linux-sg2042/include/asm-sh64/io.h

258 lines
7.3 KiB
C

#ifndef __ASM_SH64_IO_H
#define __ASM_SH64_IO_H
/*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*
* include/asm-sh64/io.h
*
* Copyright (C) 2000, 2001 Paolo Alberelli
* Copyright (C) 2003 Paul Mundt
*
*/
/*
* Convention:
* read{b,w,l}/write{b,w,l} are for PCI,
* while in{b,w,l}/out{b,w,l} are for ISA
* These may (will) be platform specific function.
*
* In addition, we have
* ctrl_in{b,w,l}/ctrl_out{b,w,l} for SuperH specific I/O.
* which are processor specific. Address should be the result of
* onchip_remap();
*/
#include <linux/compiler.h>
#include <asm/cache.h>
#include <asm/system.h>
#include <asm/page.h>
#include <asm-generic/iomap.h>
#define virt_to_bus virt_to_phys
#define bus_to_virt phys_to_virt
#define page_to_bus page_to_phys
/*
* Nothing overly special here.. instead of doing the same thing
* over and over again, we just define a set of sh64_in/out functions
* with an implicit size. The traditional read{b,w,l}/write{b,w,l}
* mess is wrapped to this, as are the SH-specific ctrl_in/out routines.
*/
static inline unsigned char sh64_in8(const volatile void __iomem *addr)
{
return *(volatile unsigned char __force *)addr;
}
static inline unsigned short sh64_in16(const volatile void __iomem *addr)
{
return *(volatile unsigned short __force *)addr;
}
static inline unsigned int sh64_in32(const volatile void __iomem *addr)
{
return *(volatile unsigned int __force *)addr;
}
static inline unsigned long long sh64_in64(const volatile void __iomem *addr)
{
return *(volatile unsigned long long __force *)addr;
}
static inline void sh64_out8(unsigned char b, volatile void __iomem *addr)
{
*(volatile unsigned char __force *)addr = b;
wmb();
}
static inline void sh64_out16(unsigned short b, volatile void __iomem *addr)
{
*(volatile unsigned short __force *)addr = b;
wmb();
}
static inline void sh64_out32(unsigned int b, volatile void __iomem *addr)
{
*(volatile unsigned int __force *)addr = b;
wmb();
}
static inline void sh64_out64(unsigned long long b, volatile void __iomem *addr)
{
*(volatile unsigned long long __force *)addr = b;
wmb();
}
#define readb(addr) sh64_in8(addr)
#define readw(addr) sh64_in16(addr)
#define readl(addr) sh64_in32(addr)
#define readb_relaxed(addr) sh64_in8(addr)
#define readw_relaxed(addr) sh64_in16(addr)
#define readl_relaxed(addr) sh64_in32(addr)
#define writeb(b, addr) sh64_out8(b, addr)
#define writew(b, addr) sh64_out16(b, addr)
#define writel(b, addr) sh64_out32(b, addr)
#define ctrl_inb(addr) sh64_in8(ioport_map(addr, 1))
#define ctrl_inw(addr) sh64_in16(ioport_map(addr, 2))
#define ctrl_inl(addr) sh64_in32(ioport_map(addr, 4))
#define ctrl_outb(b, addr) sh64_out8(b, ioport_map(addr, 1))
#define ctrl_outw(b, addr) sh64_out16(b, ioport_map(addr, 2))
#define ctrl_outl(b, addr) sh64_out32(b, ioport_map(addr, 4))
#define ioread8(addr) sh64_in8(addr)
#define ioread16(addr) sh64_in16(addr)
#define ioread32(addr) sh64_in32(addr)
#define iowrite8(b, addr) sh64_out8(b, addr)
#define iowrite16(b, addr) sh64_out16(b, addr)
#define iowrite32(b, addr) sh64_out32(b, addr)
#define inb(addr) ctrl_inb(addr)
#define inw(addr) ctrl_inw(addr)
#define inl(addr) ctrl_inl(addr)
#define outb(b, addr) ctrl_outb(b, addr)
#define outw(b, addr) ctrl_outw(b, addr)
#define outl(b, addr) ctrl_outl(b, addr)
void outsw(unsigned long port, const void *addr, unsigned long count);
void insw(unsigned long port, void *addr, unsigned long count);
void outsl(unsigned long port, const void *addr, unsigned long count);
void insl(unsigned long port, void *addr, unsigned long count);
#define __raw_readb readb
#define __raw_readw readw
#define __raw_readl readl
#define __raw_writeb writeb
#define __raw_writew writew
#define __raw_writel writel
void memcpy_toio(void __iomem *to, const void *from, long count);
void memcpy_fromio(void *to, void __iomem *from, long count);
#define mmiowb()
#ifdef __KERNEL__
#ifdef CONFIG_SH_CAYMAN
extern unsigned long smsc_superio_virt;
#endif
#ifdef CONFIG_PCI
extern unsigned long pciio_virt;
#endif
#define IO_SPACE_LIMIT 0xffffffff
/*
* Change virtual addresses to physical addresses and vv.
* These are trivial on the 1:1 Linux/SuperH mapping
*/
static inline unsigned long virt_to_phys(volatile void * address)
{
return __pa(address);
}
static inline void * phys_to_virt(unsigned long address)
{
return __va(address);
}
extern void * __ioremap(unsigned long phys_addr, unsigned long size,
unsigned long flags);
static inline void * ioremap(unsigned long phys_addr, unsigned long size)
{
return __ioremap(phys_addr, size, 1);
}
static inline void * ioremap_nocache (unsigned long phys_addr, unsigned long size)
{
return __ioremap(phys_addr, size, 0);
}
extern void iounmap(void *addr);
unsigned long onchip_remap(unsigned long addr, unsigned long size, const char* name);
extern void onchip_unmap(unsigned long vaddr);
static __inline__ int check_signature(volatile void __iomem *io_addr,
const unsigned char *signature, int length)
{
int retval = 0;
do {
if (readb(io_addr) != *signature)
goto out;
io_addr++;
signature++;
length--;
} while (length);
retval = 1;
out:
return retval;
}
/*
* The caches on some architectures aren't dma-coherent and have need to
* handle this in software. There are three types of operations that
* can be applied to dma buffers.
*
* - dma_cache_wback_inv(start, size) makes caches and RAM coherent by
* writing the content of the caches back to memory, if necessary.
* The function also invalidates the affected part of the caches as
* necessary before DMA transfers from outside to memory.
* - dma_cache_inv(start, size) invalidates the affected parts of the
* caches. Dirty lines of the caches may be written back or simply
* be discarded. This operation is necessary before dma operations
* to the memory.
* - dma_cache_wback(start, size) writes back any dirty lines but does
* not invalidate the cache. This can be used before DMA reads from
* memory,
*/
static __inline__ void dma_cache_wback_inv (unsigned long start, unsigned long size)
{
unsigned long s = start & L1_CACHE_ALIGN_MASK;
unsigned long e = (start + size) & L1_CACHE_ALIGN_MASK;
for (; s <= e; s += L1_CACHE_BYTES)
asm volatile ("ocbp %0, 0" : : "r" (s));
}
static __inline__ void dma_cache_inv (unsigned long start, unsigned long size)
{
// Note that caller has to be careful with overzealous
// invalidation should there be partial cache lines at the extremities
// of the specified range
unsigned long s = start & L1_CACHE_ALIGN_MASK;
unsigned long e = (start + size) & L1_CACHE_ALIGN_MASK;
for (; s <= e; s += L1_CACHE_BYTES)
asm volatile ("ocbi %0, 0" : : "r" (s));
}
static __inline__ void dma_cache_wback (unsigned long start, unsigned long size)
{
unsigned long s = start & L1_CACHE_ALIGN_MASK;
unsigned long e = (start + size) & L1_CACHE_ALIGN_MASK;
for (; s <= e; s += L1_CACHE_BYTES)
asm volatile ("ocbwb %0, 0" : : "r" (s));
}
/*
* Convert a physical pointer to a virtual kernel pointer for /dev/mem
* access
*/
#define xlate_dev_mem_ptr(p) __va(p)
/*
* Convert a virtual cached pointer to an uncached pointer
*/
#define xlate_dev_kmem_ptr(p) p
#endif /* __KERNEL__ */
#endif /* __ASM_SH64_IO_H */