linux-sg2042/drivers/net/fddi/defza.c

1566 lines
41 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/* FDDI network adapter driver for DEC FDDIcontroller 700/700-C devices.
*
* Copyright (c) 2018 Maciej W. Rozycki
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
* References:
*
* Dave Sawyer & Phil Weeks & Frank Itkowsky,
* "DEC FDDIcontroller 700 Port Specification",
* Revision 1.1, Digital Equipment Corporation
*/
/* ------------------------------------------------------------------------- */
/* FZA configurable parameters. */
/* The number of transmit ring descriptors; either 0 for 512 or 1 for 1024. */
#define FZA_RING_TX_MODE 0
/* The number of receive ring descriptors; from 2 up to 256. */
#define FZA_RING_RX_SIZE 256
/* End of FZA configurable parameters. No need to change anything below. */
/* ------------------------------------------------------------------------- */
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/dma-mapping.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/ioport.h>
#include <linux/kernel.h>
#include <linux/list.h>
#include <linux/module.h>
#include <linux/netdevice.h>
#include <linux/fddidevice.h>
#include <linux/sched.h>
#include <linux/skbuff.h>
#include <linux/spinlock.h>
#include <linux/stat.h>
#include <linux/tc.h>
#include <linux/timer.h>
#include <linux/types.h>
#include <linux/wait.h>
#include <asm/barrier.h>
#include "defza.h"
#define DRV_NAME "defza"
#define DRV_VERSION "v.1.1.4"
#define DRV_RELDATE "Oct 6 2018"
static const char version[] =
DRV_NAME ": " DRV_VERSION " " DRV_RELDATE " Maciej W. Rozycki\n";
MODULE_AUTHOR("Maciej W. Rozycki <macro@linux-mips.org>");
MODULE_DESCRIPTION("DEC FDDIcontroller 700 (DEFZA-xx) driver");
MODULE_LICENSE("GPL");
static int loopback;
module_param(loopback, int, 0644);
/* Ring Purger Multicast */
static u8 hw_addr_purger[8] = { 0x09, 0x00, 0x2b, 0x02, 0x01, 0x05 };
/* Directed Beacon Multicast */
static u8 hw_addr_beacon[8] = { 0x01, 0x80, 0xc2, 0x00, 0x01, 0x00 };
/* Shorthands for MMIO accesses that we require to be strongly ordered
* WRT preceding MMIO accesses.
*/
#define readw_o readw_relaxed
#define readl_o readl_relaxed
#define writew_o writew_relaxed
#define writel_o writel_relaxed
/* Shorthands for MMIO accesses that we are happy with being weakly ordered
* WRT preceding MMIO accesses.
*/
#define readw_u readw_relaxed
#define readl_u readl_relaxed
#define readq_u readq_relaxed
#define writew_u writew_relaxed
#define writel_u writel_relaxed
#define writeq_u writeq_relaxed
static inline struct sk_buff *fza_alloc_skb_irq(struct net_device *dev,
unsigned int length)
{
return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
}
static inline struct sk_buff *fza_alloc_skb(struct net_device *dev,
unsigned int length)
{
return __netdev_alloc_skb(dev, length, GFP_KERNEL);
}
static inline void fza_skb_align(struct sk_buff *skb, unsigned int v)
{
unsigned long x, y;
x = (unsigned long)skb->data;
y = ALIGN(x, v);
skb_reserve(skb, y - x);
}
static inline void fza_reads(const void __iomem *from, void *to,
unsigned long size)
{
if (sizeof(unsigned long) == 8) {
const u64 __iomem *src = from;
const u32 __iomem *src_trail;
u64 *dst = to;
u32 *dst_trail;
for (size = (size + 3) / 4; size > 1; size -= 2)
*dst++ = readq_u(src++);
if (size) {
src_trail = (u32 __iomem *)src;
dst_trail = (u32 *)dst;
*dst_trail = readl_u(src_trail);
}
} else {
const u32 __iomem *src = from;
u32 *dst = to;
for (size = (size + 3) / 4; size; size--)
*dst++ = readl_u(src++);
}
}
static inline void fza_writes(const void *from, void __iomem *to,
unsigned long size)
{
if (sizeof(unsigned long) == 8) {
const u64 *src = from;
const u32 *src_trail;
u64 __iomem *dst = to;
u32 __iomem *dst_trail;
for (size = (size + 3) / 4; size > 1; size -= 2)
writeq_u(*src++, dst++);
if (size) {
src_trail = (u32 *)src;
dst_trail = (u32 __iomem *)dst;
writel_u(*src_trail, dst_trail);
}
} else {
const u32 *src = from;
u32 __iomem *dst = to;
for (size = (size + 3) / 4; size; size--)
writel_u(*src++, dst++);
}
}
static inline void fza_moves(const void __iomem *from, void __iomem *to,
unsigned long size)
{
if (sizeof(unsigned long) == 8) {
const u64 __iomem *src = from;
const u32 __iomem *src_trail;
u64 __iomem *dst = to;
u32 __iomem *dst_trail;
for (size = (size + 3) / 4; size > 1; size -= 2)
writeq_u(readq_u(src++), dst++);
if (size) {
src_trail = (u32 __iomem *)src;
dst_trail = (u32 __iomem *)dst;
writel_u(readl_u(src_trail), dst_trail);
}
} else {
const u32 __iomem *src = from;
u32 __iomem *dst = to;
for (size = (size + 3) / 4; size; size--)
writel_u(readl_u(src++), dst++);
}
}
static inline void fza_zeros(void __iomem *to, unsigned long size)
{
if (sizeof(unsigned long) == 8) {
u64 __iomem *dst = to;
u32 __iomem *dst_trail;
for (size = (size + 3) / 4; size > 1; size -= 2)
writeq_u(0, dst++);
if (size) {
dst_trail = (u32 __iomem *)dst;
writel_u(0, dst_trail);
}
} else {
u32 __iomem *dst = to;
for (size = (size + 3) / 4; size; size--)
writel_u(0, dst++);
}
}
static inline void fza_regs_dump(struct fza_private *fp)
{
pr_debug("%s: iomem registers:\n", fp->name);
pr_debug(" reset: 0x%04x\n", readw_o(&fp->regs->reset));
pr_debug(" interrupt event: 0x%04x\n", readw_u(&fp->regs->int_event));
pr_debug(" status: 0x%04x\n", readw_u(&fp->regs->status));
pr_debug(" interrupt mask: 0x%04x\n", readw_u(&fp->regs->int_mask));
pr_debug(" control A: 0x%04x\n", readw_u(&fp->regs->control_a));
pr_debug(" control B: 0x%04x\n", readw_u(&fp->regs->control_b));
}
static inline void fza_do_reset(struct fza_private *fp)
{
/* Reset the board. */
writew_o(FZA_RESET_INIT, &fp->regs->reset);
readw_o(&fp->regs->reset); /* Synchronize. */
readw_o(&fp->regs->reset); /* Read it back for a small delay. */
writew_o(FZA_RESET_CLR, &fp->regs->reset);
/* Enable all interrupt events we handle. */
writew_o(fp->int_mask, &fp->regs->int_mask);
readw_o(&fp->regs->int_mask); /* Synchronize. */
}
static inline void fza_do_shutdown(struct fza_private *fp)
{
/* Disable the driver mode. */
writew_o(FZA_CONTROL_B_IDLE, &fp->regs->control_b);
/* And reset the board. */
writew_o(FZA_RESET_INIT, &fp->regs->reset);
readw_o(&fp->regs->reset); /* Synchronize. */
writew_o(FZA_RESET_CLR, &fp->regs->reset);
readw_o(&fp->regs->reset); /* Synchronize. */
}
static int fza_reset(struct fza_private *fp)
{
unsigned long flags;
uint status, state;
long t;
pr_info("%s: resetting the board...\n", fp->name);
spin_lock_irqsave(&fp->lock, flags);
fp->state_chg_flag = 0;
fza_do_reset(fp);
spin_unlock_irqrestore(&fp->lock, flags);
/* DEC says RESET needs up to 30 seconds to complete. My DEFZA-AA
* rev. C03 happily finishes in 9.7 seconds. :-) But we need to
* be on the safe side...
*/
t = wait_event_timeout(fp->state_chg_wait, fp->state_chg_flag,
45 * HZ);
status = readw_u(&fp->regs->status);
state = FZA_STATUS_GET_STATE(status);
if (fp->state_chg_flag == 0) {
pr_err("%s: RESET timed out!, state %x\n", fp->name, state);
return -EIO;
}
if (state != FZA_STATE_UNINITIALIZED) {
pr_err("%s: RESET failed!, state %x, failure ID %x\n",
fp->name, state, FZA_STATUS_GET_TEST(status));
return -EIO;
}
pr_info("%s: OK\n", fp->name);
pr_debug("%s: RESET: %lums elapsed\n", fp->name,
(45 * HZ - t) * 1000 / HZ);
return 0;
}
static struct fza_ring_cmd __iomem *fza_cmd_send(struct net_device *dev,
int command)
{
struct fza_private *fp = netdev_priv(dev);
struct fza_ring_cmd __iomem *ring = fp->ring_cmd + fp->ring_cmd_index;
unsigned int old_mask, new_mask;
union fza_cmd_buf __iomem *buf;
struct netdev_hw_addr *ha;
int i;
old_mask = fp->int_mask;
new_mask = old_mask & ~FZA_MASK_STATE_CHG;
writew_u(new_mask, &fp->regs->int_mask);
readw_o(&fp->regs->int_mask); /* Synchronize. */
fp->int_mask = new_mask;
buf = fp->mmio + readl_u(&ring->buffer);
if ((readl_u(&ring->cmd_own) & FZA_RING_OWN_MASK) !=
FZA_RING_OWN_HOST) {
pr_warn("%s: command buffer full, command: %u!\n", fp->name,
command);
return NULL;
}
switch (command) {
case FZA_RING_CMD_INIT:
writel_u(FZA_RING_TX_MODE, &buf->init.tx_mode);
writel_u(FZA_RING_RX_SIZE, &buf->init.hst_rx_size);
fza_zeros(&buf->init.counters, sizeof(buf->init.counters));
break;
case FZA_RING_CMD_MODCAM:
i = 0;
fza_writes(&hw_addr_purger, &buf->cam.hw_addr[i++],
sizeof(*buf->cam.hw_addr));
fza_writes(&hw_addr_beacon, &buf->cam.hw_addr[i++],
sizeof(*buf->cam.hw_addr));
netdev_for_each_mc_addr(ha, dev) {
if (i >= FZA_CMD_CAM_SIZE)
break;
fza_writes(ha->addr, &buf->cam.hw_addr[i++],
sizeof(*buf->cam.hw_addr));
}
while (i < FZA_CMD_CAM_SIZE)
fza_zeros(&buf->cam.hw_addr[i++],
sizeof(*buf->cam.hw_addr));
break;
case FZA_RING_CMD_PARAM:
writel_u(loopback, &buf->param.loop_mode);
writel_u(fp->t_max, &buf->param.t_max);
writel_u(fp->t_req, &buf->param.t_req);
writel_u(fp->tvx, &buf->param.tvx);
writel_u(fp->lem_threshold, &buf->param.lem_threshold);
fza_writes(&fp->station_id, &buf->param.station_id,
sizeof(buf->param.station_id));
/* Convert to milliseconds due to buggy firmware. */
writel_u(fp->rtoken_timeout / 12500,
&buf->param.rtoken_timeout);
writel_u(fp->ring_purger, &buf->param.ring_purger);
break;
case FZA_RING_CMD_MODPROM:
if (dev->flags & IFF_PROMISC) {
writel_u(1, &buf->modprom.llc_prom);
writel_u(1, &buf->modprom.smt_prom);
} else {
writel_u(0, &buf->modprom.llc_prom);
writel_u(0, &buf->modprom.smt_prom);
}
if (dev->flags & IFF_ALLMULTI ||
netdev_mc_count(dev) > FZA_CMD_CAM_SIZE - 2)
writel_u(1, &buf->modprom.llc_multi);
else
writel_u(0, &buf->modprom.llc_multi);
writel_u(1, &buf->modprom.llc_bcast);
break;
}
/* Trigger the command. */
writel_u(FZA_RING_OWN_FZA | command, &ring->cmd_own);
writew_o(FZA_CONTROL_A_CMD_POLL, &fp->regs->control_a);
fp->ring_cmd_index = (fp->ring_cmd_index + 1) % FZA_RING_CMD_SIZE;
fp->int_mask = old_mask;
writew_u(fp->int_mask, &fp->regs->int_mask);
return ring;
}
static int fza_init_send(struct net_device *dev,
struct fza_cmd_init *__iomem *init)
{
struct fza_private *fp = netdev_priv(dev);
struct fza_ring_cmd __iomem *ring;
unsigned long flags;
u32 stat;
long t;
spin_lock_irqsave(&fp->lock, flags);
fp->cmd_done_flag = 0;
ring = fza_cmd_send(dev, FZA_RING_CMD_INIT);
spin_unlock_irqrestore(&fp->lock, flags);
if (!ring)
/* This should never happen in the uninitialized state,
* so do not try to recover and just consider it fatal.
*/
return -ENOBUFS;
/* INIT may take quite a long time (160ms for my C03). */
t = wait_event_timeout(fp->cmd_done_wait, fp->cmd_done_flag, 3 * HZ);
if (fp->cmd_done_flag == 0) {
pr_err("%s: INIT command timed out!, state %x\n", fp->name,
FZA_STATUS_GET_STATE(readw_u(&fp->regs->status)));
return -EIO;
}
stat = readl_u(&ring->stat);
if (stat != FZA_RING_STAT_SUCCESS) {
pr_err("%s: INIT command failed!, status %02x, state %x\n",
fp->name, stat,
FZA_STATUS_GET_STATE(readw_u(&fp->regs->status)));
return -EIO;
}
pr_debug("%s: INIT: %lums elapsed\n", fp->name,
(3 * HZ - t) * 1000 / HZ);
if (init)
*init = fp->mmio + readl_u(&ring->buffer);
return 0;
}
static void fza_rx_init(struct fza_private *fp)
{
int i;
/* Fill the host receive descriptor ring. */
for (i = 0; i < FZA_RING_RX_SIZE; i++) {
writel_o(0, &fp->ring_hst_rx[i].rmc);
writel_o((fp->rx_dma[i] + 0x1000) >> 9,
&fp->ring_hst_rx[i].buffer1);
writel_o(fp->rx_dma[i] >> 9 | FZA_RING_OWN_FZA,
&fp->ring_hst_rx[i].buf0_own);
}
}
static void fza_set_rx_mode(struct net_device *dev)
{
fza_cmd_send(dev, FZA_RING_CMD_MODCAM);
fza_cmd_send(dev, FZA_RING_CMD_MODPROM);
}
union fza_buffer_txp {
struct fza_buffer_tx *data_ptr;
struct fza_buffer_tx __iomem *mmio_ptr;
};
static int fza_do_xmit(union fza_buffer_txp ub, int len,
struct net_device *dev, int smt)
{
struct fza_private *fp = netdev_priv(dev);
struct fza_buffer_tx __iomem *rmc_tx_ptr;
int i, first, frag_len, left_len;
u32 own, rmc;
if (((((fp->ring_rmc_txd_index - 1 + fp->ring_rmc_tx_size) -
fp->ring_rmc_tx_index) % fp->ring_rmc_tx_size) *
FZA_TX_BUFFER_SIZE) < len)
return 1;
first = fp->ring_rmc_tx_index;
left_len = len;
frag_len = FZA_TX_BUFFER_SIZE;
/* First descriptor is relinquished last. */
own = FZA_RING_TX_OWN_HOST;
/* First descriptor carries frame length; we don't use cut-through. */
rmc = FZA_RING_TX_SOP | FZA_RING_TX_VBC | len;
do {
i = fp->ring_rmc_tx_index;
rmc_tx_ptr = &fp->buffer_tx[i];
if (left_len < FZA_TX_BUFFER_SIZE)
frag_len = left_len;
left_len -= frag_len;
/* Length must be a multiple of 4 as only word writes are
* permitted!
*/
frag_len = (frag_len + 3) & ~3;
if (smt)
fza_moves(ub.mmio_ptr, rmc_tx_ptr, frag_len);
else
fza_writes(ub.data_ptr, rmc_tx_ptr, frag_len);
if (left_len == 0)
rmc |= FZA_RING_TX_EOP; /* Mark last frag. */
writel_o(rmc, &fp->ring_rmc_tx[i].rmc);
writel_o(own, &fp->ring_rmc_tx[i].own);
ub.data_ptr++;
fp->ring_rmc_tx_index = (fp->ring_rmc_tx_index + 1) %
fp->ring_rmc_tx_size;
/* Settings for intermediate frags. */
own = FZA_RING_TX_OWN_RMC;
rmc = 0;
} while (left_len > 0);
if (((((fp->ring_rmc_txd_index - 1 + fp->ring_rmc_tx_size) -
fp->ring_rmc_tx_index) % fp->ring_rmc_tx_size) *
FZA_TX_BUFFER_SIZE) < dev->mtu + dev->hard_header_len) {
netif_stop_queue(dev);
pr_debug("%s: queue stopped\n", fp->name);
}
writel_o(FZA_RING_TX_OWN_RMC, &fp->ring_rmc_tx[first].own);
/* Go, go, go! */
writew_o(FZA_CONTROL_A_TX_POLL, &fp->regs->control_a);
return 0;
}
static int fza_do_recv_smt(struct fza_buffer_tx *data_ptr, int len,
u32 rmc, struct net_device *dev)
{
struct fza_private *fp = netdev_priv(dev);
struct fza_buffer_tx __iomem *smt_rx_ptr;
u32 own;
int i;
i = fp->ring_smt_rx_index;
own = readl_o(&fp->ring_smt_rx[i].own);
if ((own & FZA_RING_OWN_MASK) == FZA_RING_OWN_FZA)
return 1;
smt_rx_ptr = fp->mmio + readl_u(&fp->ring_smt_rx[i].buffer);
/* Length must be a multiple of 4 as only word writes are permitted! */
fza_writes(data_ptr, smt_rx_ptr, (len + 3) & ~3);
writel_o(rmc, &fp->ring_smt_rx[i].rmc);
writel_o(FZA_RING_OWN_FZA, &fp->ring_smt_rx[i].own);
fp->ring_smt_rx_index =
(fp->ring_smt_rx_index + 1) % fp->ring_smt_rx_size;
/* Grab it! */
writew_o(FZA_CONTROL_A_SMT_RX_POLL, &fp->regs->control_a);
return 0;
}
static void fza_tx(struct net_device *dev)
{
struct fza_private *fp = netdev_priv(dev);
u32 own, rmc;
int i;
while (1) {
i = fp->ring_rmc_txd_index;
if (i == fp->ring_rmc_tx_index)
break;
own = readl_o(&fp->ring_rmc_tx[i].own);
if ((own & FZA_RING_OWN_MASK) == FZA_RING_TX_OWN_RMC)
break;
rmc = readl_u(&fp->ring_rmc_tx[i].rmc);
/* Only process the first descriptor. */
if ((rmc & FZA_RING_TX_SOP) != 0) {
if ((rmc & FZA_RING_TX_DCC_MASK) ==
FZA_RING_TX_DCC_SUCCESS) {
int pkt_len = (rmc & FZA_RING_PBC_MASK) - 3;
/* Omit PRH. */
fp->stats.tx_packets++;
fp->stats.tx_bytes += pkt_len;
} else {
fp->stats.tx_errors++;
switch (rmc & FZA_RING_TX_DCC_MASK) {
case FZA_RING_TX_DCC_DTP_SOP:
case FZA_RING_TX_DCC_DTP:
case FZA_RING_TX_DCC_ABORT:
fp->stats.tx_aborted_errors++;
break;
case FZA_RING_TX_DCC_UNDRRUN:
fp->stats.tx_fifo_errors++;
break;
case FZA_RING_TX_DCC_PARITY:
default:
break;
}
}
}
fp->ring_rmc_txd_index = (fp->ring_rmc_txd_index + 1) %
fp->ring_rmc_tx_size;
}
if (((((fp->ring_rmc_txd_index - 1 + fp->ring_rmc_tx_size) -
fp->ring_rmc_tx_index) % fp->ring_rmc_tx_size) *
FZA_TX_BUFFER_SIZE) >= dev->mtu + dev->hard_header_len) {
if (fp->queue_active) {
netif_wake_queue(dev);
pr_debug("%s: queue woken\n", fp->name);
}
}
}
static inline int fza_rx_err(struct fza_private *fp,
const u32 rmc, const u8 fc)
{
int len, min_len, max_len;
len = rmc & FZA_RING_PBC_MASK;
if (unlikely((rmc & FZA_RING_RX_BAD) != 0)) {
fp->stats.rx_errors++;
/* Check special status codes. */
if ((rmc & (FZA_RING_RX_CRC | FZA_RING_RX_RRR_MASK |
FZA_RING_RX_DA_MASK | FZA_RING_RX_SA_MASK)) ==
(FZA_RING_RX_CRC | FZA_RING_RX_RRR_DADDR |
FZA_RING_RX_DA_CAM | FZA_RING_RX_SA_ALIAS)) {
if (len >= 8190)
fp->stats.rx_length_errors++;
return 1;
}
if ((rmc & (FZA_RING_RX_CRC | FZA_RING_RX_RRR_MASK |
FZA_RING_RX_DA_MASK | FZA_RING_RX_SA_MASK)) ==
(FZA_RING_RX_CRC | FZA_RING_RX_RRR_DADDR |
FZA_RING_RX_DA_CAM | FZA_RING_RX_SA_CAM)) {
/* Halt the interface to trigger a reset. */
writew_o(FZA_CONTROL_A_HALT, &fp->regs->control_a);
readw_o(&fp->regs->control_a); /* Synchronize. */
return 1;
}
/* Check the MAC status. */
switch (rmc & FZA_RING_RX_RRR_MASK) {
case FZA_RING_RX_RRR_OK:
if ((rmc & FZA_RING_RX_CRC) != 0)
fp->stats.rx_crc_errors++;
else if ((rmc & FZA_RING_RX_FSC_MASK) == 0 ||
(rmc & FZA_RING_RX_FSB_ERR) != 0)
fp->stats.rx_frame_errors++;
return 1;
case FZA_RING_RX_RRR_SADDR:
case FZA_RING_RX_RRR_DADDR:
case FZA_RING_RX_RRR_ABORT:
/* Halt the interface to trigger a reset. */
writew_o(FZA_CONTROL_A_HALT, &fp->regs->control_a);
readw_o(&fp->regs->control_a); /* Synchronize. */
return 1;
case FZA_RING_RX_RRR_LENGTH:
fp->stats.rx_frame_errors++;
return 1;
default:
return 1;
}
}
/* Packet received successfully; validate the length. */
switch (fc & FDDI_FC_K_FORMAT_MASK) {
case FDDI_FC_K_FORMAT_MANAGEMENT:
if ((fc & FDDI_FC_K_CLASS_MASK) == FDDI_FC_K_CLASS_ASYNC)
min_len = 37;
else
min_len = 17;
break;
case FDDI_FC_K_FORMAT_LLC:
min_len = 20;
break;
default:
min_len = 17;
break;
}
max_len = 4495;
if (len < min_len || len > max_len) {
fp->stats.rx_errors++;
fp->stats.rx_length_errors++;
return 1;
}
return 0;
}
static void fza_rx(struct net_device *dev)
{
struct fza_private *fp = netdev_priv(dev);
struct sk_buff *skb, *newskb;
struct fza_fddihdr *frame;
dma_addr_t dma, newdma;
u32 own, rmc, buf;
int i, len;
u8 fc;
while (1) {
i = fp->ring_hst_rx_index;
own = readl_o(&fp->ring_hst_rx[i].buf0_own);
if ((own & FZA_RING_OWN_MASK) == FZA_RING_OWN_FZA)
break;
rmc = readl_u(&fp->ring_hst_rx[i].rmc);
skb = fp->rx_skbuff[i];
dma = fp->rx_dma[i];
/* The RMC doesn't count the preamble and the starting
* delimiter. We fix it up here for a total of 3 octets.
*/
dma_rmb();
len = (rmc & FZA_RING_PBC_MASK) + 3;
frame = (struct fza_fddihdr *)skb->data;
/* We need to get at real FC. */
dma_sync_single_for_cpu(fp->bdev,
dma +
((u8 *)&frame->hdr.fc - (u8 *)frame),
sizeof(frame->hdr.fc),
DMA_FROM_DEVICE);
fc = frame->hdr.fc;
if (fza_rx_err(fp, rmc, fc))
goto err_rx;
/* We have to 512-byte-align RX buffers... */
newskb = fza_alloc_skb_irq(dev, FZA_RX_BUFFER_SIZE + 511);
if (newskb) {
fza_skb_align(newskb, 512);
newdma = dma_map_single(fp->bdev, newskb->data,
FZA_RX_BUFFER_SIZE,
DMA_FROM_DEVICE);
if (dma_mapping_error(fp->bdev, newdma)) {
dev_kfree_skb_irq(newskb);
newskb = NULL;
}
}
if (newskb) {
int pkt_len = len - 7; /* Omit P, SD and FCS. */
int is_multi;
int rx_stat;
dma_unmap_single(fp->bdev, dma, FZA_RX_BUFFER_SIZE,
DMA_FROM_DEVICE);
/* Queue SMT frames to the SMT receive ring. */
if ((fc & (FDDI_FC_K_CLASS_MASK |
FDDI_FC_K_FORMAT_MASK)) ==
(FDDI_FC_K_CLASS_ASYNC |
FDDI_FC_K_FORMAT_MANAGEMENT) &&
(rmc & FZA_RING_RX_DA_MASK) !=
FZA_RING_RX_DA_PROM) {
if (fza_do_recv_smt((struct fza_buffer_tx *)
skb->data, len, rmc,
dev)) {
writel_o(FZA_CONTROL_A_SMT_RX_OVFL,
&fp->regs->control_a);
}
}
is_multi = ((frame->hdr.daddr[0] & 0x01) != 0);
skb_reserve(skb, 3); /* Skip over P and SD. */
skb_put(skb, pkt_len); /* And cut off FCS. */
skb->protocol = fddi_type_trans(skb, dev);
rx_stat = netif_rx(skb);
if (rx_stat != NET_RX_DROP) {
fp->stats.rx_packets++;
fp->stats.rx_bytes += pkt_len;
if (is_multi)
fp->stats.multicast++;
} else {
fp->stats.rx_dropped++;
}
skb = newskb;
dma = newdma;
fp->rx_skbuff[i] = skb;
fp->rx_dma[i] = dma;
} else {
fp->stats.rx_dropped++;
pr_notice("%s: memory squeeze, dropping packet\n",
fp->name);
}
err_rx:
writel_o(0, &fp->ring_hst_rx[i].rmc);
buf = (dma + 0x1000) >> 9;
writel_o(buf, &fp->ring_hst_rx[i].buffer1);
buf = dma >> 9 | FZA_RING_OWN_FZA;
writel_o(buf, &fp->ring_hst_rx[i].buf0_own);
fp->ring_hst_rx_index =
(fp->ring_hst_rx_index + 1) % fp->ring_hst_rx_size;
}
}
static void fza_tx_smt(struct net_device *dev)
{
struct fza_private *fp = netdev_priv(dev);
struct fza_buffer_tx __iomem *smt_tx_ptr;
int i, len;
u32 own;
while (1) {
i = fp->ring_smt_tx_index;
own = readl_o(&fp->ring_smt_tx[i].own);
if ((own & FZA_RING_OWN_MASK) == FZA_RING_OWN_FZA)
break;
smt_tx_ptr = fp->mmio + readl_u(&fp->ring_smt_tx[i].buffer);
len = readl_u(&fp->ring_smt_tx[i].rmc) & FZA_RING_PBC_MASK;
if (!netif_queue_stopped(dev)) {
if (dev_nit_active(dev)) {
struct fza_buffer_tx *skb_data_ptr;
struct sk_buff *skb;
/* Length must be a multiple of 4 as only word
* reads are permitted!
*/
skb = fza_alloc_skb_irq(dev, (len + 3) & ~3);
if (!skb)
goto err_no_skb; /* Drop. */
skb_data_ptr = (struct fza_buffer_tx *)
skb->data;
fza_reads(smt_tx_ptr, skb_data_ptr,
(len + 3) & ~3);
skb->dev = dev;
skb_reserve(skb, 3); /* Skip over PRH. */
skb_put(skb, len - 3);
skb_reset_network_header(skb);
dev_queue_xmit_nit(skb, dev);
dev_kfree_skb_irq(skb);
err_no_skb:
;
}
/* Queue the frame to the RMC transmit ring. */
fza_do_xmit((union fza_buffer_txp)
{ .mmio_ptr = smt_tx_ptr },
len, dev, 1);
}
writel_o(FZA_RING_OWN_FZA, &fp->ring_smt_tx[i].own);
fp->ring_smt_tx_index =
(fp->ring_smt_tx_index + 1) % fp->ring_smt_tx_size;
}
}
static void fza_uns(struct net_device *dev)
{
struct fza_private *fp = netdev_priv(dev);
u32 own;
int i;
while (1) {
i = fp->ring_uns_index;
own = readl_o(&fp->ring_uns[i].own);
if ((own & FZA_RING_OWN_MASK) == FZA_RING_OWN_FZA)
break;
if (readl_u(&fp->ring_uns[i].id) == FZA_RING_UNS_RX_OVER) {
fp->stats.rx_errors++;
fp->stats.rx_over_errors++;
}
writel_o(FZA_RING_OWN_FZA, &fp->ring_uns[i].own);
fp->ring_uns_index =
(fp->ring_uns_index + 1) % FZA_RING_UNS_SIZE;
}
}
static void fza_tx_flush(struct net_device *dev)
{
struct fza_private *fp = netdev_priv(dev);
u32 own;
int i;
/* Clean up the SMT TX ring. */
i = fp->ring_smt_tx_index;
do {
writel_o(FZA_RING_OWN_FZA, &fp->ring_smt_tx[i].own);
fp->ring_smt_tx_index =
(fp->ring_smt_tx_index + 1) % fp->ring_smt_tx_size;
} while (i != fp->ring_smt_tx_index);
/* Clean up the RMC TX ring. */
i = fp->ring_rmc_tx_index;
do {
own = readl_o(&fp->ring_rmc_tx[i].own);
if ((own & FZA_RING_OWN_MASK) == FZA_RING_TX_OWN_RMC) {
u32 rmc = readl_u(&fp->ring_rmc_tx[i].rmc);
writel_u(rmc | FZA_RING_TX_DTP,
&fp->ring_rmc_tx[i].rmc);
}
fp->ring_rmc_tx_index =
(fp->ring_rmc_tx_index + 1) % fp->ring_rmc_tx_size;
} while (i != fp->ring_rmc_tx_index);
/* Done. */
writew_o(FZA_CONTROL_A_FLUSH_DONE, &fp->regs->control_a);
}
static irqreturn_t fza_interrupt(int irq, void *dev_id)
{
struct net_device *dev = dev_id;
struct fza_private *fp = netdev_priv(dev);
uint int_event;
/* Get interrupt events. */
int_event = readw_o(&fp->regs->int_event) & fp->int_mask;
if (int_event == 0)
return IRQ_NONE;
/* Clear the events. */
writew_u(int_event, &fp->regs->int_event);
/* Now handle the events. The order matters. */
/* Command finished interrupt. */
if ((int_event & FZA_EVENT_CMD_DONE) != 0) {
fp->irq_count_cmd_done++;
spin_lock(&fp->lock);
fp->cmd_done_flag = 1;
wake_up(&fp->cmd_done_wait);
spin_unlock(&fp->lock);
}
/* Transmit finished interrupt. */
if ((int_event & FZA_EVENT_TX_DONE) != 0) {
fp->irq_count_tx_done++;
fza_tx(dev);
}
/* Host receive interrupt. */
if ((int_event & FZA_EVENT_RX_POLL) != 0) {
fp->irq_count_rx_poll++;
fza_rx(dev);
}
/* SMT transmit interrupt. */
if ((int_event & FZA_EVENT_SMT_TX_POLL) != 0) {
fp->irq_count_smt_tx_poll++;
fza_tx_smt(dev);
}
/* Transmit ring flush request. */
if ((int_event & FZA_EVENT_FLUSH_TX) != 0) {
fp->irq_count_flush_tx++;
fza_tx_flush(dev);
}
/* Link status change interrupt. */
if ((int_event & FZA_EVENT_LINK_ST_CHG) != 0) {
uint status;
fp->irq_count_link_st_chg++;
status = readw_u(&fp->regs->status);
if (FZA_STATUS_GET_LINK(status) == FZA_LINK_ON) {
netif_carrier_on(dev);
pr_info("%s: link available\n", fp->name);
} else {
netif_carrier_off(dev);
pr_info("%s: link unavailable\n", fp->name);
}
}
/* Unsolicited event interrupt. */
if ((int_event & FZA_EVENT_UNS_POLL) != 0) {
fp->irq_count_uns_poll++;
fza_uns(dev);
}
/* State change interrupt. */
if ((int_event & FZA_EVENT_STATE_CHG) != 0) {
uint status, state;
fp->irq_count_state_chg++;
status = readw_u(&fp->regs->status);
state = FZA_STATUS_GET_STATE(status);
pr_debug("%s: state change: %x\n", fp->name, state);
switch (state) {
case FZA_STATE_RESET:
break;
case FZA_STATE_UNINITIALIZED:
netif_carrier_off(dev);
del_timer_sync(&fp->reset_timer);
fp->ring_cmd_index = 0;
fp->ring_uns_index = 0;
fp->ring_rmc_tx_index = 0;
fp->ring_rmc_txd_index = 0;
fp->ring_hst_rx_index = 0;
fp->ring_smt_tx_index = 0;
fp->ring_smt_rx_index = 0;
if (fp->state > state) {
pr_info("%s: OK\n", fp->name);
fza_cmd_send(dev, FZA_RING_CMD_INIT);
}
break;
case FZA_STATE_INITIALIZED:
if (fp->state > state) {
fza_set_rx_mode(dev);
fza_cmd_send(dev, FZA_RING_CMD_PARAM);
}
break;
case FZA_STATE_RUNNING:
case FZA_STATE_MAINTENANCE:
fp->state = state;
fza_rx_init(fp);
fp->queue_active = 1;
netif_wake_queue(dev);
pr_debug("%s: queue woken\n", fp->name);
break;
case FZA_STATE_HALTED:
fp->queue_active = 0;
netif_stop_queue(dev);
pr_debug("%s: queue stopped\n", fp->name);
del_timer_sync(&fp->reset_timer);
pr_warn("%s: halted, reason: %x\n", fp->name,
FZA_STATUS_GET_HALT(status));
fza_regs_dump(fp);
pr_info("%s: resetting the board...\n", fp->name);
fza_do_reset(fp);
fp->timer_state = 0;
fp->reset_timer.expires = jiffies + 45 * HZ;
add_timer(&fp->reset_timer);
break;
default:
pr_warn("%s: undefined state: %x\n", fp->name, state);
break;
}
spin_lock(&fp->lock);
fp->state_chg_flag = 1;
wake_up(&fp->state_chg_wait);
spin_unlock(&fp->lock);
}
return IRQ_HANDLED;
}
static void fza_reset_timer(struct timer_list *t)
{
struct fza_private *fp = from_timer(fp, t, reset_timer);
if (!fp->timer_state) {
pr_err("%s: RESET timed out!\n", fp->name);
pr_info("%s: trying harder...\n", fp->name);
/* Assert the board reset. */
writew_o(FZA_RESET_INIT, &fp->regs->reset);
readw_o(&fp->regs->reset); /* Synchronize. */
fp->timer_state = 1;
fp->reset_timer.expires = jiffies + HZ;
} else {
/* Clear the board reset. */
writew_u(FZA_RESET_CLR, &fp->regs->reset);
/* Enable all interrupt events we handle. */
writew_o(fp->int_mask, &fp->regs->int_mask);
readw_o(&fp->regs->int_mask); /* Synchronize. */
fp->timer_state = 0;
fp->reset_timer.expires = jiffies + 45 * HZ;
}
add_timer(&fp->reset_timer);
}
static int fza_set_mac_address(struct net_device *dev, void *addr)
{
return -EOPNOTSUPP;
}
static netdev_tx_t fza_start_xmit(struct sk_buff *skb, struct net_device *dev)
{
struct fza_private *fp = netdev_priv(dev);
unsigned int old_mask, new_mask;
int ret;
u8 fc;
skb_push(skb, 3); /* Make room for PRH. */
/* Decode FC to set PRH. */
fc = skb->data[3];
skb->data[0] = 0;
skb->data[1] = 0;
skb->data[2] = FZA_PRH2_NORMAL;
if ((fc & FDDI_FC_K_CLASS_MASK) == FDDI_FC_K_CLASS_SYNC)
skb->data[0] |= FZA_PRH0_FRAME_SYNC;
switch (fc & FDDI_FC_K_FORMAT_MASK) {
case FDDI_FC_K_FORMAT_MANAGEMENT:
if ((fc & FDDI_FC_K_CONTROL_MASK) == 0) {
/* Token. */
skb->data[0] |= FZA_PRH0_TKN_TYPE_IMM;
skb->data[1] |= FZA_PRH1_TKN_SEND_NONE;
} else {
/* SMT or MAC. */
skb->data[0] |= FZA_PRH0_TKN_TYPE_UNR;
skb->data[1] |= FZA_PRH1_TKN_SEND_UNR;
}
skb->data[1] |= FZA_PRH1_CRC_NORMAL;
break;
case FDDI_FC_K_FORMAT_LLC:
case FDDI_FC_K_FORMAT_FUTURE:
skb->data[0] |= FZA_PRH0_TKN_TYPE_UNR;
skb->data[1] |= FZA_PRH1_CRC_NORMAL | FZA_PRH1_TKN_SEND_UNR;
break;
case FDDI_FC_K_FORMAT_IMPLEMENTOR:
skb->data[0] |= FZA_PRH0_TKN_TYPE_UNR;
skb->data[1] |= FZA_PRH1_TKN_SEND_ORIG;
break;
}
/* SMT transmit interrupts may sneak frames into the RMC
* transmit ring. We disable them while queueing a frame
* to maintain consistency.
*/
old_mask = fp->int_mask;
new_mask = old_mask & ~FZA_MASK_SMT_TX_POLL;
writew_u(new_mask, &fp->regs->int_mask);
readw_o(&fp->regs->int_mask); /* Synchronize. */
fp->int_mask = new_mask;
ret = fza_do_xmit((union fza_buffer_txp)
{ .data_ptr = (struct fza_buffer_tx *)skb->data },
skb->len, dev, 0);
fp->int_mask = old_mask;
writew_u(fp->int_mask, &fp->regs->int_mask);
if (ret) {
/* Probably an SMT packet filled the remaining space,
* so just stop the queue, but don't report it as an error.
*/
netif_stop_queue(dev);
pr_debug("%s: queue stopped\n", fp->name);
fp->stats.tx_dropped++;
}
dev_kfree_skb(skb);
return ret;
}
static int fza_open(struct net_device *dev)
{
struct fza_private *fp = netdev_priv(dev);
struct fza_ring_cmd __iomem *ring;
struct sk_buff *skb;
unsigned long flags;
dma_addr_t dma;
int ret, i;
u32 stat;
long t;
for (i = 0; i < FZA_RING_RX_SIZE; i++) {
/* We have to 512-byte-align RX buffers... */
skb = fza_alloc_skb(dev, FZA_RX_BUFFER_SIZE + 511);
if (skb) {
fza_skb_align(skb, 512);
dma = dma_map_single(fp->bdev, skb->data,
FZA_RX_BUFFER_SIZE,
DMA_FROM_DEVICE);
if (dma_mapping_error(fp->bdev, dma)) {
dev_kfree_skb(skb);
skb = NULL;
}
}
if (!skb) {
for (--i; i >= 0; i--) {
dma_unmap_single(fp->bdev, fp->rx_dma[i],
FZA_RX_BUFFER_SIZE,
DMA_FROM_DEVICE);
dev_kfree_skb(fp->rx_skbuff[i]);
fp->rx_dma[i] = 0;
fp->rx_skbuff[i] = NULL;
}
return -ENOMEM;
}
fp->rx_skbuff[i] = skb;
fp->rx_dma[i] = dma;
}
ret = fza_init_send(dev, NULL);
if (ret != 0)
return ret;
/* Purger and Beacon multicasts need to be supplied before PARAM. */
fza_set_rx_mode(dev);
spin_lock_irqsave(&fp->lock, flags);
fp->cmd_done_flag = 0;
ring = fza_cmd_send(dev, FZA_RING_CMD_PARAM);
spin_unlock_irqrestore(&fp->lock, flags);
if (!ring)
return -ENOBUFS;
t = wait_event_timeout(fp->cmd_done_wait, fp->cmd_done_flag, 3 * HZ);
if (fp->cmd_done_flag == 0) {
pr_err("%s: PARAM command timed out!, state %x\n", fp->name,
FZA_STATUS_GET_STATE(readw_u(&fp->regs->status)));
return -EIO;
}
stat = readl_u(&ring->stat);
if (stat != FZA_RING_STAT_SUCCESS) {
pr_err("%s: PARAM command failed!, status %02x, state %x\n",
fp->name, stat,
FZA_STATUS_GET_STATE(readw_u(&fp->regs->status)));
return -EIO;
}
pr_debug("%s: PARAM: %lums elapsed\n", fp->name,
(3 * HZ - t) * 1000 / HZ);
return 0;
}
static int fza_close(struct net_device *dev)
{
struct fza_private *fp = netdev_priv(dev);
unsigned long flags;
uint state;
long t;
int i;
netif_stop_queue(dev);
pr_debug("%s: queue stopped\n", fp->name);
del_timer_sync(&fp->reset_timer);
spin_lock_irqsave(&fp->lock, flags);
fp->state = FZA_STATE_UNINITIALIZED;
fp->state_chg_flag = 0;
/* Shut the interface down. */
writew_o(FZA_CONTROL_A_SHUT, &fp->regs->control_a);
readw_o(&fp->regs->control_a); /* Synchronize. */
spin_unlock_irqrestore(&fp->lock, flags);
/* DEC says SHUT needs up to 10 seconds to complete. */
t = wait_event_timeout(fp->state_chg_wait, fp->state_chg_flag,
15 * HZ);
state = FZA_STATUS_GET_STATE(readw_o(&fp->regs->status));
if (fp->state_chg_flag == 0) {
pr_err("%s: SHUT timed out!, state %x\n", fp->name, state);
return -EIO;
}
if (state != FZA_STATE_UNINITIALIZED) {
pr_err("%s: SHUT failed!, state %x\n", fp->name, state);
return -EIO;
}
pr_debug("%s: SHUT: %lums elapsed\n", fp->name,
(15 * HZ - t) * 1000 / HZ);
for (i = 0; i < FZA_RING_RX_SIZE; i++)
if (fp->rx_skbuff[i]) {
dma_unmap_single(fp->bdev, fp->rx_dma[i],
FZA_RX_BUFFER_SIZE, DMA_FROM_DEVICE);
dev_kfree_skb(fp->rx_skbuff[i]);
fp->rx_dma[i] = 0;
fp->rx_skbuff[i] = NULL;
}
return 0;
}
static struct net_device_stats *fza_get_stats(struct net_device *dev)
{
struct fza_private *fp = netdev_priv(dev);
return &fp->stats;
}
static int fza_probe(struct device *bdev)
{
static const struct net_device_ops netdev_ops = {
.ndo_open = fza_open,
.ndo_stop = fza_close,
.ndo_start_xmit = fza_start_xmit,
.ndo_set_rx_mode = fza_set_rx_mode,
.ndo_set_mac_address = fza_set_mac_address,
.ndo_get_stats = fza_get_stats,
};
static int version_printed;
char rom_rev[4], fw_rev[4], rmc_rev[4];
struct tc_dev *tdev = to_tc_dev(bdev);
struct fza_cmd_init __iomem *init;
resource_size_t start, len;
struct net_device *dev;
struct fza_private *fp;
uint smt_ver, pmd_type;
void __iomem *mmio;
uint hw_addr[2];
int ret, i;
if (!version_printed) {
pr_info("%s", version);
version_printed = 1;
}
dev = alloc_fddidev(sizeof(*fp));
if (!dev)
return -ENOMEM;
SET_NETDEV_DEV(dev, bdev);
fp = netdev_priv(dev);
dev_set_drvdata(bdev, dev);
fp->bdev = bdev;
fp->name = dev_name(bdev);
/* Request the I/O MEM resource. */
start = tdev->resource.start;
len = tdev->resource.end - start + 1;
if (!request_mem_region(start, len, dev_name(bdev))) {
pr_err("%s: cannot reserve MMIO region\n", fp->name);
ret = -EBUSY;
goto err_out_kfree;
}
/* MMIO mapping setup. */
mmio = ioremap_nocache(start, len);
if (!mmio) {
pr_err("%s: cannot map MMIO\n", fp->name);
ret = -ENOMEM;
goto err_out_resource;
}
/* Initialize the new device structure. */
switch (loopback) {
case FZA_LOOP_NORMAL:
case FZA_LOOP_INTERN:
case FZA_LOOP_EXTERN:
break;
default:
loopback = FZA_LOOP_NORMAL;
}
fp->mmio = mmio;
dev->irq = tdev->interrupt;
pr_info("%s: DEC FDDIcontroller 700 or 700-C at 0x%08llx, irq %d\n",
fp->name, (long long)tdev->resource.start, dev->irq);
pr_debug("%s: mapped at: 0x%p\n", fp->name, mmio);
fp->regs = mmio + FZA_REG_BASE;
fp->ring_cmd = mmio + FZA_RING_CMD;
fp->ring_uns = mmio + FZA_RING_UNS;
init_waitqueue_head(&fp->state_chg_wait);
init_waitqueue_head(&fp->cmd_done_wait);
spin_lock_init(&fp->lock);
fp->int_mask = FZA_MASK_NORMAL;
timer_setup(&fp->reset_timer, fza_reset_timer, 0);
/* Sanitize the board. */
fza_regs_dump(fp);
fza_do_shutdown(fp);
ret = request_irq(dev->irq, fza_interrupt, IRQF_SHARED, fp->name, dev);
if (ret != 0) {
pr_err("%s: unable to get IRQ %d!\n", fp->name, dev->irq);
goto err_out_map;
}
/* Enable the driver mode. */
writew_o(FZA_CONTROL_B_DRIVER, &fp->regs->control_b);
/* For some reason transmit done interrupts can trigger during
* reset. This avoids a division error in the handler.
*/
fp->ring_rmc_tx_size = FZA_RING_TX_SIZE;
ret = fza_reset(fp);
if (ret != 0)
goto err_out_irq;
ret = fza_init_send(dev, &init);
if (ret != 0)
goto err_out_irq;
fza_reads(&init->hw_addr, &hw_addr, sizeof(hw_addr));
memcpy(dev->dev_addr, &hw_addr, FDDI_K_ALEN);
fza_reads(&init->rom_rev, &rom_rev, sizeof(rom_rev));
fza_reads(&init->fw_rev, &fw_rev, sizeof(fw_rev));
fza_reads(&init->rmc_rev, &rmc_rev, sizeof(rmc_rev));
for (i = 3; i >= 0 && rom_rev[i] == ' '; i--)
rom_rev[i] = 0;
for (i = 3; i >= 0 && fw_rev[i] == ' '; i--)
fw_rev[i] = 0;
for (i = 3; i >= 0 && rmc_rev[i] == ' '; i--)
rmc_rev[i] = 0;
fp->ring_rmc_tx = mmio + readl_u(&init->rmc_tx);
fp->ring_rmc_tx_size = readl_u(&init->rmc_tx_size);
fp->ring_hst_rx = mmio + readl_u(&init->hst_rx);
fp->ring_hst_rx_size = readl_u(&init->hst_rx_size);
fp->ring_smt_tx = mmio + readl_u(&init->smt_tx);
fp->ring_smt_tx_size = readl_u(&init->smt_tx_size);
fp->ring_smt_rx = mmio + readl_u(&init->smt_rx);
fp->ring_smt_rx_size = readl_u(&init->smt_rx_size);
fp->buffer_tx = mmio + FZA_TX_BUFFER_ADDR(readl_u(&init->rmc_tx));
fp->t_max = readl_u(&init->def_t_max);
fp->t_req = readl_u(&init->def_t_req);
fp->tvx = readl_u(&init->def_tvx);
fp->lem_threshold = readl_u(&init->lem_threshold);
fza_reads(&init->def_station_id, &fp->station_id,
sizeof(fp->station_id));
fp->rtoken_timeout = readl_u(&init->rtoken_timeout);
fp->ring_purger = readl_u(&init->ring_purger);
smt_ver = readl_u(&init->smt_ver);
pmd_type = readl_u(&init->pmd_type);
pr_debug("%s: INIT parameters:\n", fp->name);
pr_debug(" tx_mode: %u\n", readl_u(&init->tx_mode));
pr_debug(" hst_rx_size: %u\n", readl_u(&init->hst_rx_size));
pr_debug(" rmc_rev: %.4s\n", rmc_rev);
pr_debug(" rom_rev: %.4s\n", rom_rev);
pr_debug(" fw_rev: %.4s\n", fw_rev);
pr_debug(" mop_type: %u\n", readl_u(&init->mop_type));
pr_debug(" hst_rx: 0x%08x\n", readl_u(&init->hst_rx));
pr_debug(" rmc_tx: 0x%08x\n", readl_u(&init->rmc_tx));
pr_debug(" rmc_tx_size: %u\n", readl_u(&init->rmc_tx_size));
pr_debug(" smt_tx: 0x%08x\n", readl_u(&init->smt_tx));
pr_debug(" smt_tx_size: %u\n", readl_u(&init->smt_tx_size));
pr_debug(" smt_rx: 0x%08x\n", readl_u(&init->smt_rx));
pr_debug(" smt_rx_size: %u\n", readl_u(&init->smt_rx_size));
/* TC systems are always LE, so don't bother swapping. */
pr_debug(" hw_addr: 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
(readl_u(&init->hw_addr[0]) >> 0) & 0xff,
(readl_u(&init->hw_addr[0]) >> 8) & 0xff,
(readl_u(&init->hw_addr[0]) >> 16) & 0xff,
(readl_u(&init->hw_addr[0]) >> 24) & 0xff,
(readl_u(&init->hw_addr[1]) >> 0) & 0xff,
(readl_u(&init->hw_addr[1]) >> 8) & 0xff,
(readl_u(&init->hw_addr[1]) >> 16) & 0xff,
(readl_u(&init->hw_addr[1]) >> 24) & 0xff);
pr_debug(" def_t_req: %u\n", readl_u(&init->def_t_req));
pr_debug(" def_tvx: %u\n", readl_u(&init->def_tvx));
pr_debug(" def_t_max: %u\n", readl_u(&init->def_t_max));
pr_debug(" lem_threshold: %u\n", readl_u(&init->lem_threshold));
/* Don't bother swapping, see above. */
pr_debug(" def_station_id: 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
(readl_u(&init->def_station_id[0]) >> 0) & 0xff,
(readl_u(&init->def_station_id[0]) >> 8) & 0xff,
(readl_u(&init->def_station_id[0]) >> 16) & 0xff,
(readl_u(&init->def_station_id[0]) >> 24) & 0xff,
(readl_u(&init->def_station_id[1]) >> 0) & 0xff,
(readl_u(&init->def_station_id[1]) >> 8) & 0xff,
(readl_u(&init->def_station_id[1]) >> 16) & 0xff,
(readl_u(&init->def_station_id[1]) >> 24) & 0xff);
pr_debug(" pmd_type_alt: %u\n", readl_u(&init->pmd_type_alt));
pr_debug(" smt_ver: %u\n", readl_u(&init->smt_ver));
pr_debug(" rtoken_timeout: %u\n", readl_u(&init->rtoken_timeout));
pr_debug(" ring_purger: %u\n", readl_u(&init->ring_purger));
pr_debug(" smt_ver_max: %u\n", readl_u(&init->smt_ver_max));
pr_debug(" smt_ver_min: %u\n", readl_u(&init->smt_ver_min));
pr_debug(" pmd_type: %u\n", readl_u(&init->pmd_type));
pr_info("%s: model %s, address %pMF\n",
fp->name,
pmd_type == FZA_PMD_TYPE_TW ?
"700-C (DEFZA-CA), ThinWire PMD selected" :
pmd_type == FZA_PMD_TYPE_STP ?
"700-C (DEFZA-CA), STP PMD selected" :
"700 (DEFZA-AA), MMF PMD",
dev->dev_addr);
pr_info("%s: ROM rev. %.4s, firmware rev. %.4s, RMC rev. %.4s, "
"SMT ver. %u\n", fp->name, rom_rev, fw_rev, rmc_rev, smt_ver);
/* Now that we fetched initial parameters just shut the interface
* until opened.
*/
ret = fza_close(dev);
if (ret != 0)
goto err_out_irq;
/* The FZA-specific entries in the device structure. */
dev->netdev_ops = &netdev_ops;
ret = register_netdev(dev);
if (ret != 0)
goto err_out_irq;
pr_info("%s: registered as %s\n", fp->name, dev->name);
fp->name = (const char *)dev->name;
get_device(bdev);
return 0;
err_out_irq:
del_timer_sync(&fp->reset_timer);
fza_do_shutdown(fp);
free_irq(dev->irq, dev);
err_out_map:
iounmap(mmio);
err_out_resource:
release_mem_region(start, len);
err_out_kfree:
free_netdev(dev);
pr_err("%s: initialization failure, aborting!\n", fp->name);
return ret;
}
static int fza_remove(struct device *bdev)
{
struct net_device *dev = dev_get_drvdata(bdev);
struct fza_private *fp = netdev_priv(dev);
struct tc_dev *tdev = to_tc_dev(bdev);
resource_size_t start, len;
put_device(bdev);
unregister_netdev(dev);
del_timer_sync(&fp->reset_timer);
fza_do_shutdown(fp);
free_irq(dev->irq, dev);
iounmap(fp->mmio);
start = tdev->resource.start;
len = tdev->resource.end - start + 1;
release_mem_region(start, len);
free_netdev(dev);
return 0;
}
static struct tc_device_id const fza_tc_table[] = {
{ "DEC ", "PMAF-AA " },
{ }
};
MODULE_DEVICE_TABLE(tc, fza_tc_table);
static struct tc_driver fza_driver = {
.id_table = fza_tc_table,
.driver = {
.name = "defza",
.bus = &tc_bus_type,
.probe = fza_probe,
.remove = fza_remove,
},
};
static int fza_init(void)
{
return tc_register_driver(&fza_driver);
}
static void fza_exit(void)
{
tc_unregister_driver(&fza_driver);
}
module_init(fza_init);
module_exit(fza_exit);