linux-sg2042/fs/dax.c

1149 lines
32 KiB
C

/*
* fs/dax.c - Direct Access filesystem code
* Copyright (c) 2013-2014 Intel Corporation
* Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
* Author: Ross Zwisler <ross.zwisler@linux.intel.com>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*/
#include <linux/atomic.h>
#include <linux/blkdev.h>
#include <linux/buffer_head.h>
#include <linux/dax.h>
#include <linux/fs.h>
#include <linux/genhd.h>
#include <linux/highmem.h>
#include <linux/memcontrol.h>
#include <linux/mm.h>
#include <linux/mutex.h>
#include <linux/pagevec.h>
#include <linux/pmem.h>
#include <linux/sched.h>
#include <linux/uio.h>
#include <linux/vmstat.h>
#include <linux/pfn_t.h>
#include <linux/sizes.h>
static long dax_map_atomic(struct block_device *bdev, struct blk_dax_ctl *dax)
{
struct request_queue *q = bdev->bd_queue;
long rc = -EIO;
dax->addr = (void __pmem *) ERR_PTR(-EIO);
if (blk_queue_enter(q, true) != 0)
return rc;
rc = bdev_direct_access(bdev, dax);
if (rc < 0) {
dax->addr = (void __pmem *) ERR_PTR(rc);
blk_queue_exit(q);
return rc;
}
return rc;
}
static void dax_unmap_atomic(struct block_device *bdev,
const struct blk_dax_ctl *dax)
{
if (IS_ERR(dax->addr))
return;
blk_queue_exit(bdev->bd_queue);
}
struct page *read_dax_sector(struct block_device *bdev, sector_t n)
{
struct page *page = alloc_pages(GFP_KERNEL, 0);
struct blk_dax_ctl dax = {
.size = PAGE_SIZE,
.sector = n & ~((((int) PAGE_SIZE) / 512) - 1),
};
long rc;
if (!page)
return ERR_PTR(-ENOMEM);
rc = dax_map_atomic(bdev, &dax);
if (rc < 0)
return ERR_PTR(rc);
memcpy_from_pmem(page_address(page), dax.addr, PAGE_SIZE);
dax_unmap_atomic(bdev, &dax);
return page;
}
/*
* dax_clear_sectors() is called from within transaction context from XFS,
* and hence this means the stack from this point must follow GFP_NOFS
* semantics for all operations.
*/
int dax_clear_sectors(struct block_device *bdev, sector_t _sector, long _size)
{
struct blk_dax_ctl dax = {
.sector = _sector,
.size = _size,
};
might_sleep();
do {
long count, sz;
count = dax_map_atomic(bdev, &dax);
if (count < 0)
return count;
sz = min_t(long, count, SZ_128K);
clear_pmem(dax.addr, sz);
dax.size -= sz;
dax.sector += sz / 512;
dax_unmap_atomic(bdev, &dax);
cond_resched();
} while (dax.size);
wmb_pmem();
return 0;
}
EXPORT_SYMBOL_GPL(dax_clear_sectors);
/* the clear_pmem() calls are ordered by a wmb_pmem() in the caller */
static void dax_new_buf(void __pmem *addr, unsigned size, unsigned first,
loff_t pos, loff_t end)
{
loff_t final = end - pos + first; /* The final byte of the buffer */
if (first > 0)
clear_pmem(addr, first);
if (final < size)
clear_pmem(addr + final, size - final);
}
static bool buffer_written(struct buffer_head *bh)
{
return buffer_mapped(bh) && !buffer_unwritten(bh);
}
/*
* When ext4 encounters a hole, it returns without modifying the buffer_head
* which means that we can't trust b_size. To cope with this, we set b_state
* to 0 before calling get_block and, if any bit is set, we know we can trust
* b_size. Unfortunate, really, since ext4 knows precisely how long a hole is
* and would save us time calling get_block repeatedly.
*/
static bool buffer_size_valid(struct buffer_head *bh)
{
return bh->b_state != 0;
}
static sector_t to_sector(const struct buffer_head *bh,
const struct inode *inode)
{
sector_t sector = bh->b_blocknr << (inode->i_blkbits - 9);
return sector;
}
static ssize_t dax_io(struct inode *inode, struct iov_iter *iter,
loff_t start, loff_t end, get_block_t get_block,
struct buffer_head *bh)
{
loff_t pos = start, max = start, bh_max = start;
bool hole = false, need_wmb = false;
struct block_device *bdev = NULL;
int rw = iov_iter_rw(iter), rc;
long map_len = 0;
struct blk_dax_ctl dax = {
.addr = (void __pmem *) ERR_PTR(-EIO),
};
if (rw == READ)
end = min(end, i_size_read(inode));
while (pos < end) {
size_t len;
if (pos == max) {
unsigned blkbits = inode->i_blkbits;
long page = pos >> PAGE_SHIFT;
sector_t block = page << (PAGE_SHIFT - blkbits);
unsigned first = pos - (block << blkbits);
long size;
if (pos == bh_max) {
bh->b_size = PAGE_ALIGN(end - pos);
bh->b_state = 0;
rc = get_block(inode, block, bh, rw == WRITE);
if (rc)
break;
if (!buffer_size_valid(bh))
bh->b_size = 1 << blkbits;
bh_max = pos - first + bh->b_size;
bdev = bh->b_bdev;
} else {
unsigned done = bh->b_size -
(bh_max - (pos - first));
bh->b_blocknr += done >> blkbits;
bh->b_size -= done;
}
hole = rw == READ && !buffer_written(bh);
if (hole) {
size = bh->b_size - first;
} else {
dax_unmap_atomic(bdev, &dax);
dax.sector = to_sector(bh, inode);
dax.size = bh->b_size;
map_len = dax_map_atomic(bdev, &dax);
if (map_len < 0) {
rc = map_len;
break;
}
if (buffer_unwritten(bh) || buffer_new(bh)) {
dax_new_buf(dax.addr, map_len, first,
pos, end);
need_wmb = true;
}
dax.addr += first;
size = map_len - first;
}
max = min(pos + size, end);
}
if (iov_iter_rw(iter) == WRITE) {
len = copy_from_iter_pmem(dax.addr, max - pos, iter);
need_wmb = true;
} else if (!hole)
len = copy_to_iter((void __force *) dax.addr, max - pos,
iter);
else
len = iov_iter_zero(max - pos, iter);
if (!len) {
rc = -EFAULT;
break;
}
pos += len;
if (!IS_ERR(dax.addr))
dax.addr += len;
}
if (need_wmb)
wmb_pmem();
dax_unmap_atomic(bdev, &dax);
return (pos == start) ? rc : pos - start;
}
/**
* dax_do_io - Perform I/O to a DAX file
* @iocb: The control block for this I/O
* @inode: The file which the I/O is directed at
* @iter: The addresses to do I/O from or to
* @pos: The file offset where the I/O starts
* @get_block: The filesystem method used to translate file offsets to blocks
* @end_io: A filesystem callback for I/O completion
* @flags: See below
*
* This function uses the same locking scheme as do_blockdev_direct_IO:
* If @flags has DIO_LOCKING set, we assume that the i_mutex is held by the
* caller for writes. For reads, we take and release the i_mutex ourselves.
* If DIO_LOCKING is not set, the filesystem takes care of its own locking.
* As with do_blockdev_direct_IO(), we increment i_dio_count while the I/O
* is in progress.
*/
ssize_t dax_do_io(struct kiocb *iocb, struct inode *inode,
struct iov_iter *iter, loff_t pos, get_block_t get_block,
dio_iodone_t end_io, int flags)
{
struct buffer_head bh;
ssize_t retval = -EINVAL;
loff_t end = pos + iov_iter_count(iter);
memset(&bh, 0, sizeof(bh));
bh.b_bdev = inode->i_sb->s_bdev;
if ((flags & DIO_LOCKING) && iov_iter_rw(iter) == READ) {
struct address_space *mapping = inode->i_mapping;
inode_lock(inode);
retval = filemap_write_and_wait_range(mapping, pos, end - 1);
if (retval) {
inode_unlock(inode);
goto out;
}
}
/* Protects against truncate */
if (!(flags & DIO_SKIP_DIO_COUNT))
inode_dio_begin(inode);
retval = dax_io(inode, iter, pos, end, get_block, &bh);
if ((flags & DIO_LOCKING) && iov_iter_rw(iter) == READ)
inode_unlock(inode);
if ((retval > 0) && end_io)
end_io(iocb, pos, retval, bh.b_private);
if (!(flags & DIO_SKIP_DIO_COUNT))
inode_dio_end(inode);
out:
return retval;
}
EXPORT_SYMBOL_GPL(dax_do_io);
/*
* The user has performed a load from a hole in the file. Allocating
* a new page in the file would cause excessive storage usage for
* workloads with sparse files. We allocate a page cache page instead.
* We'll kick it out of the page cache if it's ever written to,
* otherwise it will simply fall out of the page cache under memory
* pressure without ever having been dirtied.
*/
static int dax_load_hole(struct address_space *mapping, struct page *page,
struct vm_fault *vmf)
{
unsigned long size;
struct inode *inode = mapping->host;
if (!page)
page = find_or_create_page(mapping, vmf->pgoff,
GFP_KERNEL | __GFP_ZERO);
if (!page)
return VM_FAULT_OOM;
/* Recheck i_size under page lock to avoid truncate race */
size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
if (vmf->pgoff >= size) {
unlock_page(page);
page_cache_release(page);
return VM_FAULT_SIGBUS;
}
vmf->page = page;
return VM_FAULT_LOCKED;
}
static int copy_user_bh(struct page *to, struct inode *inode,
struct buffer_head *bh, unsigned long vaddr)
{
struct blk_dax_ctl dax = {
.sector = to_sector(bh, inode),
.size = bh->b_size,
};
struct block_device *bdev = bh->b_bdev;
void *vto;
if (dax_map_atomic(bdev, &dax) < 0)
return PTR_ERR(dax.addr);
vto = kmap_atomic(to);
copy_user_page(vto, (void __force *)dax.addr, vaddr, to);
kunmap_atomic(vto);
dax_unmap_atomic(bdev, &dax);
return 0;
}
#define NO_SECTOR -1
#define DAX_PMD_INDEX(page_index) (page_index & (PMD_MASK >> PAGE_CACHE_SHIFT))
static int dax_radix_entry(struct address_space *mapping, pgoff_t index,
sector_t sector, bool pmd_entry, bool dirty)
{
struct radix_tree_root *page_tree = &mapping->page_tree;
pgoff_t pmd_index = DAX_PMD_INDEX(index);
int type, error = 0;
void *entry;
WARN_ON_ONCE(pmd_entry && !dirty);
if (dirty)
__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
spin_lock_irq(&mapping->tree_lock);
entry = radix_tree_lookup(page_tree, pmd_index);
if (entry && RADIX_DAX_TYPE(entry) == RADIX_DAX_PMD) {
index = pmd_index;
goto dirty;
}
entry = radix_tree_lookup(page_tree, index);
if (entry) {
type = RADIX_DAX_TYPE(entry);
if (WARN_ON_ONCE(type != RADIX_DAX_PTE &&
type != RADIX_DAX_PMD)) {
error = -EIO;
goto unlock;
}
if (!pmd_entry || type == RADIX_DAX_PMD)
goto dirty;
/*
* We only insert dirty PMD entries into the radix tree. This
* means we don't need to worry about removing a dirty PTE
* entry and inserting a clean PMD entry, thus reducing the
* range we would flush with a follow-up fsync/msync call.
*/
radix_tree_delete(&mapping->page_tree, index);
mapping->nrexceptional--;
}
if (sector == NO_SECTOR) {
/*
* This can happen during correct operation if our pfn_mkwrite
* fault raced against a hole punch operation. If this
* happens the pte that was hole punched will have been
* unmapped and the radix tree entry will have been removed by
* the time we are called, but the call will still happen. We
* will return all the way up to wp_pfn_shared(), where the
* pte_same() check will fail, eventually causing page fault
* to be retried by the CPU.
*/
goto unlock;
}
error = radix_tree_insert(page_tree, index,
RADIX_DAX_ENTRY(sector, pmd_entry));
if (error)
goto unlock;
mapping->nrexceptional++;
dirty:
if (dirty)
radix_tree_tag_set(page_tree, index, PAGECACHE_TAG_DIRTY);
unlock:
spin_unlock_irq(&mapping->tree_lock);
return error;
}
static int dax_writeback_one(struct block_device *bdev,
struct address_space *mapping, pgoff_t index, void *entry)
{
struct radix_tree_root *page_tree = &mapping->page_tree;
int type = RADIX_DAX_TYPE(entry);
struct radix_tree_node *node;
struct blk_dax_ctl dax;
void **slot;
int ret = 0;
spin_lock_irq(&mapping->tree_lock);
/*
* Regular page slots are stabilized by the page lock even
* without the tree itself locked. These unlocked entries
* need verification under the tree lock.
*/
if (!__radix_tree_lookup(page_tree, index, &node, &slot))
goto unlock;
if (*slot != entry)
goto unlock;
/* another fsync thread may have already written back this entry */
if (!radix_tree_tag_get(page_tree, index, PAGECACHE_TAG_TOWRITE))
goto unlock;
if (WARN_ON_ONCE(type != RADIX_DAX_PTE && type != RADIX_DAX_PMD)) {
ret = -EIO;
goto unlock;
}
dax.sector = RADIX_DAX_SECTOR(entry);
dax.size = (type == RADIX_DAX_PMD ? PMD_SIZE : PAGE_SIZE);
spin_unlock_irq(&mapping->tree_lock);
/*
* We cannot hold tree_lock while calling dax_map_atomic() because it
* eventually calls cond_resched().
*/
ret = dax_map_atomic(bdev, &dax);
if (ret < 0)
return ret;
if (WARN_ON_ONCE(ret < dax.size)) {
ret = -EIO;
goto unmap;
}
wb_cache_pmem(dax.addr, dax.size);
spin_lock_irq(&mapping->tree_lock);
radix_tree_tag_clear(page_tree, index, PAGECACHE_TAG_TOWRITE);
spin_unlock_irq(&mapping->tree_lock);
unmap:
dax_unmap_atomic(bdev, &dax);
return ret;
unlock:
spin_unlock_irq(&mapping->tree_lock);
return ret;
}
/*
* Flush the mapping to the persistent domain within the byte range of [start,
* end]. This is required by data integrity operations to ensure file data is
* on persistent storage prior to completion of the operation.
*/
int dax_writeback_mapping_range(struct address_space *mapping,
struct block_device *bdev, struct writeback_control *wbc)
{
struct inode *inode = mapping->host;
pgoff_t start_index, end_index, pmd_index;
pgoff_t indices[PAGEVEC_SIZE];
struct pagevec pvec;
bool done = false;
int i, ret = 0;
void *entry;
if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT))
return -EIO;
if (!mapping->nrexceptional || wbc->sync_mode != WB_SYNC_ALL)
return 0;
start_index = wbc->range_start >> PAGE_CACHE_SHIFT;
end_index = wbc->range_end >> PAGE_CACHE_SHIFT;
pmd_index = DAX_PMD_INDEX(start_index);
rcu_read_lock();
entry = radix_tree_lookup(&mapping->page_tree, pmd_index);
rcu_read_unlock();
/* see if the start of our range is covered by a PMD entry */
if (entry && RADIX_DAX_TYPE(entry) == RADIX_DAX_PMD)
start_index = pmd_index;
tag_pages_for_writeback(mapping, start_index, end_index);
pagevec_init(&pvec, 0);
while (!done) {
pvec.nr = find_get_entries_tag(mapping, start_index,
PAGECACHE_TAG_TOWRITE, PAGEVEC_SIZE,
pvec.pages, indices);
if (pvec.nr == 0)
break;
for (i = 0; i < pvec.nr; i++) {
if (indices[i] > end_index) {
done = true;
break;
}
ret = dax_writeback_one(bdev, mapping, indices[i],
pvec.pages[i]);
if (ret < 0)
return ret;
}
}
wmb_pmem();
return 0;
}
EXPORT_SYMBOL_GPL(dax_writeback_mapping_range);
static int dax_insert_mapping(struct inode *inode, struct buffer_head *bh,
struct vm_area_struct *vma, struct vm_fault *vmf)
{
unsigned long vaddr = (unsigned long)vmf->virtual_address;
struct address_space *mapping = inode->i_mapping;
struct block_device *bdev = bh->b_bdev;
struct blk_dax_ctl dax = {
.sector = to_sector(bh, inode),
.size = bh->b_size,
};
pgoff_t size;
int error;
i_mmap_lock_read(mapping);
/*
* Check truncate didn't happen while we were allocating a block.
* If it did, this block may or may not be still allocated to the
* file. We can't tell the filesystem to free it because we can't
* take i_mutex here. In the worst case, the file still has blocks
* allocated past the end of the file.
*/
size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
if (unlikely(vmf->pgoff >= size)) {
error = -EIO;
goto out;
}
if (dax_map_atomic(bdev, &dax) < 0) {
error = PTR_ERR(dax.addr);
goto out;
}
if (buffer_unwritten(bh) || buffer_new(bh)) {
clear_pmem(dax.addr, PAGE_SIZE);
wmb_pmem();
}
dax_unmap_atomic(bdev, &dax);
error = dax_radix_entry(mapping, vmf->pgoff, dax.sector, false,
vmf->flags & FAULT_FLAG_WRITE);
if (error)
goto out;
error = vm_insert_mixed(vma, vaddr, dax.pfn);
out:
i_mmap_unlock_read(mapping);
return error;
}
/**
* __dax_fault - handle a page fault on a DAX file
* @vma: The virtual memory area where the fault occurred
* @vmf: The description of the fault
* @get_block: The filesystem method used to translate file offsets to blocks
* @complete_unwritten: The filesystem method used to convert unwritten blocks
* to written so the data written to them is exposed. This is required for
* required by write faults for filesystems that will return unwritten
* extent mappings from @get_block, but it is optional for reads as
* dax_insert_mapping() will always zero unwritten blocks. If the fs does
* not support unwritten extents, the it should pass NULL.
*
* When a page fault occurs, filesystems may call this helper in their
* fault handler for DAX files. __dax_fault() assumes the caller has done all
* the necessary locking for the page fault to proceed successfully.
*/
int __dax_fault(struct vm_area_struct *vma, struct vm_fault *vmf,
get_block_t get_block, dax_iodone_t complete_unwritten)
{
struct file *file = vma->vm_file;
struct address_space *mapping = file->f_mapping;
struct inode *inode = mapping->host;
struct page *page;
struct buffer_head bh;
unsigned long vaddr = (unsigned long)vmf->virtual_address;
unsigned blkbits = inode->i_blkbits;
sector_t block;
pgoff_t size;
int error;
int major = 0;
size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
if (vmf->pgoff >= size)
return VM_FAULT_SIGBUS;
memset(&bh, 0, sizeof(bh));
block = (sector_t)vmf->pgoff << (PAGE_SHIFT - blkbits);
bh.b_bdev = inode->i_sb->s_bdev;
bh.b_size = PAGE_SIZE;
repeat:
page = find_get_page(mapping, vmf->pgoff);
if (page) {
if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
page_cache_release(page);
return VM_FAULT_RETRY;
}
if (unlikely(page->mapping != mapping)) {
unlock_page(page);
page_cache_release(page);
goto repeat;
}
size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
if (unlikely(vmf->pgoff >= size)) {
/*
* We have a struct page covering a hole in the file
* from a read fault and we've raced with a truncate
*/
error = -EIO;
goto unlock_page;
}
}
error = get_block(inode, block, &bh, 0);
if (!error && (bh.b_size < PAGE_SIZE))
error = -EIO; /* fs corruption? */
if (error)
goto unlock_page;
if (!buffer_mapped(&bh) && !buffer_unwritten(&bh) && !vmf->cow_page) {
if (vmf->flags & FAULT_FLAG_WRITE) {
error = get_block(inode, block, &bh, 1);
count_vm_event(PGMAJFAULT);
mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
major = VM_FAULT_MAJOR;
if (!error && (bh.b_size < PAGE_SIZE))
error = -EIO;
if (error)
goto unlock_page;
} else {
return dax_load_hole(mapping, page, vmf);
}
}
if (vmf->cow_page) {
struct page *new_page = vmf->cow_page;
if (buffer_written(&bh))
error = copy_user_bh(new_page, inode, &bh, vaddr);
else
clear_user_highpage(new_page, vaddr);
if (error)
goto unlock_page;
vmf->page = page;
if (!page) {
i_mmap_lock_read(mapping);
/* Check we didn't race with truncate */
size = (i_size_read(inode) + PAGE_SIZE - 1) >>
PAGE_SHIFT;
if (vmf->pgoff >= size) {
i_mmap_unlock_read(mapping);
error = -EIO;
goto out;
}
}
return VM_FAULT_LOCKED;
}
/* Check we didn't race with a read fault installing a new page */
if (!page && major)
page = find_lock_page(mapping, vmf->pgoff);
if (page) {
unmap_mapping_range(mapping, vmf->pgoff << PAGE_SHIFT,
PAGE_CACHE_SIZE, 0);
delete_from_page_cache(page);
unlock_page(page);
page_cache_release(page);
page = NULL;
}
/*
* If we successfully insert the new mapping over an unwritten extent,
* we need to ensure we convert the unwritten extent. If there is an
* error inserting the mapping, the filesystem needs to leave it as
* unwritten to prevent exposure of the stale underlying data to
* userspace, but we still need to call the completion function so
* the private resources on the mapping buffer can be released. We
* indicate what the callback should do via the uptodate variable, same
* as for normal BH based IO completions.
*/
error = dax_insert_mapping(inode, &bh, vma, vmf);
if (buffer_unwritten(&bh)) {
if (complete_unwritten)
complete_unwritten(&bh, !error);
else
WARN_ON_ONCE(!(vmf->flags & FAULT_FLAG_WRITE));
}
out:
if (error == -ENOMEM)
return VM_FAULT_OOM | major;
/* -EBUSY is fine, somebody else faulted on the same PTE */
if ((error < 0) && (error != -EBUSY))
return VM_FAULT_SIGBUS | major;
return VM_FAULT_NOPAGE | major;
unlock_page:
if (page) {
unlock_page(page);
page_cache_release(page);
}
goto out;
}
EXPORT_SYMBOL(__dax_fault);
/**
* dax_fault - handle a page fault on a DAX file
* @vma: The virtual memory area where the fault occurred
* @vmf: The description of the fault
* @get_block: The filesystem method used to translate file offsets to blocks
*
* When a page fault occurs, filesystems may call this helper in their
* fault handler for DAX files.
*/
int dax_fault(struct vm_area_struct *vma, struct vm_fault *vmf,
get_block_t get_block, dax_iodone_t complete_unwritten)
{
int result;
struct super_block *sb = file_inode(vma->vm_file)->i_sb;
if (vmf->flags & FAULT_FLAG_WRITE) {
sb_start_pagefault(sb);
file_update_time(vma->vm_file);
}
result = __dax_fault(vma, vmf, get_block, complete_unwritten);
if (vmf->flags & FAULT_FLAG_WRITE)
sb_end_pagefault(sb);
return result;
}
EXPORT_SYMBOL_GPL(dax_fault);
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
* The 'colour' (ie low bits) within a PMD of a page offset. This comes up
* more often than one might expect in the below function.
*/
#define PG_PMD_COLOUR ((PMD_SIZE >> PAGE_SHIFT) - 1)
static void __dax_dbg(struct buffer_head *bh, unsigned long address,
const char *reason, const char *fn)
{
if (bh) {
char bname[BDEVNAME_SIZE];
bdevname(bh->b_bdev, bname);
pr_debug("%s: %s addr: %lx dev %s state %lx start %lld "
"length %zd fallback: %s\n", fn, current->comm,
address, bname, bh->b_state, (u64)bh->b_blocknr,
bh->b_size, reason);
} else {
pr_debug("%s: %s addr: %lx fallback: %s\n", fn,
current->comm, address, reason);
}
}
#define dax_pmd_dbg(bh, address, reason) __dax_dbg(bh, address, reason, "dax_pmd")
int __dax_pmd_fault(struct vm_area_struct *vma, unsigned long address,
pmd_t *pmd, unsigned int flags, get_block_t get_block,
dax_iodone_t complete_unwritten)
{
struct file *file = vma->vm_file;
struct address_space *mapping = file->f_mapping;
struct inode *inode = mapping->host;
struct buffer_head bh;
unsigned blkbits = inode->i_blkbits;
unsigned long pmd_addr = address & PMD_MASK;
bool write = flags & FAULT_FLAG_WRITE;
struct block_device *bdev;
pgoff_t size, pgoff;
sector_t block;
int error, result = 0;
bool alloc = false;
/* dax pmd mappings require pfn_t_devmap() */
if (!IS_ENABLED(CONFIG_FS_DAX_PMD))
return VM_FAULT_FALLBACK;
/* Fall back to PTEs if we're going to COW */
if (write && !(vma->vm_flags & VM_SHARED)) {
split_huge_pmd(vma, pmd, address);
dax_pmd_dbg(NULL, address, "cow write");
return VM_FAULT_FALLBACK;
}
/* If the PMD would extend outside the VMA */
if (pmd_addr < vma->vm_start) {
dax_pmd_dbg(NULL, address, "vma start unaligned");
return VM_FAULT_FALLBACK;
}
if ((pmd_addr + PMD_SIZE) > vma->vm_end) {
dax_pmd_dbg(NULL, address, "vma end unaligned");
return VM_FAULT_FALLBACK;
}
pgoff = linear_page_index(vma, pmd_addr);
size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
if (pgoff >= size)
return VM_FAULT_SIGBUS;
/* If the PMD would cover blocks out of the file */
if ((pgoff | PG_PMD_COLOUR) >= size) {
dax_pmd_dbg(NULL, address,
"offset + huge page size > file size");
return VM_FAULT_FALLBACK;
}
memset(&bh, 0, sizeof(bh));
bh.b_bdev = inode->i_sb->s_bdev;
block = (sector_t)pgoff << (PAGE_SHIFT - blkbits);
bh.b_size = PMD_SIZE;
if (get_block(inode, block, &bh, 0) != 0)
return VM_FAULT_SIGBUS;
if (!buffer_mapped(&bh) && write) {
if (get_block(inode, block, &bh, 1) != 0)
return VM_FAULT_SIGBUS;
alloc = true;
}
bdev = bh.b_bdev;
/*
* If the filesystem isn't willing to tell us the length of a hole,
* just fall back to PTEs. Calling get_block 512 times in a loop
* would be silly.
*/
if (!buffer_size_valid(&bh) || bh.b_size < PMD_SIZE) {
dax_pmd_dbg(&bh, address, "allocated block too small");
return VM_FAULT_FALLBACK;
}
/*
* If we allocated new storage, make sure no process has any
* zero pages covering this hole
*/
if (alloc) {
loff_t lstart = pgoff << PAGE_SHIFT;
loff_t lend = lstart + PMD_SIZE - 1; /* inclusive */
truncate_pagecache_range(inode, lstart, lend);
}
i_mmap_lock_read(mapping);
/*
* If a truncate happened while we were allocating blocks, we may
* leave blocks allocated to the file that are beyond EOF. We can't
* take i_mutex here, so just leave them hanging; they'll be freed
* when the file is deleted.
*/
size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
if (pgoff >= size) {
result = VM_FAULT_SIGBUS;
goto out;
}
if ((pgoff | PG_PMD_COLOUR) >= size) {
dax_pmd_dbg(&bh, address,
"offset + huge page size > file size");
goto fallback;
}
if (!write && !buffer_mapped(&bh) && buffer_uptodate(&bh)) {
spinlock_t *ptl;
pmd_t entry;
struct page *zero_page = get_huge_zero_page();
if (unlikely(!zero_page)) {
dax_pmd_dbg(&bh, address, "no zero page");
goto fallback;
}
ptl = pmd_lock(vma->vm_mm, pmd);
if (!pmd_none(*pmd)) {
spin_unlock(ptl);
dax_pmd_dbg(&bh, address, "pmd already present");
goto fallback;
}
dev_dbg(part_to_dev(bdev->bd_part),
"%s: %s addr: %lx pfn: <zero> sect: %llx\n",
__func__, current->comm, address,
(unsigned long long) to_sector(&bh, inode));
entry = mk_pmd(zero_page, vma->vm_page_prot);
entry = pmd_mkhuge(entry);
set_pmd_at(vma->vm_mm, pmd_addr, pmd, entry);
result = VM_FAULT_NOPAGE;
spin_unlock(ptl);
} else {
struct blk_dax_ctl dax = {
.sector = to_sector(&bh, inode),
.size = PMD_SIZE,
};
long length = dax_map_atomic(bdev, &dax);
if (length < 0) {
result = VM_FAULT_SIGBUS;
goto out;
}
if (length < PMD_SIZE) {
dax_pmd_dbg(&bh, address, "dax-length too small");
dax_unmap_atomic(bdev, &dax);
goto fallback;
}
if (pfn_t_to_pfn(dax.pfn) & PG_PMD_COLOUR) {
dax_pmd_dbg(&bh, address, "pfn unaligned");
dax_unmap_atomic(bdev, &dax);
goto fallback;
}
if (!pfn_t_devmap(dax.pfn)) {
dax_unmap_atomic(bdev, &dax);
dax_pmd_dbg(&bh, address, "pfn not in memmap");
goto fallback;
}
if (buffer_unwritten(&bh) || buffer_new(&bh)) {
clear_pmem(dax.addr, PMD_SIZE);
wmb_pmem();
count_vm_event(PGMAJFAULT);
mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
result |= VM_FAULT_MAJOR;
}
dax_unmap_atomic(bdev, &dax);
/*
* For PTE faults we insert a radix tree entry for reads, and
* leave it clean. Then on the first write we dirty the radix
* tree entry via the dax_pfn_mkwrite() path. This sequence
* allows the dax_pfn_mkwrite() call to be simpler and avoid a
* call into get_block() to translate the pgoff to a sector in
* order to be able to create a new radix tree entry.
*
* The PMD path doesn't have an equivalent to
* dax_pfn_mkwrite(), though, so for a read followed by a
* write we traverse all the way through __dax_pmd_fault()
* twice. This means we can just skip inserting a radix tree
* entry completely on the initial read and just wait until
* the write to insert a dirty entry.
*/
if (write) {
error = dax_radix_entry(mapping, pgoff, dax.sector,
true, true);
if (error) {
dax_pmd_dbg(&bh, address,
"PMD radix insertion failed");
goto fallback;
}
}
dev_dbg(part_to_dev(bdev->bd_part),
"%s: %s addr: %lx pfn: %lx sect: %llx\n",
__func__, current->comm, address,
pfn_t_to_pfn(dax.pfn),
(unsigned long long) dax.sector);
result |= vmf_insert_pfn_pmd(vma, address, pmd,
dax.pfn, write);
}
out:
i_mmap_unlock_read(mapping);
if (buffer_unwritten(&bh))
complete_unwritten(&bh, !(result & VM_FAULT_ERROR));
return result;
fallback:
count_vm_event(THP_FAULT_FALLBACK);
result = VM_FAULT_FALLBACK;
goto out;
}
EXPORT_SYMBOL_GPL(__dax_pmd_fault);
/**
* dax_pmd_fault - handle a PMD fault on a DAX file
* @vma: The virtual memory area where the fault occurred
* @vmf: The description of the fault
* @get_block: The filesystem method used to translate file offsets to blocks
*
* When a page fault occurs, filesystems may call this helper in their
* pmd_fault handler for DAX files.
*/
int dax_pmd_fault(struct vm_area_struct *vma, unsigned long address,
pmd_t *pmd, unsigned int flags, get_block_t get_block,
dax_iodone_t complete_unwritten)
{
int result;
struct super_block *sb = file_inode(vma->vm_file)->i_sb;
if (flags & FAULT_FLAG_WRITE) {
sb_start_pagefault(sb);
file_update_time(vma->vm_file);
}
result = __dax_pmd_fault(vma, address, pmd, flags, get_block,
complete_unwritten);
if (flags & FAULT_FLAG_WRITE)
sb_end_pagefault(sb);
return result;
}
EXPORT_SYMBOL_GPL(dax_pmd_fault);
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
/**
* dax_pfn_mkwrite - handle first write to DAX page
* @vma: The virtual memory area where the fault occurred
* @vmf: The description of the fault
*/
int dax_pfn_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
{
struct file *file = vma->vm_file;
/*
* We pass NO_SECTOR to dax_radix_entry() because we expect that a
* RADIX_DAX_PTE entry already exists in the radix tree from a
* previous call to __dax_fault(). We just want to look up that PTE
* entry using vmf->pgoff and make sure the dirty tag is set. This
* saves us from having to make a call to get_block() here to look
* up the sector.
*/
dax_radix_entry(file->f_mapping, vmf->pgoff, NO_SECTOR, false, true);
return VM_FAULT_NOPAGE;
}
EXPORT_SYMBOL_GPL(dax_pfn_mkwrite);
/**
* dax_zero_page_range - zero a range within a page of a DAX file
* @inode: The file being truncated
* @from: The file offset that is being truncated to
* @length: The number of bytes to zero
* @get_block: The filesystem method used to translate file offsets to blocks
*
* This function can be called by a filesystem when it is zeroing part of a
* page in a DAX file. This is intended for hole-punch operations. If
* you are truncating a file, the helper function dax_truncate_page() may be
* more convenient.
*
* We work in terms of PAGE_CACHE_SIZE here for commonality with
* block_truncate_page(), but we could go down to PAGE_SIZE if the filesystem
* took care of disposing of the unnecessary blocks. Even if the filesystem
* block size is smaller than PAGE_SIZE, we have to zero the rest of the page
* since the file might be mmapped.
*/
int dax_zero_page_range(struct inode *inode, loff_t from, unsigned length,
get_block_t get_block)
{
struct buffer_head bh;
pgoff_t index = from >> PAGE_CACHE_SHIFT;
unsigned offset = from & (PAGE_CACHE_SIZE-1);
int err;
/* Block boundary? Nothing to do */
if (!length)
return 0;
BUG_ON((offset + length) > PAGE_CACHE_SIZE);
memset(&bh, 0, sizeof(bh));
bh.b_bdev = inode->i_sb->s_bdev;
bh.b_size = PAGE_CACHE_SIZE;
err = get_block(inode, index, &bh, 0);
if (err < 0)
return err;
if (buffer_written(&bh)) {
struct block_device *bdev = bh.b_bdev;
struct blk_dax_ctl dax = {
.sector = to_sector(&bh, inode),
.size = PAGE_CACHE_SIZE,
};
if (dax_map_atomic(bdev, &dax) < 0)
return PTR_ERR(dax.addr);
clear_pmem(dax.addr + offset, length);
wmb_pmem();
dax_unmap_atomic(bdev, &dax);
}
return 0;
}
EXPORT_SYMBOL_GPL(dax_zero_page_range);
/**
* dax_truncate_page - handle a partial page being truncated in a DAX file
* @inode: The file being truncated
* @from: The file offset that is being truncated to
* @get_block: The filesystem method used to translate file offsets to blocks
*
* Similar to block_truncate_page(), this function can be called by a
* filesystem when it is truncating a DAX file to handle the partial page.
*
* We work in terms of PAGE_CACHE_SIZE here for commonality with
* block_truncate_page(), but we could go down to PAGE_SIZE if the filesystem
* took care of disposing of the unnecessary blocks. Even if the filesystem
* block size is smaller than PAGE_SIZE, we have to zero the rest of the page
* since the file might be mmapped.
*/
int dax_truncate_page(struct inode *inode, loff_t from, get_block_t get_block)
{
unsigned length = PAGE_CACHE_ALIGN(from) - from;
return dax_zero_page_range(inode, from, length, get_block);
}
EXPORT_SYMBOL_GPL(dax_truncate_page);