1571 lines
41 KiB
C
1571 lines
41 KiB
C
/*
|
|
* GICv3 ITS emulation
|
|
*
|
|
* Copyright (C) 2015,2016 ARM Ltd.
|
|
* Author: Andre Przywara <andre.przywara@arm.com>
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include <linux/cpu.h>
|
|
#include <linux/kvm.h>
|
|
#include <linux/kvm_host.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/list.h>
|
|
#include <linux/uaccess.h>
|
|
|
|
#include <linux/irqchip/arm-gic-v3.h>
|
|
|
|
#include <asm/kvm_emulate.h>
|
|
#include <asm/kvm_arm.h>
|
|
#include <asm/kvm_mmu.h>
|
|
|
|
#include "vgic.h"
|
|
#include "vgic-mmio.h"
|
|
|
|
/*
|
|
* Creates a new (reference to a) struct vgic_irq for a given LPI.
|
|
* If this LPI is already mapped on another ITS, we increase its refcount
|
|
* and return a pointer to the existing structure.
|
|
* If this is a "new" LPI, we allocate and initialize a new struct vgic_irq.
|
|
* This function returns a pointer to the _unlocked_ structure.
|
|
*/
|
|
static struct vgic_irq *vgic_add_lpi(struct kvm *kvm, u32 intid)
|
|
{
|
|
struct vgic_dist *dist = &kvm->arch.vgic;
|
|
struct vgic_irq *irq = vgic_get_irq(kvm, NULL, intid), *oldirq;
|
|
|
|
/* In this case there is no put, since we keep the reference. */
|
|
if (irq)
|
|
return irq;
|
|
|
|
irq = kzalloc(sizeof(struct vgic_irq), GFP_KERNEL);
|
|
if (!irq)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
INIT_LIST_HEAD(&irq->lpi_list);
|
|
INIT_LIST_HEAD(&irq->ap_list);
|
|
spin_lock_init(&irq->irq_lock);
|
|
|
|
irq->config = VGIC_CONFIG_EDGE;
|
|
kref_init(&irq->refcount);
|
|
irq->intid = intid;
|
|
|
|
spin_lock(&dist->lpi_list_lock);
|
|
|
|
/*
|
|
* There could be a race with another vgic_add_lpi(), so we need to
|
|
* check that we don't add a second list entry with the same LPI.
|
|
*/
|
|
list_for_each_entry(oldirq, &dist->lpi_list_head, lpi_list) {
|
|
if (oldirq->intid != intid)
|
|
continue;
|
|
|
|
/* Someone was faster with adding this LPI, lets use that. */
|
|
kfree(irq);
|
|
irq = oldirq;
|
|
|
|
/*
|
|
* This increases the refcount, the caller is expected to
|
|
* call vgic_put_irq() on the returned pointer once it's
|
|
* finished with the IRQ.
|
|
*/
|
|
vgic_get_irq_kref(irq);
|
|
|
|
goto out_unlock;
|
|
}
|
|
|
|
list_add_tail(&irq->lpi_list, &dist->lpi_list_head);
|
|
dist->lpi_list_count++;
|
|
|
|
out_unlock:
|
|
spin_unlock(&dist->lpi_list_lock);
|
|
|
|
return irq;
|
|
}
|
|
|
|
struct its_device {
|
|
struct list_head dev_list;
|
|
|
|
/* the head for the list of ITTEs */
|
|
struct list_head itt_head;
|
|
u32 device_id;
|
|
};
|
|
|
|
#define COLLECTION_NOT_MAPPED ((u32)~0)
|
|
|
|
struct its_collection {
|
|
struct list_head coll_list;
|
|
|
|
u32 collection_id;
|
|
u32 target_addr;
|
|
};
|
|
|
|
#define its_is_collection_mapped(coll) ((coll) && \
|
|
((coll)->target_addr != COLLECTION_NOT_MAPPED))
|
|
|
|
struct its_itte {
|
|
struct list_head itte_list;
|
|
|
|
struct vgic_irq *irq;
|
|
struct its_collection *collection;
|
|
u32 lpi;
|
|
u32 event_id;
|
|
};
|
|
|
|
/*
|
|
* Find and returns a device in the device table for an ITS.
|
|
* Must be called with the its_lock mutex held.
|
|
*/
|
|
static struct its_device *find_its_device(struct vgic_its *its, u32 device_id)
|
|
{
|
|
struct its_device *device;
|
|
|
|
list_for_each_entry(device, &its->device_list, dev_list)
|
|
if (device_id == device->device_id)
|
|
return device;
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Find and returns an interrupt translation table entry (ITTE) for a given
|
|
* Device ID/Event ID pair on an ITS.
|
|
* Must be called with the its_lock mutex held.
|
|
*/
|
|
static struct its_itte *find_itte(struct vgic_its *its, u32 device_id,
|
|
u32 event_id)
|
|
{
|
|
struct its_device *device;
|
|
struct its_itte *itte;
|
|
|
|
device = find_its_device(its, device_id);
|
|
if (device == NULL)
|
|
return NULL;
|
|
|
|
list_for_each_entry(itte, &device->itt_head, itte_list)
|
|
if (itte->event_id == event_id)
|
|
return itte;
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/* To be used as an iterator this macro misses the enclosing parentheses */
|
|
#define for_each_lpi_its(dev, itte, its) \
|
|
list_for_each_entry(dev, &(its)->device_list, dev_list) \
|
|
list_for_each_entry(itte, &(dev)->itt_head, itte_list)
|
|
|
|
/*
|
|
* We only implement 48 bits of PA at the moment, although the ITS
|
|
* supports more. Let's be restrictive here.
|
|
*/
|
|
#define BASER_ADDRESS(x) ((x) & GENMASK_ULL(47, 16))
|
|
#define CBASER_ADDRESS(x) ((x) & GENMASK_ULL(47, 12))
|
|
#define PENDBASER_ADDRESS(x) ((x) & GENMASK_ULL(47, 16))
|
|
#define PROPBASER_ADDRESS(x) ((x) & GENMASK_ULL(47, 12))
|
|
|
|
#define GIC_LPI_OFFSET 8192
|
|
|
|
/*
|
|
* Finds and returns a collection in the ITS collection table.
|
|
* Must be called with the its_lock mutex held.
|
|
*/
|
|
static struct its_collection *find_collection(struct vgic_its *its, int coll_id)
|
|
{
|
|
struct its_collection *collection;
|
|
|
|
list_for_each_entry(collection, &its->collection_list, coll_list) {
|
|
if (coll_id == collection->collection_id)
|
|
return collection;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
#define LPI_PROP_ENABLE_BIT(p) ((p) & LPI_PROP_ENABLED)
|
|
#define LPI_PROP_PRIORITY(p) ((p) & 0xfc)
|
|
|
|
/*
|
|
* Reads the configuration data for a given LPI from guest memory and
|
|
* updates the fields in struct vgic_irq.
|
|
* If filter_vcpu is not NULL, applies only if the IRQ is targeting this
|
|
* VCPU. Unconditionally applies if filter_vcpu is NULL.
|
|
*/
|
|
static int update_lpi_config(struct kvm *kvm, struct vgic_irq *irq,
|
|
struct kvm_vcpu *filter_vcpu)
|
|
{
|
|
u64 propbase = PROPBASER_ADDRESS(kvm->arch.vgic.propbaser);
|
|
u8 prop;
|
|
int ret;
|
|
|
|
ret = kvm_read_guest(kvm, propbase + irq->intid - GIC_LPI_OFFSET,
|
|
&prop, 1);
|
|
|
|
if (ret)
|
|
return ret;
|
|
|
|
spin_lock(&irq->irq_lock);
|
|
|
|
if (!filter_vcpu || filter_vcpu == irq->target_vcpu) {
|
|
irq->priority = LPI_PROP_PRIORITY(prop);
|
|
irq->enabled = LPI_PROP_ENABLE_BIT(prop);
|
|
|
|
vgic_queue_irq_unlock(kvm, irq);
|
|
} else {
|
|
spin_unlock(&irq->irq_lock);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Create a snapshot of the current LPI list, so that we can enumerate all
|
|
* LPIs without holding any lock.
|
|
* Returns the array length and puts the kmalloc'ed array into intid_ptr.
|
|
*/
|
|
static int vgic_copy_lpi_list(struct kvm *kvm, u32 **intid_ptr)
|
|
{
|
|
struct vgic_dist *dist = &kvm->arch.vgic;
|
|
struct vgic_irq *irq;
|
|
u32 *intids;
|
|
int irq_count = dist->lpi_list_count, i = 0;
|
|
|
|
/*
|
|
* We use the current value of the list length, which may change
|
|
* after the kmalloc. We don't care, because the guest shouldn't
|
|
* change anything while the command handling is still running,
|
|
* and in the worst case we would miss a new IRQ, which one wouldn't
|
|
* expect to be covered by this command anyway.
|
|
*/
|
|
intids = kmalloc_array(irq_count, sizeof(intids[0]), GFP_KERNEL);
|
|
if (!intids)
|
|
return -ENOMEM;
|
|
|
|
spin_lock(&dist->lpi_list_lock);
|
|
list_for_each_entry(irq, &dist->lpi_list_head, lpi_list) {
|
|
/* We don't need to "get" the IRQ, as we hold the list lock. */
|
|
intids[i] = irq->intid;
|
|
if (++i == irq_count)
|
|
break;
|
|
}
|
|
spin_unlock(&dist->lpi_list_lock);
|
|
|
|
*intid_ptr = intids;
|
|
return irq_count;
|
|
}
|
|
|
|
/*
|
|
* Promotes the ITS view of affinity of an ITTE (which redistributor this LPI
|
|
* is targeting) to the VGIC's view, which deals with target VCPUs.
|
|
* Needs to be called whenever either the collection for a LPIs has
|
|
* changed or the collection itself got retargeted.
|
|
*/
|
|
static void update_affinity_itte(struct kvm *kvm, struct its_itte *itte)
|
|
{
|
|
struct kvm_vcpu *vcpu;
|
|
|
|
if (!its_is_collection_mapped(itte->collection))
|
|
return;
|
|
|
|
vcpu = kvm_get_vcpu(kvm, itte->collection->target_addr);
|
|
|
|
spin_lock(&itte->irq->irq_lock);
|
|
itte->irq->target_vcpu = vcpu;
|
|
spin_unlock(&itte->irq->irq_lock);
|
|
}
|
|
|
|
/*
|
|
* Updates the target VCPU for every LPI targeting this collection.
|
|
* Must be called with the its_lock mutex held.
|
|
*/
|
|
static void update_affinity_collection(struct kvm *kvm, struct vgic_its *its,
|
|
struct its_collection *coll)
|
|
{
|
|
struct its_device *device;
|
|
struct its_itte *itte;
|
|
|
|
for_each_lpi_its(device, itte, its) {
|
|
if (!itte->collection || coll != itte->collection)
|
|
continue;
|
|
|
|
update_affinity_itte(kvm, itte);
|
|
}
|
|
}
|
|
|
|
static u32 max_lpis_propbaser(u64 propbaser)
|
|
{
|
|
int nr_idbits = (propbaser & 0x1f) + 1;
|
|
|
|
return 1U << min(nr_idbits, INTERRUPT_ID_BITS_ITS);
|
|
}
|
|
|
|
/*
|
|
* Scan the whole LPI pending table and sync the pending bit in there
|
|
* with our own data structures. This relies on the LPI being
|
|
* mapped before.
|
|
*/
|
|
static int its_sync_lpi_pending_table(struct kvm_vcpu *vcpu)
|
|
{
|
|
gpa_t pendbase = PENDBASER_ADDRESS(vcpu->arch.vgic_cpu.pendbaser);
|
|
struct vgic_irq *irq;
|
|
int last_byte_offset = -1;
|
|
int ret = 0;
|
|
u32 *intids;
|
|
int nr_irqs, i;
|
|
|
|
nr_irqs = vgic_copy_lpi_list(vcpu->kvm, &intids);
|
|
if (nr_irqs < 0)
|
|
return nr_irqs;
|
|
|
|
for (i = 0; i < nr_irqs; i++) {
|
|
int byte_offset, bit_nr;
|
|
u8 pendmask;
|
|
|
|
byte_offset = intids[i] / BITS_PER_BYTE;
|
|
bit_nr = intids[i] % BITS_PER_BYTE;
|
|
|
|
/*
|
|
* For contiguously allocated LPIs chances are we just read
|
|
* this very same byte in the last iteration. Reuse that.
|
|
*/
|
|
if (byte_offset != last_byte_offset) {
|
|
ret = kvm_read_guest(vcpu->kvm, pendbase + byte_offset,
|
|
&pendmask, 1);
|
|
if (ret) {
|
|
kfree(intids);
|
|
return ret;
|
|
}
|
|
last_byte_offset = byte_offset;
|
|
}
|
|
|
|
irq = vgic_get_irq(vcpu->kvm, NULL, intids[i]);
|
|
spin_lock(&irq->irq_lock);
|
|
irq->pending = pendmask & (1U << bit_nr);
|
|
vgic_queue_irq_unlock(vcpu->kvm, irq);
|
|
vgic_put_irq(vcpu->kvm, irq);
|
|
}
|
|
|
|
kfree(intids);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static unsigned long vgic_mmio_read_its_ctlr(struct kvm *vcpu,
|
|
struct vgic_its *its,
|
|
gpa_t addr, unsigned int len)
|
|
{
|
|
u32 reg = 0;
|
|
|
|
mutex_lock(&its->cmd_lock);
|
|
if (its->creadr == its->cwriter)
|
|
reg |= GITS_CTLR_QUIESCENT;
|
|
if (its->enabled)
|
|
reg |= GITS_CTLR_ENABLE;
|
|
mutex_unlock(&its->cmd_lock);
|
|
|
|
return reg;
|
|
}
|
|
|
|
static void vgic_mmio_write_its_ctlr(struct kvm *kvm, struct vgic_its *its,
|
|
gpa_t addr, unsigned int len,
|
|
unsigned long val)
|
|
{
|
|
its->enabled = !!(val & GITS_CTLR_ENABLE);
|
|
}
|
|
|
|
static unsigned long vgic_mmio_read_its_typer(struct kvm *kvm,
|
|
struct vgic_its *its,
|
|
gpa_t addr, unsigned int len)
|
|
{
|
|
u64 reg = GITS_TYPER_PLPIS;
|
|
|
|
/*
|
|
* We use linear CPU numbers for redistributor addressing,
|
|
* so GITS_TYPER.PTA is 0.
|
|
* Also we force all PROPBASER registers to be the same, so
|
|
* CommonLPIAff is 0 as well.
|
|
* To avoid memory waste in the guest, we keep the number of IDBits and
|
|
* DevBits low - as least for the time being.
|
|
*/
|
|
reg |= 0x0f << GITS_TYPER_DEVBITS_SHIFT;
|
|
reg |= 0x0f << GITS_TYPER_IDBITS_SHIFT;
|
|
|
|
return extract_bytes(reg, addr & 7, len);
|
|
}
|
|
|
|
static unsigned long vgic_mmio_read_its_iidr(struct kvm *kvm,
|
|
struct vgic_its *its,
|
|
gpa_t addr, unsigned int len)
|
|
{
|
|
return (PRODUCT_ID_KVM << 24) | (IMPLEMENTER_ARM << 0);
|
|
}
|
|
|
|
static unsigned long vgic_mmio_read_its_idregs(struct kvm *kvm,
|
|
struct vgic_its *its,
|
|
gpa_t addr, unsigned int len)
|
|
{
|
|
switch (addr & 0xffff) {
|
|
case GITS_PIDR0:
|
|
return 0x92; /* part number, bits[7:0] */
|
|
case GITS_PIDR1:
|
|
return 0xb4; /* part number, bits[11:8] */
|
|
case GITS_PIDR2:
|
|
return GIC_PIDR2_ARCH_GICv3 | 0x0b;
|
|
case GITS_PIDR4:
|
|
return 0x40; /* This is a 64K software visible page */
|
|
/* The following are the ID registers for (any) GIC. */
|
|
case GITS_CIDR0:
|
|
return 0x0d;
|
|
case GITS_CIDR1:
|
|
return 0xf0;
|
|
case GITS_CIDR2:
|
|
return 0x05;
|
|
case GITS_CIDR3:
|
|
return 0xb1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Find the target VCPU and the LPI number for a given devid/eventid pair
|
|
* and make this IRQ pending, possibly injecting it.
|
|
* Must be called with the its_lock mutex held.
|
|
* Returns 0 on success, a positive error value for any ITS mapping
|
|
* related errors and negative error values for generic errors.
|
|
*/
|
|
static int vgic_its_trigger_msi(struct kvm *kvm, struct vgic_its *its,
|
|
u32 devid, u32 eventid)
|
|
{
|
|
struct kvm_vcpu *vcpu;
|
|
struct its_itte *itte;
|
|
|
|
if (!its->enabled)
|
|
return -EBUSY;
|
|
|
|
itte = find_itte(its, devid, eventid);
|
|
if (!itte || !its_is_collection_mapped(itte->collection))
|
|
return E_ITS_INT_UNMAPPED_INTERRUPT;
|
|
|
|
vcpu = kvm_get_vcpu(kvm, itte->collection->target_addr);
|
|
if (!vcpu)
|
|
return E_ITS_INT_UNMAPPED_INTERRUPT;
|
|
|
|
if (!vcpu->arch.vgic_cpu.lpis_enabled)
|
|
return -EBUSY;
|
|
|
|
spin_lock(&itte->irq->irq_lock);
|
|
itte->irq->pending = true;
|
|
vgic_queue_irq_unlock(kvm, itte->irq);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct vgic_io_device *vgic_get_its_iodev(struct kvm_io_device *dev)
|
|
{
|
|
struct vgic_io_device *iodev;
|
|
|
|
if (dev->ops != &kvm_io_gic_ops)
|
|
return NULL;
|
|
|
|
iodev = container_of(dev, struct vgic_io_device, dev);
|
|
|
|
if (iodev->iodev_type != IODEV_ITS)
|
|
return NULL;
|
|
|
|
return iodev;
|
|
}
|
|
|
|
/*
|
|
* Queries the KVM IO bus framework to get the ITS pointer from the given
|
|
* doorbell address.
|
|
* We then call vgic_its_trigger_msi() with the decoded data.
|
|
* According to the KVM_SIGNAL_MSI API description returns 1 on success.
|
|
*/
|
|
int vgic_its_inject_msi(struct kvm *kvm, struct kvm_msi *msi)
|
|
{
|
|
u64 address;
|
|
struct kvm_io_device *kvm_io_dev;
|
|
struct vgic_io_device *iodev;
|
|
int ret;
|
|
|
|
if (!vgic_has_its(kvm))
|
|
return -ENODEV;
|
|
|
|
if (!(msi->flags & KVM_MSI_VALID_DEVID))
|
|
return -EINVAL;
|
|
|
|
address = (u64)msi->address_hi << 32 | msi->address_lo;
|
|
|
|
kvm_io_dev = kvm_io_bus_get_dev(kvm, KVM_MMIO_BUS, address);
|
|
if (!kvm_io_dev)
|
|
return -EINVAL;
|
|
|
|
iodev = vgic_get_its_iodev(kvm_io_dev);
|
|
if (!iodev)
|
|
return -EINVAL;
|
|
|
|
mutex_lock(&iodev->its->its_lock);
|
|
ret = vgic_its_trigger_msi(kvm, iodev->its, msi->devid, msi->data);
|
|
mutex_unlock(&iodev->its->its_lock);
|
|
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
/*
|
|
* KVM_SIGNAL_MSI demands a return value > 0 for success and 0
|
|
* if the guest has blocked the MSI. So we map any LPI mapping
|
|
* related error to that.
|
|
*/
|
|
if (ret)
|
|
return 0;
|
|
else
|
|
return 1;
|
|
}
|
|
|
|
/* Requires the its_lock to be held. */
|
|
static void its_free_itte(struct kvm *kvm, struct its_itte *itte)
|
|
{
|
|
list_del(&itte->itte_list);
|
|
|
|
/* This put matches the get in vgic_add_lpi. */
|
|
if (itte->irq)
|
|
vgic_put_irq(kvm, itte->irq);
|
|
|
|
kfree(itte);
|
|
}
|
|
|
|
static u64 its_cmd_mask_field(u64 *its_cmd, int word, int shift, int size)
|
|
{
|
|
return (le64_to_cpu(its_cmd[word]) >> shift) & (BIT_ULL(size) - 1);
|
|
}
|
|
|
|
#define its_cmd_get_command(cmd) its_cmd_mask_field(cmd, 0, 0, 8)
|
|
#define its_cmd_get_deviceid(cmd) its_cmd_mask_field(cmd, 0, 32, 32)
|
|
#define its_cmd_get_id(cmd) its_cmd_mask_field(cmd, 1, 0, 32)
|
|
#define its_cmd_get_physical_id(cmd) its_cmd_mask_field(cmd, 1, 32, 32)
|
|
#define its_cmd_get_collection(cmd) its_cmd_mask_field(cmd, 2, 0, 16)
|
|
#define its_cmd_get_target_addr(cmd) its_cmd_mask_field(cmd, 2, 16, 32)
|
|
#define its_cmd_get_validbit(cmd) its_cmd_mask_field(cmd, 2, 63, 1)
|
|
|
|
/*
|
|
* The DISCARD command frees an Interrupt Translation Table Entry (ITTE).
|
|
* Must be called with the its_lock mutex held.
|
|
*/
|
|
static int vgic_its_cmd_handle_discard(struct kvm *kvm, struct vgic_its *its,
|
|
u64 *its_cmd)
|
|
{
|
|
u32 device_id = its_cmd_get_deviceid(its_cmd);
|
|
u32 event_id = its_cmd_get_id(its_cmd);
|
|
struct its_itte *itte;
|
|
|
|
|
|
itte = find_itte(its, device_id, event_id);
|
|
if (itte && itte->collection) {
|
|
/*
|
|
* Though the spec talks about removing the pending state, we
|
|
* don't bother here since we clear the ITTE anyway and the
|
|
* pending state is a property of the ITTE struct.
|
|
*/
|
|
its_free_itte(kvm, itte);
|
|
return 0;
|
|
}
|
|
|
|
return E_ITS_DISCARD_UNMAPPED_INTERRUPT;
|
|
}
|
|
|
|
/*
|
|
* The MOVI command moves an ITTE to a different collection.
|
|
* Must be called with the its_lock mutex held.
|
|
*/
|
|
static int vgic_its_cmd_handle_movi(struct kvm *kvm, struct vgic_its *its,
|
|
u64 *its_cmd)
|
|
{
|
|
u32 device_id = its_cmd_get_deviceid(its_cmd);
|
|
u32 event_id = its_cmd_get_id(its_cmd);
|
|
u32 coll_id = its_cmd_get_collection(its_cmd);
|
|
struct kvm_vcpu *vcpu;
|
|
struct its_itte *itte;
|
|
struct its_collection *collection;
|
|
|
|
itte = find_itte(its, device_id, event_id);
|
|
if (!itte)
|
|
return E_ITS_MOVI_UNMAPPED_INTERRUPT;
|
|
|
|
if (!its_is_collection_mapped(itte->collection))
|
|
return E_ITS_MOVI_UNMAPPED_COLLECTION;
|
|
|
|
collection = find_collection(its, coll_id);
|
|
if (!its_is_collection_mapped(collection))
|
|
return E_ITS_MOVI_UNMAPPED_COLLECTION;
|
|
|
|
itte->collection = collection;
|
|
vcpu = kvm_get_vcpu(kvm, collection->target_addr);
|
|
|
|
spin_lock(&itte->irq->irq_lock);
|
|
itte->irq->target_vcpu = vcpu;
|
|
spin_unlock(&itte->irq->irq_lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Check whether an ID can be stored into the corresponding guest table.
|
|
* For a direct table this is pretty easy, but gets a bit nasty for
|
|
* indirect tables. We check whether the resulting guest physical address
|
|
* is actually valid (covered by a memslot and guest accessbible).
|
|
* For this we have to read the respective first level entry.
|
|
*/
|
|
static bool vgic_its_check_id(struct vgic_its *its, u64 baser, int id)
|
|
{
|
|
int l1_tbl_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
|
|
int index;
|
|
u64 indirect_ptr;
|
|
gfn_t gfn;
|
|
|
|
if (!(baser & GITS_BASER_INDIRECT)) {
|
|
phys_addr_t addr;
|
|
|
|
if (id >= (l1_tbl_size / GITS_BASER_ENTRY_SIZE(baser)))
|
|
return false;
|
|
|
|
addr = BASER_ADDRESS(baser) + id * GITS_BASER_ENTRY_SIZE(baser);
|
|
gfn = addr >> PAGE_SHIFT;
|
|
|
|
return kvm_is_visible_gfn(its->dev->kvm, gfn);
|
|
}
|
|
|
|
/* calculate and check the index into the 1st level */
|
|
index = id / (SZ_64K / GITS_BASER_ENTRY_SIZE(baser));
|
|
if (index >= (l1_tbl_size / sizeof(u64)))
|
|
return false;
|
|
|
|
/* Each 1st level entry is represented by a 64-bit value. */
|
|
if (kvm_read_guest(its->dev->kvm,
|
|
BASER_ADDRESS(baser) + index * sizeof(indirect_ptr),
|
|
&indirect_ptr, sizeof(indirect_ptr)))
|
|
return false;
|
|
|
|
indirect_ptr = le64_to_cpu(indirect_ptr);
|
|
|
|
/* check the valid bit of the first level entry */
|
|
if (!(indirect_ptr & BIT_ULL(63)))
|
|
return false;
|
|
|
|
/*
|
|
* Mask the guest physical address and calculate the frame number.
|
|
* Any address beyond our supported 48 bits of PA will be caught
|
|
* by the actual check in the final step.
|
|
*/
|
|
indirect_ptr &= GENMASK_ULL(51, 16);
|
|
|
|
/* Find the address of the actual entry */
|
|
index = id % (SZ_64K / GITS_BASER_ENTRY_SIZE(baser));
|
|
indirect_ptr += index * GITS_BASER_ENTRY_SIZE(baser);
|
|
gfn = indirect_ptr >> PAGE_SHIFT;
|
|
|
|
return kvm_is_visible_gfn(its->dev->kvm, gfn);
|
|
}
|
|
|
|
static int vgic_its_alloc_collection(struct vgic_its *its,
|
|
struct its_collection **colp,
|
|
u32 coll_id)
|
|
{
|
|
struct its_collection *collection;
|
|
|
|
if (!vgic_its_check_id(its, its->baser_coll_table, coll_id))
|
|
return E_ITS_MAPC_COLLECTION_OOR;
|
|
|
|
collection = kzalloc(sizeof(*collection), GFP_KERNEL);
|
|
|
|
collection->collection_id = coll_id;
|
|
collection->target_addr = COLLECTION_NOT_MAPPED;
|
|
|
|
list_add_tail(&collection->coll_list, &its->collection_list);
|
|
*colp = collection;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void vgic_its_free_collection(struct vgic_its *its, u32 coll_id)
|
|
{
|
|
struct its_collection *collection;
|
|
struct its_device *device;
|
|
struct its_itte *itte;
|
|
|
|
/*
|
|
* Clearing the mapping for that collection ID removes the
|
|
* entry from the list. If there wasn't any before, we can
|
|
* go home early.
|
|
*/
|
|
collection = find_collection(its, coll_id);
|
|
if (!collection)
|
|
return;
|
|
|
|
for_each_lpi_its(device, itte, its)
|
|
if (itte->collection &&
|
|
itte->collection->collection_id == coll_id)
|
|
itte->collection = NULL;
|
|
|
|
list_del(&collection->coll_list);
|
|
kfree(collection);
|
|
}
|
|
|
|
/*
|
|
* The MAPTI and MAPI commands map LPIs to ITTEs.
|
|
* Must be called with its_lock mutex held.
|
|
*/
|
|
static int vgic_its_cmd_handle_mapi(struct kvm *kvm, struct vgic_its *its,
|
|
u64 *its_cmd)
|
|
{
|
|
u32 device_id = its_cmd_get_deviceid(its_cmd);
|
|
u32 event_id = its_cmd_get_id(its_cmd);
|
|
u32 coll_id = its_cmd_get_collection(its_cmd);
|
|
struct its_itte *itte;
|
|
struct its_device *device;
|
|
struct its_collection *collection, *new_coll = NULL;
|
|
int lpi_nr;
|
|
struct vgic_irq *irq;
|
|
|
|
device = find_its_device(its, device_id);
|
|
if (!device)
|
|
return E_ITS_MAPTI_UNMAPPED_DEVICE;
|
|
|
|
if (its_cmd_get_command(its_cmd) == GITS_CMD_MAPTI)
|
|
lpi_nr = its_cmd_get_physical_id(its_cmd);
|
|
else
|
|
lpi_nr = event_id;
|
|
if (lpi_nr < GIC_LPI_OFFSET ||
|
|
lpi_nr >= max_lpis_propbaser(kvm->arch.vgic.propbaser))
|
|
return E_ITS_MAPTI_PHYSICALID_OOR;
|
|
|
|
/* If there is an existing mapping, behavior is UNPREDICTABLE. */
|
|
if (find_itte(its, device_id, event_id))
|
|
return 0;
|
|
|
|
collection = find_collection(its, coll_id);
|
|
if (!collection) {
|
|
int ret = vgic_its_alloc_collection(its, &collection, coll_id);
|
|
if (ret)
|
|
return ret;
|
|
new_coll = collection;
|
|
}
|
|
|
|
itte = kzalloc(sizeof(struct its_itte), GFP_KERNEL);
|
|
if (!itte) {
|
|
if (new_coll)
|
|
vgic_its_free_collection(its, coll_id);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
itte->event_id = event_id;
|
|
list_add_tail(&itte->itte_list, &device->itt_head);
|
|
|
|
itte->collection = collection;
|
|
itte->lpi = lpi_nr;
|
|
|
|
irq = vgic_add_lpi(kvm, lpi_nr);
|
|
if (IS_ERR(irq)) {
|
|
if (new_coll)
|
|
vgic_its_free_collection(its, coll_id);
|
|
its_free_itte(kvm, itte);
|
|
return PTR_ERR(irq);
|
|
}
|
|
itte->irq = irq;
|
|
|
|
update_affinity_itte(kvm, itte);
|
|
|
|
/*
|
|
* We "cache" the configuration table entries in out struct vgic_irq's.
|
|
* However we only have those structs for mapped IRQs, so we read in
|
|
* the respective config data from memory here upon mapping the LPI.
|
|
*/
|
|
update_lpi_config(kvm, itte->irq, NULL);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Requires the its_lock to be held. */
|
|
static void vgic_its_unmap_device(struct kvm *kvm, struct its_device *device)
|
|
{
|
|
struct its_itte *itte, *temp;
|
|
|
|
/*
|
|
* The spec says that unmapping a device with still valid
|
|
* ITTEs associated is UNPREDICTABLE. We remove all ITTEs,
|
|
* since we cannot leave the memory unreferenced.
|
|
*/
|
|
list_for_each_entry_safe(itte, temp, &device->itt_head, itte_list)
|
|
its_free_itte(kvm, itte);
|
|
|
|
list_del(&device->dev_list);
|
|
kfree(device);
|
|
}
|
|
|
|
/*
|
|
* MAPD maps or unmaps a device ID to Interrupt Translation Tables (ITTs).
|
|
* Must be called with the its_lock mutex held.
|
|
*/
|
|
static int vgic_its_cmd_handle_mapd(struct kvm *kvm, struct vgic_its *its,
|
|
u64 *its_cmd)
|
|
{
|
|
u32 device_id = its_cmd_get_deviceid(its_cmd);
|
|
bool valid = its_cmd_get_validbit(its_cmd);
|
|
struct its_device *device;
|
|
|
|
if (!vgic_its_check_id(its, its->baser_device_table, device_id))
|
|
return E_ITS_MAPD_DEVICE_OOR;
|
|
|
|
device = find_its_device(its, device_id);
|
|
|
|
/*
|
|
* The spec says that calling MAPD on an already mapped device
|
|
* invalidates all cached data for this device. We implement this
|
|
* by removing the mapping and re-establishing it.
|
|
*/
|
|
if (device)
|
|
vgic_its_unmap_device(kvm, device);
|
|
|
|
/*
|
|
* The spec does not say whether unmapping a not-mapped device
|
|
* is an error, so we are done in any case.
|
|
*/
|
|
if (!valid)
|
|
return 0;
|
|
|
|
device = kzalloc(sizeof(struct its_device), GFP_KERNEL);
|
|
if (!device)
|
|
return -ENOMEM;
|
|
|
|
device->device_id = device_id;
|
|
INIT_LIST_HEAD(&device->itt_head);
|
|
|
|
list_add_tail(&device->dev_list, &its->device_list);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* The MAPC command maps collection IDs to redistributors.
|
|
* Must be called with the its_lock mutex held.
|
|
*/
|
|
static int vgic_its_cmd_handle_mapc(struct kvm *kvm, struct vgic_its *its,
|
|
u64 *its_cmd)
|
|
{
|
|
u16 coll_id;
|
|
u32 target_addr;
|
|
struct its_collection *collection;
|
|
bool valid;
|
|
|
|
valid = its_cmd_get_validbit(its_cmd);
|
|
coll_id = its_cmd_get_collection(its_cmd);
|
|
target_addr = its_cmd_get_target_addr(its_cmd);
|
|
|
|
if (target_addr >= atomic_read(&kvm->online_vcpus))
|
|
return E_ITS_MAPC_PROCNUM_OOR;
|
|
|
|
if (!valid) {
|
|
vgic_its_free_collection(its, coll_id);
|
|
} else {
|
|
collection = find_collection(its, coll_id);
|
|
|
|
if (!collection) {
|
|
int ret;
|
|
|
|
ret = vgic_its_alloc_collection(its, &collection,
|
|
coll_id);
|
|
if (ret)
|
|
return ret;
|
|
collection->target_addr = target_addr;
|
|
} else {
|
|
collection->target_addr = target_addr;
|
|
update_affinity_collection(kvm, its, collection);
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* The CLEAR command removes the pending state for a particular LPI.
|
|
* Must be called with the its_lock mutex held.
|
|
*/
|
|
static int vgic_its_cmd_handle_clear(struct kvm *kvm, struct vgic_its *its,
|
|
u64 *its_cmd)
|
|
{
|
|
u32 device_id = its_cmd_get_deviceid(its_cmd);
|
|
u32 event_id = its_cmd_get_id(its_cmd);
|
|
struct its_itte *itte;
|
|
|
|
|
|
itte = find_itte(its, device_id, event_id);
|
|
if (!itte)
|
|
return E_ITS_CLEAR_UNMAPPED_INTERRUPT;
|
|
|
|
itte->irq->pending = false;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* The INV command syncs the configuration bits from the memory table.
|
|
* Must be called with the its_lock mutex held.
|
|
*/
|
|
static int vgic_its_cmd_handle_inv(struct kvm *kvm, struct vgic_its *its,
|
|
u64 *its_cmd)
|
|
{
|
|
u32 device_id = its_cmd_get_deviceid(its_cmd);
|
|
u32 event_id = its_cmd_get_id(its_cmd);
|
|
struct its_itte *itte;
|
|
|
|
|
|
itte = find_itte(its, device_id, event_id);
|
|
if (!itte)
|
|
return E_ITS_INV_UNMAPPED_INTERRUPT;
|
|
|
|
return update_lpi_config(kvm, itte->irq, NULL);
|
|
}
|
|
|
|
/*
|
|
* The INVALL command requests flushing of all IRQ data in this collection.
|
|
* Find the VCPU mapped to that collection, then iterate over the VM's list
|
|
* of mapped LPIs and update the configuration for each IRQ which targets
|
|
* the specified vcpu. The configuration will be read from the in-memory
|
|
* configuration table.
|
|
* Must be called with the its_lock mutex held.
|
|
*/
|
|
static int vgic_its_cmd_handle_invall(struct kvm *kvm, struct vgic_its *its,
|
|
u64 *its_cmd)
|
|
{
|
|
u32 coll_id = its_cmd_get_collection(its_cmd);
|
|
struct its_collection *collection;
|
|
struct kvm_vcpu *vcpu;
|
|
struct vgic_irq *irq;
|
|
u32 *intids;
|
|
int irq_count, i;
|
|
|
|
collection = find_collection(its, coll_id);
|
|
if (!its_is_collection_mapped(collection))
|
|
return E_ITS_INVALL_UNMAPPED_COLLECTION;
|
|
|
|
vcpu = kvm_get_vcpu(kvm, collection->target_addr);
|
|
|
|
irq_count = vgic_copy_lpi_list(kvm, &intids);
|
|
if (irq_count < 0)
|
|
return irq_count;
|
|
|
|
for (i = 0; i < irq_count; i++) {
|
|
irq = vgic_get_irq(kvm, NULL, intids[i]);
|
|
if (!irq)
|
|
continue;
|
|
update_lpi_config(kvm, irq, vcpu);
|
|
vgic_put_irq(kvm, irq);
|
|
}
|
|
|
|
kfree(intids);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* The MOVALL command moves the pending state of all IRQs targeting one
|
|
* redistributor to another. We don't hold the pending state in the VCPUs,
|
|
* but in the IRQs instead, so there is really not much to do for us here.
|
|
* However the spec says that no IRQ must target the old redistributor
|
|
* afterwards, so we make sure that no LPI is using the associated target_vcpu.
|
|
* This command affects all LPIs in the system that target that redistributor.
|
|
*/
|
|
static int vgic_its_cmd_handle_movall(struct kvm *kvm, struct vgic_its *its,
|
|
u64 *its_cmd)
|
|
{
|
|
struct vgic_dist *dist = &kvm->arch.vgic;
|
|
u32 target1_addr = its_cmd_get_target_addr(its_cmd);
|
|
u32 target2_addr = its_cmd_mask_field(its_cmd, 3, 16, 32);
|
|
struct kvm_vcpu *vcpu1, *vcpu2;
|
|
struct vgic_irq *irq;
|
|
|
|
if (target1_addr >= atomic_read(&kvm->online_vcpus) ||
|
|
target2_addr >= atomic_read(&kvm->online_vcpus))
|
|
return E_ITS_MOVALL_PROCNUM_OOR;
|
|
|
|
if (target1_addr == target2_addr)
|
|
return 0;
|
|
|
|
vcpu1 = kvm_get_vcpu(kvm, target1_addr);
|
|
vcpu2 = kvm_get_vcpu(kvm, target2_addr);
|
|
|
|
spin_lock(&dist->lpi_list_lock);
|
|
|
|
list_for_each_entry(irq, &dist->lpi_list_head, lpi_list) {
|
|
spin_lock(&irq->irq_lock);
|
|
|
|
if (irq->target_vcpu == vcpu1)
|
|
irq->target_vcpu = vcpu2;
|
|
|
|
spin_unlock(&irq->irq_lock);
|
|
}
|
|
|
|
spin_unlock(&dist->lpi_list_lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* The INT command injects the LPI associated with that DevID/EvID pair.
|
|
* Must be called with the its_lock mutex held.
|
|
*/
|
|
static int vgic_its_cmd_handle_int(struct kvm *kvm, struct vgic_its *its,
|
|
u64 *its_cmd)
|
|
{
|
|
u32 msi_data = its_cmd_get_id(its_cmd);
|
|
u64 msi_devid = its_cmd_get_deviceid(its_cmd);
|
|
|
|
return vgic_its_trigger_msi(kvm, its, msi_devid, msi_data);
|
|
}
|
|
|
|
/*
|
|
* This function is called with the its_cmd lock held, but the ITS data
|
|
* structure lock dropped.
|
|
*/
|
|
static int vgic_its_handle_command(struct kvm *kvm, struct vgic_its *its,
|
|
u64 *its_cmd)
|
|
{
|
|
int ret = -ENODEV;
|
|
|
|
mutex_lock(&its->its_lock);
|
|
switch (its_cmd_get_command(its_cmd)) {
|
|
case GITS_CMD_MAPD:
|
|
ret = vgic_its_cmd_handle_mapd(kvm, its, its_cmd);
|
|
break;
|
|
case GITS_CMD_MAPC:
|
|
ret = vgic_its_cmd_handle_mapc(kvm, its, its_cmd);
|
|
break;
|
|
case GITS_CMD_MAPI:
|
|
ret = vgic_its_cmd_handle_mapi(kvm, its, its_cmd);
|
|
break;
|
|
case GITS_CMD_MAPTI:
|
|
ret = vgic_its_cmd_handle_mapi(kvm, its, its_cmd);
|
|
break;
|
|
case GITS_CMD_MOVI:
|
|
ret = vgic_its_cmd_handle_movi(kvm, its, its_cmd);
|
|
break;
|
|
case GITS_CMD_DISCARD:
|
|
ret = vgic_its_cmd_handle_discard(kvm, its, its_cmd);
|
|
break;
|
|
case GITS_CMD_CLEAR:
|
|
ret = vgic_its_cmd_handle_clear(kvm, its, its_cmd);
|
|
break;
|
|
case GITS_CMD_MOVALL:
|
|
ret = vgic_its_cmd_handle_movall(kvm, its, its_cmd);
|
|
break;
|
|
case GITS_CMD_INT:
|
|
ret = vgic_its_cmd_handle_int(kvm, its, its_cmd);
|
|
break;
|
|
case GITS_CMD_INV:
|
|
ret = vgic_its_cmd_handle_inv(kvm, its, its_cmd);
|
|
break;
|
|
case GITS_CMD_INVALL:
|
|
ret = vgic_its_cmd_handle_invall(kvm, its, its_cmd);
|
|
break;
|
|
case GITS_CMD_SYNC:
|
|
/* we ignore this command: we are in sync all of the time */
|
|
ret = 0;
|
|
break;
|
|
}
|
|
mutex_unlock(&its->its_lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static u64 vgic_sanitise_its_baser(u64 reg)
|
|
{
|
|
reg = vgic_sanitise_field(reg, GITS_BASER_SHAREABILITY_MASK,
|
|
GITS_BASER_SHAREABILITY_SHIFT,
|
|
vgic_sanitise_shareability);
|
|
reg = vgic_sanitise_field(reg, GITS_BASER_INNER_CACHEABILITY_MASK,
|
|
GITS_BASER_INNER_CACHEABILITY_SHIFT,
|
|
vgic_sanitise_inner_cacheability);
|
|
reg = vgic_sanitise_field(reg, GITS_BASER_OUTER_CACHEABILITY_MASK,
|
|
GITS_BASER_OUTER_CACHEABILITY_SHIFT,
|
|
vgic_sanitise_outer_cacheability);
|
|
|
|
/* Bits 15:12 contain bits 51:48 of the PA, which we don't support. */
|
|
reg &= ~GENMASK_ULL(15, 12);
|
|
|
|
/* We support only one (ITS) page size: 64K */
|
|
reg = (reg & ~GITS_BASER_PAGE_SIZE_MASK) | GITS_BASER_PAGE_SIZE_64K;
|
|
|
|
return reg;
|
|
}
|
|
|
|
static u64 vgic_sanitise_its_cbaser(u64 reg)
|
|
{
|
|
reg = vgic_sanitise_field(reg, GITS_CBASER_SHAREABILITY_MASK,
|
|
GITS_CBASER_SHAREABILITY_SHIFT,
|
|
vgic_sanitise_shareability);
|
|
reg = vgic_sanitise_field(reg, GITS_CBASER_INNER_CACHEABILITY_MASK,
|
|
GITS_CBASER_INNER_CACHEABILITY_SHIFT,
|
|
vgic_sanitise_inner_cacheability);
|
|
reg = vgic_sanitise_field(reg, GITS_CBASER_OUTER_CACHEABILITY_MASK,
|
|
GITS_CBASER_OUTER_CACHEABILITY_SHIFT,
|
|
vgic_sanitise_outer_cacheability);
|
|
|
|
/*
|
|
* Sanitise the physical address to be 64k aligned.
|
|
* Also limit the physical addresses to 48 bits.
|
|
*/
|
|
reg &= ~(GENMASK_ULL(51, 48) | GENMASK_ULL(15, 12));
|
|
|
|
return reg;
|
|
}
|
|
|
|
static unsigned long vgic_mmio_read_its_cbaser(struct kvm *kvm,
|
|
struct vgic_its *its,
|
|
gpa_t addr, unsigned int len)
|
|
{
|
|
return extract_bytes(its->cbaser, addr & 7, len);
|
|
}
|
|
|
|
static void vgic_mmio_write_its_cbaser(struct kvm *kvm, struct vgic_its *its,
|
|
gpa_t addr, unsigned int len,
|
|
unsigned long val)
|
|
{
|
|
/* When GITS_CTLR.Enable is 1, this register is RO. */
|
|
if (its->enabled)
|
|
return;
|
|
|
|
mutex_lock(&its->cmd_lock);
|
|
its->cbaser = update_64bit_reg(its->cbaser, addr & 7, len, val);
|
|
its->cbaser = vgic_sanitise_its_cbaser(its->cbaser);
|
|
its->creadr = 0;
|
|
/*
|
|
* CWRITER is architecturally UNKNOWN on reset, but we need to reset
|
|
* it to CREADR to make sure we start with an empty command buffer.
|
|
*/
|
|
its->cwriter = its->creadr;
|
|
mutex_unlock(&its->cmd_lock);
|
|
}
|
|
|
|
#define ITS_CMD_BUFFER_SIZE(baser) ((((baser) & 0xff) + 1) << 12)
|
|
#define ITS_CMD_SIZE 32
|
|
#define ITS_CMD_OFFSET(reg) ((reg) & GENMASK(19, 5))
|
|
|
|
/*
|
|
* By writing to CWRITER the guest announces new commands to be processed.
|
|
* To avoid any races in the first place, we take the its_cmd lock, which
|
|
* protects our ring buffer variables, so that there is only one user
|
|
* per ITS handling commands at a given time.
|
|
*/
|
|
static void vgic_mmio_write_its_cwriter(struct kvm *kvm, struct vgic_its *its,
|
|
gpa_t addr, unsigned int len,
|
|
unsigned long val)
|
|
{
|
|
gpa_t cbaser;
|
|
u64 cmd_buf[4];
|
|
u32 reg;
|
|
|
|
if (!its)
|
|
return;
|
|
|
|
mutex_lock(&its->cmd_lock);
|
|
|
|
reg = update_64bit_reg(its->cwriter, addr & 7, len, val);
|
|
reg = ITS_CMD_OFFSET(reg);
|
|
if (reg >= ITS_CMD_BUFFER_SIZE(its->cbaser)) {
|
|
mutex_unlock(&its->cmd_lock);
|
|
return;
|
|
}
|
|
|
|
its->cwriter = reg;
|
|
cbaser = CBASER_ADDRESS(its->cbaser);
|
|
|
|
while (its->cwriter != its->creadr) {
|
|
int ret = kvm_read_guest(kvm, cbaser + its->creadr,
|
|
cmd_buf, ITS_CMD_SIZE);
|
|
/*
|
|
* If kvm_read_guest() fails, this could be due to the guest
|
|
* programming a bogus value in CBASER or something else going
|
|
* wrong from which we cannot easily recover.
|
|
* According to section 6.3.2 in the GICv3 spec we can just
|
|
* ignore that command then.
|
|
*/
|
|
if (!ret)
|
|
vgic_its_handle_command(kvm, its, cmd_buf);
|
|
|
|
its->creadr += ITS_CMD_SIZE;
|
|
if (its->creadr == ITS_CMD_BUFFER_SIZE(its->cbaser))
|
|
its->creadr = 0;
|
|
}
|
|
|
|
mutex_unlock(&its->cmd_lock);
|
|
}
|
|
|
|
static unsigned long vgic_mmio_read_its_cwriter(struct kvm *kvm,
|
|
struct vgic_its *its,
|
|
gpa_t addr, unsigned int len)
|
|
{
|
|
return extract_bytes(its->cwriter, addr & 0x7, len);
|
|
}
|
|
|
|
static unsigned long vgic_mmio_read_its_creadr(struct kvm *kvm,
|
|
struct vgic_its *its,
|
|
gpa_t addr, unsigned int len)
|
|
{
|
|
return extract_bytes(its->creadr, addr & 0x7, len);
|
|
}
|
|
|
|
#define BASER_INDEX(addr) (((addr) / sizeof(u64)) & 0x7)
|
|
static unsigned long vgic_mmio_read_its_baser(struct kvm *kvm,
|
|
struct vgic_its *its,
|
|
gpa_t addr, unsigned int len)
|
|
{
|
|
u64 reg;
|
|
|
|
switch (BASER_INDEX(addr)) {
|
|
case 0:
|
|
reg = its->baser_device_table;
|
|
break;
|
|
case 1:
|
|
reg = its->baser_coll_table;
|
|
break;
|
|
default:
|
|
reg = 0;
|
|
break;
|
|
}
|
|
|
|
return extract_bytes(reg, addr & 7, len);
|
|
}
|
|
|
|
#define GITS_BASER_RO_MASK (GENMASK_ULL(52, 48) | GENMASK_ULL(58, 56))
|
|
static void vgic_mmio_write_its_baser(struct kvm *kvm,
|
|
struct vgic_its *its,
|
|
gpa_t addr, unsigned int len,
|
|
unsigned long val)
|
|
{
|
|
u64 entry_size, device_type;
|
|
u64 reg, *regptr, clearbits = 0;
|
|
|
|
/* When GITS_CTLR.Enable is 1, we ignore write accesses. */
|
|
if (its->enabled)
|
|
return;
|
|
|
|
switch (BASER_INDEX(addr)) {
|
|
case 0:
|
|
regptr = &its->baser_device_table;
|
|
entry_size = 8;
|
|
device_type = GITS_BASER_TYPE_DEVICE;
|
|
break;
|
|
case 1:
|
|
regptr = &its->baser_coll_table;
|
|
entry_size = 8;
|
|
device_type = GITS_BASER_TYPE_COLLECTION;
|
|
clearbits = GITS_BASER_INDIRECT;
|
|
break;
|
|
default:
|
|
return;
|
|
}
|
|
|
|
reg = update_64bit_reg(*regptr, addr & 7, len, val);
|
|
reg &= ~GITS_BASER_RO_MASK;
|
|
reg &= ~clearbits;
|
|
|
|
reg |= (entry_size - 1) << GITS_BASER_ENTRY_SIZE_SHIFT;
|
|
reg |= device_type << GITS_BASER_TYPE_SHIFT;
|
|
reg = vgic_sanitise_its_baser(reg);
|
|
|
|
*regptr = reg;
|
|
}
|
|
|
|
#define REGISTER_ITS_DESC(off, rd, wr, length, acc) \
|
|
{ \
|
|
.reg_offset = off, \
|
|
.len = length, \
|
|
.access_flags = acc, \
|
|
.its_read = rd, \
|
|
.its_write = wr, \
|
|
}
|
|
|
|
static void its_mmio_write_wi(struct kvm *kvm, struct vgic_its *its,
|
|
gpa_t addr, unsigned int len, unsigned long val)
|
|
{
|
|
/* Ignore */
|
|
}
|
|
|
|
static struct vgic_register_region its_registers[] = {
|
|
REGISTER_ITS_DESC(GITS_CTLR,
|
|
vgic_mmio_read_its_ctlr, vgic_mmio_write_its_ctlr, 4,
|
|
VGIC_ACCESS_32bit),
|
|
REGISTER_ITS_DESC(GITS_IIDR,
|
|
vgic_mmio_read_its_iidr, its_mmio_write_wi, 4,
|
|
VGIC_ACCESS_32bit),
|
|
REGISTER_ITS_DESC(GITS_TYPER,
|
|
vgic_mmio_read_its_typer, its_mmio_write_wi, 8,
|
|
VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
|
|
REGISTER_ITS_DESC(GITS_CBASER,
|
|
vgic_mmio_read_its_cbaser, vgic_mmio_write_its_cbaser, 8,
|
|
VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
|
|
REGISTER_ITS_DESC(GITS_CWRITER,
|
|
vgic_mmio_read_its_cwriter, vgic_mmio_write_its_cwriter, 8,
|
|
VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
|
|
REGISTER_ITS_DESC(GITS_CREADR,
|
|
vgic_mmio_read_its_creadr, its_mmio_write_wi, 8,
|
|
VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
|
|
REGISTER_ITS_DESC(GITS_BASER,
|
|
vgic_mmio_read_its_baser, vgic_mmio_write_its_baser, 0x40,
|
|
VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
|
|
REGISTER_ITS_DESC(GITS_IDREGS_BASE,
|
|
vgic_mmio_read_its_idregs, its_mmio_write_wi, 0x30,
|
|
VGIC_ACCESS_32bit),
|
|
};
|
|
|
|
/* This is called on setting the LPI enable bit in the redistributor. */
|
|
void vgic_enable_lpis(struct kvm_vcpu *vcpu)
|
|
{
|
|
if (!(vcpu->arch.vgic_cpu.pendbaser & GICR_PENDBASER_PTZ))
|
|
its_sync_lpi_pending_table(vcpu);
|
|
}
|
|
|
|
static int vgic_register_its_iodev(struct kvm *kvm, struct vgic_its *its)
|
|
{
|
|
struct vgic_io_device *iodev = &its->iodev;
|
|
int ret;
|
|
|
|
if (!its->initialized)
|
|
return -EBUSY;
|
|
|
|
if (IS_VGIC_ADDR_UNDEF(its->vgic_its_base))
|
|
return -ENXIO;
|
|
|
|
iodev->regions = its_registers;
|
|
iodev->nr_regions = ARRAY_SIZE(its_registers);
|
|
kvm_iodevice_init(&iodev->dev, &kvm_io_gic_ops);
|
|
|
|
iodev->base_addr = its->vgic_its_base;
|
|
iodev->iodev_type = IODEV_ITS;
|
|
iodev->its = its;
|
|
mutex_lock(&kvm->slots_lock);
|
|
ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, iodev->base_addr,
|
|
KVM_VGIC_V3_ITS_SIZE, &iodev->dev);
|
|
mutex_unlock(&kvm->slots_lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
#define INITIAL_BASER_VALUE \
|
|
(GIC_BASER_CACHEABILITY(GITS_BASER, INNER, RaWb) | \
|
|
GIC_BASER_CACHEABILITY(GITS_BASER, OUTER, SameAsInner) | \
|
|
GIC_BASER_SHAREABILITY(GITS_BASER, InnerShareable) | \
|
|
((8ULL - 1) << GITS_BASER_ENTRY_SIZE_SHIFT) | \
|
|
GITS_BASER_PAGE_SIZE_64K)
|
|
|
|
#define INITIAL_PROPBASER_VALUE \
|
|
(GIC_BASER_CACHEABILITY(GICR_PROPBASER, INNER, RaWb) | \
|
|
GIC_BASER_CACHEABILITY(GICR_PROPBASER, OUTER, SameAsInner) | \
|
|
GIC_BASER_SHAREABILITY(GICR_PROPBASER, InnerShareable))
|
|
|
|
static int vgic_its_create(struct kvm_device *dev, u32 type)
|
|
{
|
|
struct vgic_its *its;
|
|
|
|
if (type != KVM_DEV_TYPE_ARM_VGIC_ITS)
|
|
return -ENODEV;
|
|
|
|
its = kzalloc(sizeof(struct vgic_its), GFP_KERNEL);
|
|
if (!its)
|
|
return -ENOMEM;
|
|
|
|
mutex_init(&its->its_lock);
|
|
mutex_init(&its->cmd_lock);
|
|
|
|
its->vgic_its_base = VGIC_ADDR_UNDEF;
|
|
|
|
INIT_LIST_HEAD(&its->device_list);
|
|
INIT_LIST_HEAD(&its->collection_list);
|
|
|
|
dev->kvm->arch.vgic.has_its = true;
|
|
its->initialized = false;
|
|
its->enabled = false;
|
|
its->dev = dev;
|
|
|
|
its->baser_device_table = INITIAL_BASER_VALUE |
|
|
((u64)GITS_BASER_TYPE_DEVICE << GITS_BASER_TYPE_SHIFT);
|
|
its->baser_coll_table = INITIAL_BASER_VALUE |
|
|
((u64)GITS_BASER_TYPE_COLLECTION << GITS_BASER_TYPE_SHIFT);
|
|
dev->kvm->arch.vgic.propbaser = INITIAL_PROPBASER_VALUE;
|
|
|
|
dev->private = its;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void vgic_its_destroy(struct kvm_device *kvm_dev)
|
|
{
|
|
struct kvm *kvm = kvm_dev->kvm;
|
|
struct vgic_its *its = kvm_dev->private;
|
|
struct its_device *dev;
|
|
struct its_itte *itte;
|
|
struct list_head *dev_cur, *dev_temp;
|
|
struct list_head *cur, *temp;
|
|
|
|
/*
|
|
* We may end up here without the lists ever having been initialized.
|
|
* Check this and bail out early to avoid dereferencing a NULL pointer.
|
|
*/
|
|
if (!its->device_list.next)
|
|
return;
|
|
|
|
mutex_lock(&its->its_lock);
|
|
list_for_each_safe(dev_cur, dev_temp, &its->device_list) {
|
|
dev = container_of(dev_cur, struct its_device, dev_list);
|
|
list_for_each_safe(cur, temp, &dev->itt_head) {
|
|
itte = (container_of(cur, struct its_itte, itte_list));
|
|
its_free_itte(kvm, itte);
|
|
}
|
|
list_del(dev_cur);
|
|
kfree(dev);
|
|
}
|
|
|
|
list_for_each_safe(cur, temp, &its->collection_list) {
|
|
list_del(cur);
|
|
kfree(container_of(cur, struct its_collection, coll_list));
|
|
}
|
|
mutex_unlock(&its->its_lock);
|
|
|
|
kfree(its);
|
|
}
|
|
|
|
static int vgic_its_has_attr(struct kvm_device *dev,
|
|
struct kvm_device_attr *attr)
|
|
{
|
|
switch (attr->group) {
|
|
case KVM_DEV_ARM_VGIC_GRP_ADDR:
|
|
switch (attr->attr) {
|
|
case KVM_VGIC_ITS_ADDR_TYPE:
|
|
return 0;
|
|
}
|
|
break;
|
|
case KVM_DEV_ARM_VGIC_GRP_CTRL:
|
|
switch (attr->attr) {
|
|
case KVM_DEV_ARM_VGIC_CTRL_INIT:
|
|
return 0;
|
|
}
|
|
break;
|
|
}
|
|
return -ENXIO;
|
|
}
|
|
|
|
static int vgic_its_set_attr(struct kvm_device *dev,
|
|
struct kvm_device_attr *attr)
|
|
{
|
|
struct vgic_its *its = dev->private;
|
|
int ret;
|
|
|
|
switch (attr->group) {
|
|
case KVM_DEV_ARM_VGIC_GRP_ADDR: {
|
|
u64 __user *uaddr = (u64 __user *)(long)attr->addr;
|
|
unsigned long type = (unsigned long)attr->attr;
|
|
u64 addr;
|
|
|
|
if (type != KVM_VGIC_ITS_ADDR_TYPE)
|
|
return -ENODEV;
|
|
|
|
if (copy_from_user(&addr, uaddr, sizeof(addr)))
|
|
return -EFAULT;
|
|
|
|
ret = vgic_check_ioaddr(dev->kvm, &its->vgic_its_base,
|
|
addr, SZ_64K);
|
|
if (ret)
|
|
return ret;
|
|
|
|
its->vgic_its_base = addr;
|
|
|
|
return 0;
|
|
}
|
|
case KVM_DEV_ARM_VGIC_GRP_CTRL:
|
|
switch (attr->attr) {
|
|
case KVM_DEV_ARM_VGIC_CTRL_INIT:
|
|
its->initialized = true;
|
|
|
|
return 0;
|
|
}
|
|
break;
|
|
}
|
|
return -ENXIO;
|
|
}
|
|
|
|
static int vgic_its_get_attr(struct kvm_device *dev,
|
|
struct kvm_device_attr *attr)
|
|
{
|
|
switch (attr->group) {
|
|
case KVM_DEV_ARM_VGIC_GRP_ADDR: {
|
|
struct vgic_its *its = dev->private;
|
|
u64 addr = its->vgic_its_base;
|
|
u64 __user *uaddr = (u64 __user *)(long)attr->addr;
|
|
unsigned long type = (unsigned long)attr->attr;
|
|
|
|
if (type != KVM_VGIC_ITS_ADDR_TYPE)
|
|
return -ENODEV;
|
|
|
|
if (copy_to_user(uaddr, &addr, sizeof(addr)))
|
|
return -EFAULT;
|
|
break;
|
|
default:
|
|
return -ENXIO;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct kvm_device_ops kvm_arm_vgic_its_ops = {
|
|
.name = "kvm-arm-vgic-its",
|
|
.create = vgic_its_create,
|
|
.destroy = vgic_its_destroy,
|
|
.set_attr = vgic_its_set_attr,
|
|
.get_attr = vgic_its_get_attr,
|
|
.has_attr = vgic_its_has_attr,
|
|
};
|
|
|
|
int kvm_vgic_register_its_device(void)
|
|
{
|
|
return kvm_register_device_ops(&kvm_arm_vgic_its_ops,
|
|
KVM_DEV_TYPE_ARM_VGIC_ITS);
|
|
}
|
|
|
|
/*
|
|
* Registers all ITSes with the kvm_io_bus framework.
|
|
* To follow the existing VGIC initialization sequence, this has to be
|
|
* done as late as possible, just before the first VCPU runs.
|
|
*/
|
|
int vgic_register_its_iodevs(struct kvm *kvm)
|
|
{
|
|
struct kvm_device *dev;
|
|
int ret = 0;
|
|
|
|
list_for_each_entry(dev, &kvm->devices, vm_node) {
|
|
if (dev->ops != &kvm_arm_vgic_its_ops)
|
|
continue;
|
|
|
|
ret = vgic_register_its_iodev(kvm, dev->private);
|
|
if (ret)
|
|
return ret;
|
|
/*
|
|
* We don't need to care about tearing down previously
|
|
* registered ITSes, as the kvm_io_bus framework removes
|
|
* them for us if the VM gets destroyed.
|
|
*/
|
|
}
|
|
|
|
return ret;
|
|
}
|