1045 lines
28 KiB
C
1045 lines
28 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/****************************************************************************/
|
|
/*
|
|
* linux/fs/binfmt_flat.c
|
|
*
|
|
* Copyright (C) 2000-2003 David McCullough <davidm@snapgear.com>
|
|
* Copyright (C) 2002 Greg Ungerer <gerg@snapgear.com>
|
|
* Copyright (C) 2002 SnapGear, by Paul Dale <pauli@snapgear.com>
|
|
* Copyright (C) 2000, 2001 Lineo, by David McCullough <davidm@lineo.com>
|
|
* based heavily on:
|
|
*
|
|
* linux/fs/binfmt_aout.c:
|
|
* Copyright (C) 1991, 1992, 1996 Linus Torvalds
|
|
* linux/fs/binfmt_flat.c for 2.0 kernel
|
|
* Copyright (C) 1998 Kenneth Albanowski <kjahds@kjahds.com>
|
|
* JAN/99 -- coded full program relocation (gerg@snapgear.com)
|
|
*/
|
|
|
|
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/sched/task_stack.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/mman.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/signal.h>
|
|
#include <linux/string.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/file.h>
|
|
#include <linux/ptrace.h>
|
|
#include <linux/user.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/binfmts.h>
|
|
#include <linux/personality.h>
|
|
#include <linux/init.h>
|
|
#include <linux/flat.h>
|
|
#include <linux/uaccess.h>
|
|
#include <linux/vmalloc.h>
|
|
|
|
#include <asm/byteorder.h>
|
|
#include <asm/unaligned.h>
|
|
#include <asm/cacheflush.h>
|
|
#include <asm/page.h>
|
|
#include <asm/flat.h>
|
|
|
|
#ifndef flat_get_relocate_addr
|
|
#define flat_get_relocate_addr(rel) (rel)
|
|
#endif
|
|
|
|
/****************************************************************************/
|
|
|
|
/*
|
|
* User data (data section and bss) needs to be aligned.
|
|
* We pick 0x20 here because it is the max value elf2flt has always
|
|
* used in producing FLAT files, and because it seems to be large
|
|
* enough to make all the gcc alignment related tests happy.
|
|
*/
|
|
#define FLAT_DATA_ALIGN (0x20)
|
|
|
|
/*
|
|
* User data (stack) also needs to be aligned.
|
|
* Here we can be a bit looser than the data sections since this
|
|
* needs to only meet arch ABI requirements.
|
|
*/
|
|
#define FLAT_STACK_ALIGN max_t(unsigned long, sizeof(void *), ARCH_SLAB_MINALIGN)
|
|
|
|
#define RELOC_FAILED 0xff00ff01 /* Relocation incorrect somewhere */
|
|
#define UNLOADED_LIB 0x7ff000ff /* Placeholder for unused library */
|
|
|
|
#ifdef CONFIG_BINFMT_SHARED_FLAT
|
|
#define MAX_SHARED_LIBS (4)
|
|
#else
|
|
#define MAX_SHARED_LIBS (1)
|
|
#endif
|
|
|
|
#ifdef CONFIG_BINFMT_FLAT_NO_DATA_START_OFFSET
|
|
#define DATA_START_OFFSET_WORDS (0)
|
|
#else
|
|
#define DATA_START_OFFSET_WORDS (MAX_SHARED_LIBS)
|
|
#endif
|
|
|
|
struct lib_info {
|
|
struct {
|
|
unsigned long start_code; /* Start of text segment */
|
|
unsigned long start_data; /* Start of data segment */
|
|
unsigned long start_brk; /* End of data segment */
|
|
unsigned long text_len; /* Length of text segment */
|
|
unsigned long entry; /* Start address for this module */
|
|
unsigned long build_date; /* When this one was compiled */
|
|
bool loaded; /* Has this library been loaded? */
|
|
} lib_list[MAX_SHARED_LIBS];
|
|
};
|
|
|
|
#ifdef CONFIG_BINFMT_SHARED_FLAT
|
|
static int load_flat_shared_library(int id, struct lib_info *p);
|
|
#endif
|
|
|
|
static int load_flat_binary(struct linux_binprm *);
|
|
static int flat_core_dump(struct coredump_params *cprm);
|
|
|
|
static struct linux_binfmt flat_format = {
|
|
.module = THIS_MODULE,
|
|
.load_binary = load_flat_binary,
|
|
.core_dump = flat_core_dump,
|
|
.min_coredump = PAGE_SIZE
|
|
};
|
|
|
|
/****************************************************************************/
|
|
/*
|
|
* Routine writes a core dump image in the current directory.
|
|
* Currently only a stub-function.
|
|
*/
|
|
|
|
static int flat_core_dump(struct coredump_params *cprm)
|
|
{
|
|
pr_warn("Process %s:%d received signr %d and should have core dumped\n",
|
|
current->comm, current->pid, cprm->siginfo->si_signo);
|
|
return 1;
|
|
}
|
|
|
|
/****************************************************************************/
|
|
/*
|
|
* create_flat_tables() parses the env- and arg-strings in new user
|
|
* memory and creates the pointer tables from them, and puts their
|
|
* addresses on the "stack", recording the new stack pointer value.
|
|
*/
|
|
|
|
static int create_flat_tables(struct linux_binprm *bprm, unsigned long arg_start)
|
|
{
|
|
char __user *p;
|
|
unsigned long __user *sp;
|
|
long i, len;
|
|
|
|
p = (char __user *)arg_start;
|
|
sp = (unsigned long __user *)current->mm->start_stack;
|
|
|
|
sp -= bprm->envc + 1;
|
|
sp -= bprm->argc + 1;
|
|
if (IS_ENABLED(CONFIG_BINFMT_FLAT_ARGVP_ENVP_ON_STACK))
|
|
sp -= 2; /* argvp + envp */
|
|
sp -= 1; /* &argc */
|
|
|
|
current->mm->start_stack = (unsigned long)sp & -FLAT_STACK_ALIGN;
|
|
sp = (unsigned long __user *)current->mm->start_stack;
|
|
|
|
if (put_user(bprm->argc, sp++))
|
|
return -EFAULT;
|
|
if (IS_ENABLED(CONFIG_BINFMT_FLAT_ARGVP_ENVP_ON_STACK)) {
|
|
unsigned long argv, envp;
|
|
argv = (unsigned long)(sp + 2);
|
|
envp = (unsigned long)(sp + 2 + bprm->argc + 1);
|
|
if (put_user(argv, sp++) || put_user(envp, sp++))
|
|
return -EFAULT;
|
|
}
|
|
|
|
current->mm->arg_start = (unsigned long)p;
|
|
for (i = bprm->argc; i > 0; i--) {
|
|
if (put_user((unsigned long)p, sp++))
|
|
return -EFAULT;
|
|
len = strnlen_user(p, MAX_ARG_STRLEN);
|
|
if (!len || len > MAX_ARG_STRLEN)
|
|
return -EINVAL;
|
|
p += len;
|
|
}
|
|
if (put_user(0, sp++))
|
|
return -EFAULT;
|
|
current->mm->arg_end = (unsigned long)p;
|
|
|
|
current->mm->env_start = (unsigned long) p;
|
|
for (i = bprm->envc; i > 0; i--) {
|
|
if (put_user((unsigned long)p, sp++))
|
|
return -EFAULT;
|
|
len = strnlen_user(p, MAX_ARG_STRLEN);
|
|
if (!len || len > MAX_ARG_STRLEN)
|
|
return -EINVAL;
|
|
p += len;
|
|
}
|
|
if (put_user(0, sp++))
|
|
return -EFAULT;
|
|
current->mm->env_end = (unsigned long)p;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/****************************************************************************/
|
|
|
|
#ifdef CONFIG_BINFMT_ZFLAT
|
|
|
|
#include <linux/zlib.h>
|
|
|
|
#define LBUFSIZE 4000
|
|
|
|
/* gzip flag byte */
|
|
#define ASCII_FLAG 0x01 /* bit 0 set: file probably ASCII text */
|
|
#define CONTINUATION 0x02 /* bit 1 set: continuation of multi-part gzip file */
|
|
#define EXTRA_FIELD 0x04 /* bit 2 set: extra field present */
|
|
#define ORIG_NAME 0x08 /* bit 3 set: original file name present */
|
|
#define COMMENT 0x10 /* bit 4 set: file comment present */
|
|
#define ENCRYPTED 0x20 /* bit 5 set: file is encrypted */
|
|
#define RESERVED 0xC0 /* bit 6,7: reserved */
|
|
|
|
static int decompress_exec(struct linux_binprm *bprm, loff_t fpos, char *dst,
|
|
long len, int fd)
|
|
{
|
|
unsigned char *buf;
|
|
z_stream strm;
|
|
int ret, retval;
|
|
|
|
pr_debug("decompress_exec(offset=%llx,buf=%p,len=%lx)\n", fpos, dst, len);
|
|
|
|
memset(&strm, 0, sizeof(strm));
|
|
strm.workspace = kmalloc(zlib_inflate_workspacesize(), GFP_KERNEL);
|
|
if (!strm.workspace)
|
|
return -ENOMEM;
|
|
|
|
buf = kmalloc(LBUFSIZE, GFP_KERNEL);
|
|
if (!buf) {
|
|
retval = -ENOMEM;
|
|
goto out_free;
|
|
}
|
|
|
|
/* Read in first chunk of data and parse gzip header. */
|
|
ret = kernel_read(bprm->file, buf, LBUFSIZE, &fpos);
|
|
|
|
strm.next_in = buf;
|
|
strm.avail_in = ret;
|
|
strm.total_in = 0;
|
|
|
|
retval = -ENOEXEC;
|
|
|
|
/* Check minimum size -- gzip header */
|
|
if (ret < 10) {
|
|
pr_debug("file too small?\n");
|
|
goto out_free_buf;
|
|
}
|
|
|
|
/* Check gzip magic number */
|
|
if ((buf[0] != 037) || ((buf[1] != 0213) && (buf[1] != 0236))) {
|
|
pr_debug("unknown compression magic?\n");
|
|
goto out_free_buf;
|
|
}
|
|
|
|
/* Check gzip method */
|
|
if (buf[2] != 8) {
|
|
pr_debug("unknown compression method?\n");
|
|
goto out_free_buf;
|
|
}
|
|
/* Check gzip flags */
|
|
if ((buf[3] & ENCRYPTED) || (buf[3] & CONTINUATION) ||
|
|
(buf[3] & RESERVED)) {
|
|
pr_debug("unknown flags?\n");
|
|
goto out_free_buf;
|
|
}
|
|
|
|
ret = 10;
|
|
if (buf[3] & EXTRA_FIELD) {
|
|
ret += 2 + buf[10] + (buf[11] << 8);
|
|
if (unlikely(ret >= LBUFSIZE)) {
|
|
pr_debug("buffer overflow (EXTRA)?\n");
|
|
goto out_free_buf;
|
|
}
|
|
}
|
|
if (buf[3] & ORIG_NAME) {
|
|
while (ret < LBUFSIZE && buf[ret++] != 0)
|
|
;
|
|
if (unlikely(ret == LBUFSIZE)) {
|
|
pr_debug("buffer overflow (ORIG_NAME)?\n");
|
|
goto out_free_buf;
|
|
}
|
|
}
|
|
if (buf[3] & COMMENT) {
|
|
while (ret < LBUFSIZE && buf[ret++] != 0)
|
|
;
|
|
if (unlikely(ret == LBUFSIZE)) {
|
|
pr_debug("buffer overflow (COMMENT)?\n");
|
|
goto out_free_buf;
|
|
}
|
|
}
|
|
|
|
strm.next_in += ret;
|
|
strm.avail_in -= ret;
|
|
|
|
strm.next_out = dst;
|
|
strm.avail_out = len;
|
|
strm.total_out = 0;
|
|
|
|
if (zlib_inflateInit2(&strm, -MAX_WBITS) != Z_OK) {
|
|
pr_debug("zlib init failed?\n");
|
|
goto out_free_buf;
|
|
}
|
|
|
|
while ((ret = zlib_inflate(&strm, Z_NO_FLUSH)) == Z_OK) {
|
|
ret = kernel_read(bprm->file, buf, LBUFSIZE, &fpos);
|
|
if (ret <= 0)
|
|
break;
|
|
len -= ret;
|
|
|
|
strm.next_in = buf;
|
|
strm.avail_in = ret;
|
|
strm.total_in = 0;
|
|
}
|
|
|
|
if (ret < 0) {
|
|
pr_debug("decompression failed (%d), %s\n",
|
|
ret, strm.msg);
|
|
goto out_zlib;
|
|
}
|
|
|
|
retval = 0;
|
|
out_zlib:
|
|
zlib_inflateEnd(&strm);
|
|
out_free_buf:
|
|
kfree(buf);
|
|
out_free:
|
|
kfree(strm.workspace);
|
|
return retval;
|
|
}
|
|
|
|
#endif /* CONFIG_BINFMT_ZFLAT */
|
|
|
|
/****************************************************************************/
|
|
|
|
static unsigned long
|
|
calc_reloc(unsigned long r, struct lib_info *p, int curid, int internalp)
|
|
{
|
|
unsigned long addr;
|
|
int id;
|
|
unsigned long start_brk;
|
|
unsigned long start_data;
|
|
unsigned long text_len;
|
|
unsigned long start_code;
|
|
|
|
#ifdef CONFIG_BINFMT_SHARED_FLAT
|
|
if (r == 0)
|
|
id = curid; /* Relocs of 0 are always self referring */
|
|
else {
|
|
id = (r >> 24) & 0xff; /* Find ID for this reloc */
|
|
r &= 0x00ffffff; /* Trim ID off here */
|
|
}
|
|
if (id >= MAX_SHARED_LIBS) {
|
|
pr_err("reference 0x%lx to shared library %d", r, id);
|
|
goto failed;
|
|
}
|
|
if (curid != id) {
|
|
if (internalp) {
|
|
pr_err("reloc address 0x%lx not in same module "
|
|
"(%d != %d)", r, curid, id);
|
|
goto failed;
|
|
} else if (!p->lib_list[id].loaded &&
|
|
load_flat_shared_library(id, p) < 0) {
|
|
pr_err("failed to load library %d", id);
|
|
goto failed;
|
|
}
|
|
/* Check versioning information (i.e. time stamps) */
|
|
if (p->lib_list[id].build_date && p->lib_list[curid].build_date &&
|
|
p->lib_list[curid].build_date < p->lib_list[id].build_date) {
|
|
pr_err("library %d is younger than %d", id, curid);
|
|
goto failed;
|
|
}
|
|
}
|
|
#else
|
|
id = 0;
|
|
#endif
|
|
|
|
start_brk = p->lib_list[id].start_brk;
|
|
start_data = p->lib_list[id].start_data;
|
|
start_code = p->lib_list[id].start_code;
|
|
text_len = p->lib_list[id].text_len;
|
|
|
|
if (r > start_brk - start_data + text_len) {
|
|
pr_err("reloc outside program 0x%lx (0 - 0x%lx/0x%lx)",
|
|
r, start_brk-start_data+text_len, text_len);
|
|
goto failed;
|
|
}
|
|
|
|
if (r < text_len) /* In text segment */
|
|
addr = r + start_code;
|
|
else /* In data segment */
|
|
addr = r - text_len + start_data;
|
|
|
|
/* Range checked already above so doing the range tests is redundant...*/
|
|
return addr;
|
|
|
|
failed:
|
|
pr_cont(", killing %s!\n", current->comm);
|
|
send_sig(SIGSEGV, current, 0);
|
|
|
|
return RELOC_FAILED;
|
|
}
|
|
|
|
/****************************************************************************/
|
|
|
|
#ifdef CONFIG_BINFMT_FLAT_OLD
|
|
static void old_reloc(unsigned long rl)
|
|
{
|
|
static const char *segment[] = { "TEXT", "DATA", "BSS", "*UNKNOWN*" };
|
|
flat_v2_reloc_t r;
|
|
unsigned long __user *ptr;
|
|
unsigned long val;
|
|
|
|
r.value = rl;
|
|
#if defined(CONFIG_COLDFIRE)
|
|
ptr = (unsigned long __user *)(current->mm->start_code + r.reloc.offset);
|
|
#else
|
|
ptr = (unsigned long __user *)(current->mm->start_data + r.reloc.offset);
|
|
#endif
|
|
get_user(val, ptr);
|
|
|
|
pr_debug("Relocation of variable at DATASEG+%x "
|
|
"(address %p, currently %lx) into segment %s\n",
|
|
r.reloc.offset, ptr, val, segment[r.reloc.type]);
|
|
|
|
switch (r.reloc.type) {
|
|
case OLD_FLAT_RELOC_TYPE_TEXT:
|
|
val += current->mm->start_code;
|
|
break;
|
|
case OLD_FLAT_RELOC_TYPE_DATA:
|
|
val += current->mm->start_data;
|
|
break;
|
|
case OLD_FLAT_RELOC_TYPE_BSS:
|
|
val += current->mm->end_data;
|
|
break;
|
|
default:
|
|
pr_err("Unknown relocation type=%x\n", r.reloc.type);
|
|
break;
|
|
}
|
|
put_user(val, ptr);
|
|
|
|
pr_debug("Relocation became %lx\n", val);
|
|
}
|
|
#endif /* CONFIG_BINFMT_FLAT_OLD */
|
|
|
|
/****************************************************************************/
|
|
|
|
static int load_flat_file(struct linux_binprm *bprm,
|
|
struct lib_info *libinfo, int id, unsigned long *extra_stack)
|
|
{
|
|
struct flat_hdr *hdr;
|
|
unsigned long textpos, datapos, realdatastart;
|
|
u32 text_len, data_len, bss_len, stack_len, full_data, flags;
|
|
unsigned long len, memp, memp_size, extra, rlim;
|
|
__be32 __user *reloc;
|
|
u32 __user *rp;
|
|
int i, rev, relocs;
|
|
loff_t fpos;
|
|
unsigned long start_code, end_code;
|
|
ssize_t result;
|
|
int ret;
|
|
|
|
hdr = ((struct flat_hdr *) bprm->buf); /* exec-header */
|
|
|
|
text_len = ntohl(hdr->data_start);
|
|
data_len = ntohl(hdr->data_end) - ntohl(hdr->data_start);
|
|
bss_len = ntohl(hdr->bss_end) - ntohl(hdr->data_end);
|
|
stack_len = ntohl(hdr->stack_size);
|
|
if (extra_stack) {
|
|
stack_len += *extra_stack;
|
|
*extra_stack = stack_len;
|
|
}
|
|
relocs = ntohl(hdr->reloc_count);
|
|
flags = ntohl(hdr->flags);
|
|
rev = ntohl(hdr->rev);
|
|
full_data = data_len + relocs * sizeof(unsigned long);
|
|
|
|
if (strncmp(hdr->magic, "bFLT", 4)) {
|
|
/*
|
|
* Previously, here was a printk to tell people
|
|
* "BINFMT_FLAT: bad header magic".
|
|
* But for the kernel which also use ELF FD-PIC format, this
|
|
* error message is confusing.
|
|
* because a lot of people do not manage to produce good
|
|
*/
|
|
ret = -ENOEXEC;
|
|
goto err;
|
|
}
|
|
|
|
if (flags & FLAT_FLAG_KTRACE)
|
|
pr_info("Loading file: %s\n", bprm->filename);
|
|
|
|
#ifdef CONFIG_BINFMT_FLAT_OLD
|
|
if (rev != FLAT_VERSION && rev != OLD_FLAT_VERSION) {
|
|
pr_err("bad flat file version 0x%x (supported 0x%lx and 0x%lx)\n",
|
|
rev, FLAT_VERSION, OLD_FLAT_VERSION);
|
|
ret = -ENOEXEC;
|
|
goto err;
|
|
}
|
|
|
|
/* Don't allow old format executables to use shared libraries */
|
|
if (rev == OLD_FLAT_VERSION && id != 0) {
|
|
pr_err("shared libraries are not available before rev 0x%lx\n",
|
|
FLAT_VERSION);
|
|
ret = -ENOEXEC;
|
|
goto err;
|
|
}
|
|
|
|
/*
|
|
* fix up the flags for the older format, there were all kinds
|
|
* of endian hacks, this only works for the simple cases
|
|
*/
|
|
if (rev == OLD_FLAT_VERSION &&
|
|
(flags || IS_ENABLED(CONFIG_BINFMT_FLAT_OLD_ALWAYS_RAM)))
|
|
flags = FLAT_FLAG_RAM;
|
|
|
|
#else /* CONFIG_BINFMT_FLAT_OLD */
|
|
if (rev != FLAT_VERSION) {
|
|
pr_err("bad flat file version 0x%x (supported 0x%lx)\n",
|
|
rev, FLAT_VERSION);
|
|
ret = -ENOEXEC;
|
|
goto err;
|
|
}
|
|
#endif /* !CONFIG_BINFMT_FLAT_OLD */
|
|
|
|
/*
|
|
* Make sure the header params are sane.
|
|
* 28 bits (256 MB) is way more than reasonable in this case.
|
|
* If some top bits are set we have probable binary corruption.
|
|
*/
|
|
if ((text_len | data_len | bss_len | stack_len | full_data) >> 28) {
|
|
pr_err("bad header\n");
|
|
ret = -ENOEXEC;
|
|
goto err;
|
|
}
|
|
|
|
#ifndef CONFIG_BINFMT_ZFLAT
|
|
if (flags & (FLAT_FLAG_GZIP|FLAT_FLAG_GZDATA)) {
|
|
pr_err("Support for ZFLAT executables is not enabled.\n");
|
|
ret = -ENOEXEC;
|
|
goto err;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Check initial limits. This avoids letting people circumvent
|
|
* size limits imposed on them by creating programs with large
|
|
* arrays in the data or bss.
|
|
*/
|
|
rlim = rlimit(RLIMIT_DATA);
|
|
if (rlim >= RLIM_INFINITY)
|
|
rlim = ~0;
|
|
if (data_len + bss_len > rlim) {
|
|
ret = -ENOMEM;
|
|
goto err;
|
|
}
|
|
|
|
/* Flush all traces of the currently running executable */
|
|
if (id == 0) {
|
|
ret = begin_new_exec(bprm);
|
|
if (ret)
|
|
goto err;
|
|
|
|
/* OK, This is the point of no return */
|
|
set_personality(PER_LINUX_32BIT);
|
|
setup_new_exec(bprm);
|
|
}
|
|
|
|
/*
|
|
* calculate the extra space we need to map in
|
|
*/
|
|
extra = max_t(unsigned long, bss_len + stack_len,
|
|
relocs * sizeof(unsigned long));
|
|
|
|
/*
|
|
* there are a couple of cases here, the separate code/data
|
|
* case, and then the fully copied to RAM case which lumps
|
|
* it all together.
|
|
*/
|
|
if (!IS_ENABLED(CONFIG_MMU) && !(flags & (FLAT_FLAG_RAM|FLAT_FLAG_GZIP))) {
|
|
/*
|
|
* this should give us a ROM ptr, but if it doesn't we don't
|
|
* really care
|
|
*/
|
|
pr_debug("ROM mapping of file (we hope)\n");
|
|
|
|
textpos = vm_mmap(bprm->file, 0, text_len, PROT_READ|PROT_EXEC,
|
|
MAP_PRIVATE, 0);
|
|
if (!textpos || IS_ERR_VALUE(textpos)) {
|
|
ret = textpos;
|
|
if (!textpos)
|
|
ret = -ENOMEM;
|
|
pr_err("Unable to mmap process text, errno %d\n", ret);
|
|
goto err;
|
|
}
|
|
|
|
len = data_len + extra +
|
|
DATA_START_OFFSET_WORDS * sizeof(unsigned long);
|
|
len = PAGE_ALIGN(len);
|
|
realdatastart = vm_mmap(NULL, 0, len,
|
|
PROT_READ|PROT_WRITE|PROT_EXEC, MAP_PRIVATE, 0);
|
|
|
|
if (realdatastart == 0 || IS_ERR_VALUE(realdatastart)) {
|
|
ret = realdatastart;
|
|
if (!realdatastart)
|
|
ret = -ENOMEM;
|
|
pr_err("Unable to allocate RAM for process data, "
|
|
"errno %d\n", ret);
|
|
vm_munmap(textpos, text_len);
|
|
goto err;
|
|
}
|
|
datapos = ALIGN(realdatastart +
|
|
DATA_START_OFFSET_WORDS * sizeof(unsigned long),
|
|
FLAT_DATA_ALIGN);
|
|
|
|
pr_debug("Allocated data+bss+stack (%u bytes): %lx\n",
|
|
data_len + bss_len + stack_len, datapos);
|
|
|
|
fpos = ntohl(hdr->data_start);
|
|
#ifdef CONFIG_BINFMT_ZFLAT
|
|
if (flags & FLAT_FLAG_GZDATA) {
|
|
result = decompress_exec(bprm, fpos, (char *)datapos,
|
|
full_data, 0);
|
|
} else
|
|
#endif
|
|
{
|
|
result = read_code(bprm->file, datapos, fpos,
|
|
full_data);
|
|
}
|
|
if (IS_ERR_VALUE(result)) {
|
|
ret = result;
|
|
pr_err("Unable to read data+bss, errno %d\n", ret);
|
|
vm_munmap(textpos, text_len);
|
|
vm_munmap(realdatastart, len);
|
|
goto err;
|
|
}
|
|
|
|
reloc = (__be32 __user *)
|
|
(datapos + (ntohl(hdr->reloc_start) - text_len));
|
|
memp = realdatastart;
|
|
memp_size = len;
|
|
} else {
|
|
|
|
len = text_len + data_len + extra +
|
|
DATA_START_OFFSET_WORDS * sizeof(u32);
|
|
len = PAGE_ALIGN(len);
|
|
textpos = vm_mmap(NULL, 0, len,
|
|
PROT_READ | PROT_EXEC | PROT_WRITE, MAP_PRIVATE, 0);
|
|
|
|
if (!textpos || IS_ERR_VALUE(textpos)) {
|
|
ret = textpos;
|
|
if (!textpos)
|
|
ret = -ENOMEM;
|
|
pr_err("Unable to allocate RAM for process text/data, "
|
|
"errno %d\n", ret);
|
|
goto err;
|
|
}
|
|
|
|
realdatastart = textpos + ntohl(hdr->data_start);
|
|
datapos = ALIGN(realdatastart +
|
|
DATA_START_OFFSET_WORDS * sizeof(u32),
|
|
FLAT_DATA_ALIGN);
|
|
|
|
reloc = (__be32 __user *)
|
|
(datapos + (ntohl(hdr->reloc_start) - text_len));
|
|
memp = textpos;
|
|
memp_size = len;
|
|
#ifdef CONFIG_BINFMT_ZFLAT
|
|
/*
|
|
* load it all in and treat it like a RAM load from now on
|
|
*/
|
|
if (flags & FLAT_FLAG_GZIP) {
|
|
#ifndef CONFIG_MMU
|
|
result = decompress_exec(bprm, sizeof(struct flat_hdr),
|
|
(((char *)textpos) + sizeof(struct flat_hdr)),
|
|
(text_len + full_data
|
|
- sizeof(struct flat_hdr)),
|
|
0);
|
|
memmove((void *) datapos, (void *) realdatastart,
|
|
full_data);
|
|
#else
|
|
/*
|
|
* This is used on MMU systems mainly for testing.
|
|
* Let's use a kernel buffer to simplify things.
|
|
*/
|
|
long unz_text_len = text_len - sizeof(struct flat_hdr);
|
|
long unz_len = unz_text_len + full_data;
|
|
char *unz_data = vmalloc(unz_len);
|
|
if (!unz_data) {
|
|
result = -ENOMEM;
|
|
} else {
|
|
result = decompress_exec(bprm, sizeof(struct flat_hdr),
|
|
unz_data, unz_len, 0);
|
|
if (result == 0 &&
|
|
(copy_to_user((void __user *)textpos + sizeof(struct flat_hdr),
|
|
unz_data, unz_text_len) ||
|
|
copy_to_user((void __user *)datapos,
|
|
unz_data + unz_text_len, full_data)))
|
|
result = -EFAULT;
|
|
vfree(unz_data);
|
|
}
|
|
#endif
|
|
} else if (flags & FLAT_FLAG_GZDATA) {
|
|
result = read_code(bprm->file, textpos, 0, text_len);
|
|
if (!IS_ERR_VALUE(result)) {
|
|
#ifndef CONFIG_MMU
|
|
result = decompress_exec(bprm, text_len, (char *) datapos,
|
|
full_data, 0);
|
|
#else
|
|
char *unz_data = vmalloc(full_data);
|
|
if (!unz_data) {
|
|
result = -ENOMEM;
|
|
} else {
|
|
result = decompress_exec(bprm, text_len,
|
|
unz_data, full_data, 0);
|
|
if (result == 0 &&
|
|
copy_to_user((void __user *)datapos,
|
|
unz_data, full_data))
|
|
result = -EFAULT;
|
|
vfree(unz_data);
|
|
}
|
|
#endif
|
|
}
|
|
} else
|
|
#endif /* CONFIG_BINFMT_ZFLAT */
|
|
{
|
|
result = read_code(bprm->file, textpos, 0, text_len);
|
|
if (!IS_ERR_VALUE(result))
|
|
result = read_code(bprm->file, datapos,
|
|
ntohl(hdr->data_start),
|
|
full_data);
|
|
}
|
|
if (IS_ERR_VALUE(result)) {
|
|
ret = result;
|
|
pr_err("Unable to read code+data+bss, errno %d\n", ret);
|
|
vm_munmap(textpos, text_len + data_len + extra +
|
|
DATA_START_OFFSET_WORDS * sizeof(u32));
|
|
goto err;
|
|
}
|
|
}
|
|
|
|
start_code = textpos + sizeof(struct flat_hdr);
|
|
end_code = textpos + text_len;
|
|
text_len -= sizeof(struct flat_hdr); /* the real code len */
|
|
|
|
/* The main program needs a little extra setup in the task structure */
|
|
if (id == 0) {
|
|
current->mm->start_code = start_code;
|
|
current->mm->end_code = end_code;
|
|
current->mm->start_data = datapos;
|
|
current->mm->end_data = datapos + data_len;
|
|
/*
|
|
* set up the brk stuff, uses any slack left in data/bss/stack
|
|
* allocation. We put the brk after the bss (between the bss
|
|
* and stack) like other platforms.
|
|
* Userspace code relies on the stack pointer starting out at
|
|
* an address right at the end of a page.
|
|
*/
|
|
current->mm->start_brk = datapos + data_len + bss_len;
|
|
current->mm->brk = (current->mm->start_brk + 3) & ~3;
|
|
#ifndef CONFIG_MMU
|
|
current->mm->context.end_brk = memp + memp_size - stack_len;
|
|
#endif
|
|
}
|
|
|
|
if (flags & FLAT_FLAG_KTRACE) {
|
|
pr_info("Mapping is %lx, Entry point is %x, data_start is %x\n",
|
|
textpos, 0x00ffffff&ntohl(hdr->entry), ntohl(hdr->data_start));
|
|
pr_info("%s %s: TEXT=%lx-%lx DATA=%lx-%lx BSS=%lx-%lx\n",
|
|
id ? "Lib" : "Load", bprm->filename,
|
|
start_code, end_code, datapos, datapos + data_len,
|
|
datapos + data_len, (datapos + data_len + bss_len + 3) & ~3);
|
|
}
|
|
|
|
/* Store the current module values into the global library structure */
|
|
libinfo->lib_list[id].start_code = start_code;
|
|
libinfo->lib_list[id].start_data = datapos;
|
|
libinfo->lib_list[id].start_brk = datapos + data_len + bss_len;
|
|
libinfo->lib_list[id].text_len = text_len;
|
|
libinfo->lib_list[id].loaded = 1;
|
|
libinfo->lib_list[id].entry = (0x00ffffff & ntohl(hdr->entry)) + textpos;
|
|
libinfo->lib_list[id].build_date = ntohl(hdr->build_date);
|
|
|
|
/*
|
|
* We just load the allocations into some temporary memory to
|
|
* help simplify all this mumbo jumbo
|
|
*
|
|
* We've got two different sections of relocation entries.
|
|
* The first is the GOT which resides at the beginning of the data segment
|
|
* and is terminated with a -1. This one can be relocated in place.
|
|
* The second is the extra relocation entries tacked after the image's
|
|
* data segment. These require a little more processing as the entry is
|
|
* really an offset into the image which contains an offset into the
|
|
* image.
|
|
*/
|
|
if (flags & FLAT_FLAG_GOTPIC) {
|
|
for (rp = (u32 __user *)datapos; ; rp++) {
|
|
u32 addr, rp_val;
|
|
if (get_user(rp_val, rp))
|
|
return -EFAULT;
|
|
if (rp_val == 0xffffffff)
|
|
break;
|
|
if (rp_val) {
|
|
addr = calc_reloc(rp_val, libinfo, id, 0);
|
|
if (addr == RELOC_FAILED) {
|
|
ret = -ENOEXEC;
|
|
goto err;
|
|
}
|
|
if (put_user(addr, rp))
|
|
return -EFAULT;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Now run through the relocation entries.
|
|
* We've got to be careful here as C++ produces relocatable zero
|
|
* entries in the constructor and destructor tables which are then
|
|
* tested for being not zero (which will always occur unless we're
|
|
* based from address zero). This causes an endless loop as __start
|
|
* is at zero. The solution used is to not relocate zero addresses.
|
|
* This has the negative side effect of not allowing a global data
|
|
* reference to be statically initialised to _stext (I've moved
|
|
* __start to address 4 so that is okay).
|
|
*/
|
|
if (rev > OLD_FLAT_VERSION) {
|
|
for (i = 0; i < relocs; i++) {
|
|
u32 addr, relval;
|
|
__be32 tmp;
|
|
|
|
/*
|
|
* Get the address of the pointer to be
|
|
* relocated (of course, the address has to be
|
|
* relocated first).
|
|
*/
|
|
if (get_user(tmp, reloc + i))
|
|
return -EFAULT;
|
|
relval = ntohl(tmp);
|
|
addr = flat_get_relocate_addr(relval);
|
|
rp = (u32 __user *)calc_reloc(addr, libinfo, id, 1);
|
|
if (rp == (u32 __user *)RELOC_FAILED) {
|
|
ret = -ENOEXEC;
|
|
goto err;
|
|
}
|
|
|
|
/* Get the pointer's value. */
|
|
ret = flat_get_addr_from_rp(rp, relval, flags, &addr);
|
|
if (unlikely(ret))
|
|
goto err;
|
|
|
|
if (addr != 0) {
|
|
/*
|
|
* Do the relocation. PIC relocs in the data section are
|
|
* already in target order
|
|
*/
|
|
if ((flags & FLAT_FLAG_GOTPIC) == 0) {
|
|
/*
|
|
* Meh, the same value can have a different
|
|
* byte order based on a flag..
|
|
*/
|
|
addr = ntohl((__force __be32)addr);
|
|
}
|
|
addr = calc_reloc(addr, libinfo, id, 0);
|
|
if (addr == RELOC_FAILED) {
|
|
ret = -ENOEXEC;
|
|
goto err;
|
|
}
|
|
|
|
/* Write back the relocated pointer. */
|
|
ret = flat_put_addr_at_rp(rp, addr, relval);
|
|
if (unlikely(ret))
|
|
goto err;
|
|
}
|
|
}
|
|
#ifdef CONFIG_BINFMT_FLAT_OLD
|
|
} else {
|
|
for (i = 0; i < relocs; i++) {
|
|
__be32 relval;
|
|
if (get_user(relval, reloc + i))
|
|
return -EFAULT;
|
|
old_reloc(ntohl(relval));
|
|
}
|
|
#endif /* CONFIG_BINFMT_FLAT_OLD */
|
|
}
|
|
|
|
flush_icache_user_range(start_code, end_code);
|
|
|
|
/* zero the BSS, BRK and stack areas */
|
|
if (clear_user((void __user *)(datapos + data_len), bss_len +
|
|
(memp + memp_size - stack_len - /* end brk */
|
|
libinfo->lib_list[id].start_brk) + /* start brk */
|
|
stack_len))
|
|
return -EFAULT;
|
|
|
|
return 0;
|
|
err:
|
|
return ret;
|
|
}
|
|
|
|
|
|
/****************************************************************************/
|
|
#ifdef CONFIG_BINFMT_SHARED_FLAT
|
|
|
|
/*
|
|
* Load a shared library into memory. The library gets its own data
|
|
* segment (including bss) but not argv/argc/environ.
|
|
*/
|
|
|
|
static int load_flat_shared_library(int id, struct lib_info *libs)
|
|
{
|
|
/*
|
|
* This is a fake bprm struct; only the members "buf", "file" and
|
|
* "filename" are actually used.
|
|
*/
|
|
struct linux_binprm bprm;
|
|
int res;
|
|
char buf[16];
|
|
loff_t pos = 0;
|
|
|
|
memset(&bprm, 0, sizeof(bprm));
|
|
|
|
/* Create the file name */
|
|
sprintf(buf, "/lib/lib%d.so", id);
|
|
|
|
/* Open the file up */
|
|
bprm.filename = buf;
|
|
bprm.file = open_exec(bprm.filename);
|
|
res = PTR_ERR(bprm.file);
|
|
if (IS_ERR(bprm.file))
|
|
return res;
|
|
|
|
res = kernel_read(bprm.file, bprm.buf, BINPRM_BUF_SIZE, &pos);
|
|
|
|
if (res >= 0)
|
|
res = load_flat_file(&bprm, libs, id, NULL);
|
|
|
|
allow_write_access(bprm.file);
|
|
fput(bprm.file);
|
|
|
|
return res;
|
|
}
|
|
|
|
#endif /* CONFIG_BINFMT_SHARED_FLAT */
|
|
/****************************************************************************/
|
|
|
|
/*
|
|
* These are the functions used to load flat style executables and shared
|
|
* libraries. There is no binary dependent code anywhere else.
|
|
*/
|
|
|
|
static int load_flat_binary(struct linux_binprm *bprm)
|
|
{
|
|
struct lib_info libinfo;
|
|
struct pt_regs *regs = current_pt_regs();
|
|
unsigned long stack_len = 0;
|
|
unsigned long start_addr;
|
|
int res;
|
|
int i, j;
|
|
|
|
memset(&libinfo, 0, sizeof(libinfo));
|
|
|
|
/*
|
|
* We have to add the size of our arguments to our stack size
|
|
* otherwise it's too easy for users to create stack overflows
|
|
* by passing in a huge argument list. And yes, we have to be
|
|
* pedantic and include space for the argv/envp array as it may have
|
|
* a lot of entries.
|
|
*/
|
|
#ifndef CONFIG_MMU
|
|
stack_len += PAGE_SIZE * MAX_ARG_PAGES - bprm->p; /* the strings */
|
|
#endif
|
|
stack_len += (bprm->argc + 1) * sizeof(char *); /* the argv array */
|
|
stack_len += (bprm->envc + 1) * sizeof(char *); /* the envp array */
|
|
stack_len = ALIGN(stack_len, FLAT_STACK_ALIGN);
|
|
|
|
res = load_flat_file(bprm, &libinfo, 0, &stack_len);
|
|
if (res < 0)
|
|
return res;
|
|
|
|
/* Update data segment pointers for all libraries */
|
|
for (i = 0; i < MAX_SHARED_LIBS; i++) {
|
|
if (!libinfo.lib_list[i].loaded)
|
|
continue;
|
|
for (j = 0; j < MAX_SHARED_LIBS; j++) {
|
|
unsigned long val = libinfo.lib_list[j].loaded ?
|
|
libinfo.lib_list[j].start_data : UNLOADED_LIB;
|
|
unsigned long __user *p = (unsigned long __user *)
|
|
libinfo.lib_list[i].start_data;
|
|
p -= j + 1;
|
|
if (put_user(val, p))
|
|
return -EFAULT;
|
|
}
|
|
}
|
|
|
|
set_binfmt(&flat_format);
|
|
|
|
#ifdef CONFIG_MMU
|
|
res = setup_arg_pages(bprm, STACK_TOP, EXSTACK_DEFAULT);
|
|
if (!res)
|
|
res = create_flat_tables(bprm, bprm->p);
|
|
#else
|
|
/* Stash our initial stack pointer into the mm structure */
|
|
current->mm->start_stack =
|
|
((current->mm->context.end_brk + stack_len + 3) & ~3) - 4;
|
|
pr_debug("sp=%lx\n", current->mm->start_stack);
|
|
|
|
/* copy the arg pages onto the stack */
|
|
res = transfer_args_to_stack(bprm, ¤t->mm->start_stack);
|
|
if (!res)
|
|
res = create_flat_tables(bprm, current->mm->start_stack);
|
|
#endif
|
|
if (res)
|
|
return res;
|
|
|
|
/* Fake some return addresses to ensure the call chain will
|
|
* initialise library in order for us. We are required to call
|
|
* lib 1 first, then 2, ... and finally the main program (id 0).
|
|
*/
|
|
start_addr = libinfo.lib_list[0].entry;
|
|
|
|
#ifdef CONFIG_BINFMT_SHARED_FLAT
|
|
for (i = MAX_SHARED_LIBS-1; i > 0; i--) {
|
|
if (libinfo.lib_list[i].loaded) {
|
|
/* Push previos first to call address */
|
|
unsigned long __user *sp;
|
|
current->mm->start_stack -= sizeof(unsigned long);
|
|
sp = (unsigned long __user *)current->mm->start_stack;
|
|
if (put_user(start_addr, sp))
|
|
return -EFAULT;
|
|
start_addr = libinfo.lib_list[i].entry;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#ifdef FLAT_PLAT_INIT
|
|
FLAT_PLAT_INIT(regs);
|
|
#endif
|
|
|
|
finalize_exec(bprm);
|
|
pr_debug("start_thread(regs=0x%p, entry=0x%lx, start_stack=0x%lx)\n",
|
|
regs, start_addr, current->mm->start_stack);
|
|
start_thread(regs, start_addr, current->mm->start_stack);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/****************************************************************************/
|
|
|
|
static int __init init_flat_binfmt(void)
|
|
{
|
|
register_binfmt(&flat_format);
|
|
return 0;
|
|
}
|
|
core_initcall(init_flat_binfmt);
|
|
|
|
/****************************************************************************/
|