk_res.end - crashk_res.start + 1,
BOOTMEM_DEFAULT);
#endif
device_tree_init();
sparse_init();
plat_swiotlb_setup();
dma_contiguous_reserve(PFN_PHYS(max_low_pfn));
/* Tell bootmem about cma reserved memblock section */
for_each_memblock(reserved, reg)
if (reg->size != 0)
reserve_bootmem(reg->base, reg->size, BOOTMEM_DEFAULT);
reserve_bootmem_region(__pa_symbol(&__nosave_begin),
__pa_symbol(&__nosave_end)); /* Reserve for hibernation */
}
static void __init resource_init(void)
{
int i;
if (UNCAC_BASE != IO_BASE)
return;
code_resource.start = __pa_symbol(&_text);
code_resource.end = __pa_symbol(&_etext) - 1;
data_resource.start = __pa_symbol(&_etext);
data_resource.end = __pa_symbol(&_edata) - 1;
for (i = 0; i < boot_mem_map.nr_map; i++) {
struct resource *res;
unsigned long start, end;
start = boot_mem_map.map[i].addr;
end = boot_mem_map.map[i].addr + boot_mem_map.map[i].size - 1;
if (start >= HIGHMEM_START)
continue;
if (end >= HIGHMEM_START)
end = HIGHMEM_START - 1;
res = alloc_bootmem(sizeof(struct resource));
res->start = start;
res->end = end;
res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
switch (boot_mem_map.map[i].type) {
case BOOT_MEM_RAM:
case BOOT_MEM_INIT_RAM:
case BOOT_MEM_ROM_DATA:
res->name = "System RAM";
res->flags |= IORESOURCE_SYSRAM;
break;
case BOOT_MEM_RESERVED:
default:
res->name = "reserved";
}
request_resource(&iomem_resource, res);
/*
* We don't know which RAM region contains kernel data,
* so we try it repeatedly and let the resource manager
* test it.
*/
request_resource(res, &code_resource);
request_resource(res, &data_resource);
request_crashkernel(res);
}
}
#ifdef CONFIG_SMP
static void __init prefill_possible_map(void)
{
int i, possible = num_possible_cpus();
if (possible > nr_cpu_ids)
possible = nr_cpu_ids;
for (i = 0; i < possible; i++)
set_cpu_possible(i, true);
for (; i < NR_CPUS; i++)
set_cpu_possible(i, false);
nr_cpu_ids = possible;
}
#else
static inline void prefill_possible_map(void) {}
#endif
void __init setup_arch(char **cmdline_p)
{
cpu_probe();
mips_cm_probe();
prom_init();
setup_early_fdc_console();
#ifdef CONFIG_EARLY_PRINTK
setup_early_printk();
#endif
cpu_report();
check_bugs_early();
#if defined(CONFIG_VT)
#if defined(CONFIG_VGA_CONSOLE)
conswitchp = &vga_con;
#elif defined(CONFIG_DUMMY_CONSOLE)
conswitchp = &dummy_con;
#endif
#endif
arch_mem_init(cmdline_p);
resource_init();
plat_smp_setup();
prefill_possible_map();
cpu_cache_init();
paging_init();
}
unsigned long kernelsp[NR_CPUS];
unsigned long fw_arg0, fw_arg1, fw_arg2, fw_arg3;
#ifdef CONFIG_USE_OF
unsigned long fw_passed_dtb;
#endif
#ifdef CONFIG_DEBUG_FS
struct dentry *mips_debugfs_dir;
static int __init debugfs_mips(void)
{
struct dentry *d;
d = debugfs_create_dir("mips", NULL);
if (!d)
return -ENOMEM;
mips_debugfs_dir = d;
return 0;
}
arch_initcall(debugfs_mips);
#endif