linux-sg2042/drivers/iio/adc/qcom-vadc-common.c

415 lines
10 KiB
C

// SPDX-License-Identifier: GPL-2.0
#include <linux/bug.h>
#include <linux/kernel.h>
#include <linux/bitops.h>
#include <linux/math64.h>
#include <linux/log2.h>
#include <linux/err.h>
#include <linux/module.h>
#include "qcom-vadc-common.h"
/* Voltage to temperature */
static const struct vadc_map_pt adcmap_100k_104ef_104fb[] = {
{1758, -40},
{1742, -35},
{1719, -30},
{1691, -25},
{1654, -20},
{1608, -15},
{1551, -10},
{1483, -5},
{1404, 0},
{1315, 5},
{1218, 10},
{1114, 15},
{1007, 20},
{900, 25},
{795, 30},
{696, 35},
{605, 40},
{522, 45},
{448, 50},
{383, 55},
{327, 60},
{278, 65},
{237, 70},
{202, 75},
{172, 80},
{146, 85},
{125, 90},
{107, 95},
{92, 100},
{79, 105},
{68, 110},
{59, 115},
{51, 120},
{44, 125}
};
/*
* Voltage to temperature table for 100k pull up for NTCG104EF104 with
* 1.875V reference.
*/
static const struct vadc_map_pt adcmap_100k_104ef_104fb_1875_vref[] = {
{ 1831, -40000 },
{ 1814, -35000 },
{ 1791, -30000 },
{ 1761, -25000 },
{ 1723, -20000 },
{ 1675, -15000 },
{ 1616, -10000 },
{ 1545, -5000 },
{ 1463, 0 },
{ 1370, 5000 },
{ 1268, 10000 },
{ 1160, 15000 },
{ 1049, 20000 },
{ 937, 25000 },
{ 828, 30000 },
{ 726, 35000 },
{ 630, 40000 },
{ 544, 45000 },
{ 467, 50000 },
{ 399, 55000 },
{ 340, 60000 },
{ 290, 65000 },
{ 247, 70000 },
{ 209, 75000 },
{ 179, 80000 },
{ 153, 85000 },
{ 130, 90000 },
{ 112, 95000 },
{ 96, 100000 },
{ 82, 105000 },
{ 71, 110000 },
{ 62, 115000 },
{ 53, 120000 },
{ 46, 125000 },
};
static int qcom_vadc_scale_hw_calib_volt(
const struct vadc_prescale_ratio *prescale,
const struct adc5_data *data,
u16 adc_code, int *result_uv);
static int qcom_vadc_scale_hw_calib_therm(
const struct vadc_prescale_ratio *prescale,
const struct adc5_data *data,
u16 adc_code, int *result_mdec);
static int qcom_vadc_scale_hw_smb_temp(
const struct vadc_prescale_ratio *prescale,
const struct adc5_data *data,
u16 adc_code, int *result_mdec);
static int qcom_vadc_scale_hw_chg5_temp(
const struct vadc_prescale_ratio *prescale,
const struct adc5_data *data,
u16 adc_code, int *result_mdec);
static int qcom_vadc_scale_hw_calib_die_temp(
const struct vadc_prescale_ratio *prescale,
const struct adc5_data *data,
u16 adc_code, int *result_mdec);
static struct qcom_adc5_scale_type scale_adc5_fn[] = {
[SCALE_HW_CALIB_DEFAULT] = {qcom_vadc_scale_hw_calib_volt},
[SCALE_HW_CALIB_THERM_100K_PULLUP] = {qcom_vadc_scale_hw_calib_therm},
[SCALE_HW_CALIB_XOTHERM] = {qcom_vadc_scale_hw_calib_therm},
[SCALE_HW_CALIB_PMIC_THERM] = {qcom_vadc_scale_hw_calib_die_temp},
[SCALE_HW_CALIB_PM5_CHG_TEMP] = {qcom_vadc_scale_hw_chg5_temp},
[SCALE_HW_CALIB_PM5_SMB_TEMP] = {qcom_vadc_scale_hw_smb_temp},
};
static int qcom_vadc_map_voltage_temp(const struct vadc_map_pt *pts,
u32 tablesize, s32 input, int *output)
{
bool descending = 1;
u32 i = 0;
if (!pts)
return -EINVAL;
/* Check if table is descending or ascending */
if (tablesize > 1) {
if (pts[0].x < pts[1].x)
descending = 0;
}
while (i < tablesize) {
if ((descending) && (pts[i].x < input)) {
/* table entry is less than measured*/
/* value and table is descending, stop */
break;
} else if ((!descending) &&
(pts[i].x > input)) {
/* table entry is greater than measured*/
/*value and table is ascending, stop */
break;
}
i++;
}
if (i == 0) {
*output = pts[0].y;
} else if (i == tablesize) {
*output = pts[tablesize - 1].y;
} else {
/* result is between search_index and search_index-1 */
/* interpolate linearly */
*output = (((s32)((pts[i].y - pts[i - 1].y) *
(input - pts[i - 1].x)) /
(pts[i].x - pts[i - 1].x)) +
pts[i - 1].y);
}
return 0;
}
static void qcom_vadc_scale_calib(const struct vadc_linear_graph *calib_graph,
u16 adc_code,
bool absolute,
s64 *scale_voltage)
{
*scale_voltage = (adc_code - calib_graph->gnd);
*scale_voltage *= calib_graph->dx;
*scale_voltage = div64_s64(*scale_voltage, calib_graph->dy);
if (absolute)
*scale_voltage += calib_graph->dx;
if (*scale_voltage < 0)
*scale_voltage = 0;
}
static int qcom_vadc_scale_volt(const struct vadc_linear_graph *calib_graph,
const struct vadc_prescale_ratio *prescale,
bool absolute, u16 adc_code,
int *result_uv)
{
s64 voltage = 0, result = 0;
qcom_vadc_scale_calib(calib_graph, adc_code, absolute, &voltage);
voltage = voltage * prescale->den;
result = div64_s64(voltage, prescale->num);
*result_uv = result;
return 0;
}
static int qcom_vadc_scale_therm(const struct vadc_linear_graph *calib_graph,
const struct vadc_prescale_ratio *prescale,
bool absolute, u16 adc_code,
int *result_mdec)
{
s64 voltage = 0;
int ret;
qcom_vadc_scale_calib(calib_graph, adc_code, absolute, &voltage);
if (absolute)
voltage = div64_s64(voltage, 1000);
ret = qcom_vadc_map_voltage_temp(adcmap_100k_104ef_104fb,
ARRAY_SIZE(adcmap_100k_104ef_104fb),
voltage, result_mdec);
if (ret)
return ret;
*result_mdec *= 1000;
return 0;
}
static int qcom_vadc_scale_die_temp(const struct vadc_linear_graph *calib_graph,
const struct vadc_prescale_ratio *prescale,
bool absolute,
u16 adc_code, int *result_mdec)
{
s64 voltage = 0;
u64 temp; /* Temporary variable for do_div */
qcom_vadc_scale_calib(calib_graph, adc_code, absolute, &voltage);
if (voltage > 0) {
temp = voltage * prescale->den;
do_div(temp, prescale->num * 2);
voltage = temp;
} else {
voltage = 0;
}
voltage -= KELVINMIL_CELSIUSMIL;
*result_mdec = voltage;
return 0;
}
static int qcom_vadc_scale_chg_temp(const struct vadc_linear_graph *calib_graph,
const struct vadc_prescale_ratio *prescale,
bool absolute,
u16 adc_code, int *result_mdec)
{
s64 voltage = 0, result = 0;
qcom_vadc_scale_calib(calib_graph, adc_code, absolute, &voltage);
voltage = voltage * prescale->den;
voltage = div64_s64(voltage, prescale->num);
voltage = ((PMI_CHG_SCALE_1) * (voltage * 2));
voltage = (voltage + PMI_CHG_SCALE_2);
result = div64_s64(voltage, 1000000);
*result_mdec = result;
return 0;
}
static int qcom_vadc_scale_code_voltage_factor(u16 adc_code,
const struct vadc_prescale_ratio *prescale,
const struct adc5_data *data,
unsigned int factor)
{
s64 voltage, temp, adc_vdd_ref_mv = 1875;
/*
* The normal data range is between 0V to 1.875V. On cases where
* we read low voltage values, the ADC code can go beyond the
* range and the scale result is incorrect so we clamp the values
* for the cases where the code represents a value below 0V
*/
if (adc_code > VADC5_MAX_CODE)
adc_code = 0;
/* (ADC code * vref_vadc (1.875V)) / full_scale_code */
voltage = (s64) adc_code * adc_vdd_ref_mv * 1000;
voltage = div64_s64(voltage, data->full_scale_code_volt);
if (voltage > 0) {
voltage *= prescale->den;
temp = prescale->num * factor;
voltage = div64_s64(voltage, temp);
} else {
voltage = 0;
}
return (int) voltage;
}
static int qcom_vadc_scale_hw_calib_volt(
const struct vadc_prescale_ratio *prescale,
const struct adc5_data *data,
u16 adc_code, int *result_uv)
{
*result_uv = qcom_vadc_scale_code_voltage_factor(adc_code,
prescale, data, 1);
return 0;
}
static int qcom_vadc_scale_hw_calib_therm(
const struct vadc_prescale_ratio *prescale,
const struct adc5_data *data,
u16 adc_code, int *result_mdec)
{
int voltage;
voltage = qcom_vadc_scale_code_voltage_factor(adc_code,
prescale, data, 1000);
/* Map voltage to temperature from look-up table */
return qcom_vadc_map_voltage_temp(adcmap_100k_104ef_104fb_1875_vref,
ARRAY_SIZE(adcmap_100k_104ef_104fb_1875_vref),
voltage, result_mdec);
}
static int qcom_vadc_scale_hw_calib_die_temp(
const struct vadc_prescale_ratio *prescale,
const struct adc5_data *data,
u16 adc_code, int *result_mdec)
{
*result_mdec = qcom_vadc_scale_code_voltage_factor(adc_code,
prescale, data, 2);
*result_mdec -= KELVINMIL_CELSIUSMIL;
return 0;
}
static int qcom_vadc_scale_hw_smb_temp(
const struct vadc_prescale_ratio *prescale,
const struct adc5_data *data,
u16 adc_code, int *result_mdec)
{
*result_mdec = qcom_vadc_scale_code_voltage_factor(adc_code * 100,
prescale, data, PMIC5_SMB_TEMP_SCALE_FACTOR);
*result_mdec = PMIC5_SMB_TEMP_CONSTANT - *result_mdec;
return 0;
}
static int qcom_vadc_scale_hw_chg5_temp(
const struct vadc_prescale_ratio *prescale,
const struct adc5_data *data,
u16 adc_code, int *result_mdec)
{
*result_mdec = qcom_vadc_scale_code_voltage_factor(adc_code,
prescale, data, 4);
*result_mdec = PMIC5_CHG_TEMP_SCALE_FACTOR - *result_mdec;
return 0;
}
int qcom_vadc_scale(enum vadc_scale_fn_type scaletype,
const struct vadc_linear_graph *calib_graph,
const struct vadc_prescale_ratio *prescale,
bool absolute,
u16 adc_code, int *result)
{
switch (scaletype) {
case SCALE_DEFAULT:
return qcom_vadc_scale_volt(calib_graph, prescale,
absolute, adc_code,
result);
case SCALE_THERM_100K_PULLUP:
case SCALE_XOTHERM:
return qcom_vadc_scale_therm(calib_graph, prescale,
absolute, adc_code,
result);
case SCALE_PMIC_THERM:
return qcom_vadc_scale_die_temp(calib_graph, prescale,
absolute, adc_code,
result);
case SCALE_PMI_CHG_TEMP:
return qcom_vadc_scale_chg_temp(calib_graph, prescale,
absolute, adc_code,
result);
default:
return -EINVAL;
}
}
EXPORT_SYMBOL(qcom_vadc_scale);
int qcom_adc5_hw_scale(enum vadc_scale_fn_type scaletype,
const struct vadc_prescale_ratio *prescale,
const struct adc5_data *data,
u16 adc_code, int *result)
{
if (!(scaletype >= SCALE_HW_CALIB_DEFAULT &&
scaletype < SCALE_HW_CALIB_INVALID)) {
pr_err("Invalid scale type %d\n", scaletype);
return -EINVAL;
}
return scale_adc5_fn[scaletype].scale_fn(prescale, data,
adc_code, result);
}
EXPORT_SYMBOL(qcom_adc5_hw_scale);
int qcom_vadc_decimation_from_dt(u32 value)
{
if (!is_power_of_2(value) || value < VADC_DECIMATION_MIN ||
value > VADC_DECIMATION_MAX)
return -EINVAL;
return __ffs64(value / VADC_DECIMATION_MIN);
}
EXPORT_SYMBOL(qcom_vadc_decimation_from_dt);
MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("Qualcomm ADC common functionality");