linux-sg2042/drivers/nvme/target/io-cmd-bdev.c

344 lines
8.9 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* NVMe I/O command implementation.
* Copyright (c) 2015-2016 HGST, a Western Digital Company.
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/blkdev.h>
#include <linux/module.h>
#include "nvmet.h"
void nvmet_bdev_set_limits(struct block_device *bdev, struct nvme_id_ns *id)
{
const struct queue_limits *ql = &bdev_get_queue(bdev)->limits;
/* Number of logical blocks per physical block. */
const u32 lpp = ql->physical_block_size / ql->logical_block_size;
/* Logical blocks per physical block, 0's based. */
const __le16 lpp0b = to0based(lpp);
/*
* For NVMe 1.2 and later, bit 1 indicates that the fields NAWUN,
* NAWUPF, and NACWU are defined for this namespace and should be
* used by the host for this namespace instead of the AWUN, AWUPF,
* and ACWU fields in the Identify Controller data structure. If
* any of these fields are zero that means that the corresponding
* field from the identify controller data structure should be used.
*/
id->nsfeat |= 1 << 1;
id->nawun = lpp0b;
id->nawupf = lpp0b;
id->nacwu = lpp0b;
/*
* Bit 4 indicates that the fields NPWG, NPWA, NPDG, NPDA, and
* NOWS are defined for this namespace and should be used by
* the host for I/O optimization.
*/
id->nsfeat |= 1 << 4;
/* NPWG = Namespace Preferred Write Granularity. 0's based */
id->npwg = lpp0b;
/* NPWA = Namespace Preferred Write Alignment. 0's based */
id->npwa = id->npwg;
/* NPDG = Namespace Preferred Deallocate Granularity. 0's based */
id->npdg = to0based(ql->discard_granularity / ql->logical_block_size);
/* NPDG = Namespace Preferred Deallocate Alignment */
id->npda = id->npdg;
/* NOWS = Namespace Optimal Write Size */
id->nows = to0based(ql->io_opt / ql->logical_block_size);
}
int nvmet_bdev_ns_enable(struct nvmet_ns *ns)
{
int ret;
ns->bdev = blkdev_get_by_path(ns->device_path,
FMODE_READ | FMODE_WRITE, NULL);
if (IS_ERR(ns->bdev)) {
ret = PTR_ERR(ns->bdev);
if (ret != -ENOTBLK) {
pr_err("failed to open block device %s: (%ld)\n",
ns->device_path, PTR_ERR(ns->bdev));
}
ns->bdev = NULL;
return ret;
}
ns->size = i_size_read(ns->bdev->bd_inode);
ns->blksize_shift = blksize_bits(bdev_logical_block_size(ns->bdev));
return 0;
}
void nvmet_bdev_ns_disable(struct nvmet_ns *ns)
{
if (ns->bdev) {
blkdev_put(ns->bdev, FMODE_WRITE | FMODE_READ);
ns->bdev = NULL;
}
}
static u16 blk_to_nvme_status(struct nvmet_req *req, blk_status_t blk_sts)
{
u16 status = NVME_SC_SUCCESS;
if (likely(blk_sts == BLK_STS_OK))
return status;
/*
* Right now there exists M : 1 mapping between block layer error
* to the NVMe status code (see nvme_error_status()). For consistency,
* when we reverse map we use most appropriate NVMe Status code from
* the group of the NVMe staus codes used in the nvme_error_status().
*/
switch (blk_sts) {
case BLK_STS_NOSPC:
status = NVME_SC_CAP_EXCEEDED | NVME_SC_DNR;
req->error_loc = offsetof(struct nvme_rw_command, length);
break;
case BLK_STS_TARGET:
status = NVME_SC_LBA_RANGE | NVME_SC_DNR;
req->error_loc = offsetof(struct nvme_rw_command, slba);
break;
case BLK_STS_NOTSUPP:
req->error_loc = offsetof(struct nvme_common_command, opcode);
switch (req->cmd->common.opcode) {
case nvme_cmd_dsm:
case nvme_cmd_write_zeroes:
status = NVME_SC_ONCS_NOT_SUPPORTED | NVME_SC_DNR;
break;
default:
status = NVME_SC_INVALID_OPCODE | NVME_SC_DNR;
}
break;
case BLK_STS_MEDIUM:
status = NVME_SC_ACCESS_DENIED;
req->error_loc = offsetof(struct nvme_rw_command, nsid);
break;
case BLK_STS_IOERR:
/* fallthru */
default:
status = NVME_SC_INTERNAL | NVME_SC_DNR;
req->error_loc = offsetof(struct nvme_common_command, opcode);
}
switch (req->cmd->common.opcode) {
case nvme_cmd_read:
case nvme_cmd_write:
req->error_slba = le64_to_cpu(req->cmd->rw.slba);
break;
case nvme_cmd_write_zeroes:
req->error_slba =
le64_to_cpu(req->cmd->write_zeroes.slba);
break;
default:
req->error_slba = 0;
}
return status;
}
static void nvmet_bio_done(struct bio *bio)
{
struct nvmet_req *req = bio->bi_private;
nvmet_req_complete(req, blk_to_nvme_status(req, bio->bi_status));
if (bio != &req->b.inline_bio)
bio_put(bio);
}
static void nvmet_bdev_execute_rw(struct nvmet_req *req)
{
int sg_cnt = req->sg_cnt;
struct bio *bio;
struct scatterlist *sg;
sector_t sector;
int op, op_flags = 0, i;
if (!req->sg_cnt) {
nvmet_req_complete(req, 0);
return;
}
if (req->cmd->rw.opcode == nvme_cmd_write) {
op = REQ_OP_WRITE;
op_flags = REQ_SYNC | REQ_IDLE;
if (req->cmd->rw.control & cpu_to_le16(NVME_RW_FUA))
op_flags |= REQ_FUA;
} else {
op = REQ_OP_READ;
}
if (is_pci_p2pdma_page(sg_page(req->sg)))
op_flags |= REQ_NOMERGE;
sector = le64_to_cpu(req->cmd->rw.slba);
sector <<= (req->ns->blksize_shift - 9);
if (req->data_len <= NVMET_MAX_INLINE_DATA_LEN) {
bio = &req->b.inline_bio;
bio_init(bio, req->inline_bvec, ARRAY_SIZE(req->inline_bvec));
} else {
bio = bio_alloc(GFP_KERNEL, min(sg_cnt, BIO_MAX_PAGES));
}
bio_set_dev(bio, req->ns->bdev);
bio->bi_iter.bi_sector = sector;
bio->bi_private = req;
bio->bi_end_io = nvmet_bio_done;
bio_set_op_attrs(bio, op, op_flags);
for_each_sg(req->sg, sg, req->sg_cnt, i) {
while (bio_add_page(bio, sg_page(sg), sg->length, sg->offset)
!= sg->length) {
struct bio *prev = bio;
bio = bio_alloc(GFP_KERNEL, min(sg_cnt, BIO_MAX_PAGES));
bio_set_dev(bio, req->ns->bdev);
bio->bi_iter.bi_sector = sector;
bio_set_op_attrs(bio, op, op_flags);
bio_chain(bio, prev);
submit_bio(prev);
}
sector += sg->length >> 9;
sg_cnt--;
}
submit_bio(bio);
}
static void nvmet_bdev_execute_flush(struct nvmet_req *req)
{
struct bio *bio = &req->b.inline_bio;
bio_init(bio, req->inline_bvec, ARRAY_SIZE(req->inline_bvec));
bio_set_dev(bio, req->ns->bdev);
bio->bi_private = req;
bio->bi_end_io = nvmet_bio_done;
bio->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
submit_bio(bio);
}
u16 nvmet_bdev_flush(struct nvmet_req *req)
{
if (blkdev_issue_flush(req->ns->bdev, GFP_KERNEL, NULL))
return NVME_SC_INTERNAL | NVME_SC_DNR;
return 0;
}
static u16 nvmet_bdev_discard_range(struct nvmet_req *req,
struct nvme_dsm_range *range, struct bio **bio)
{
struct nvmet_ns *ns = req->ns;
int ret;
ret = __blkdev_issue_discard(ns->bdev,
le64_to_cpu(range->slba) << (ns->blksize_shift - 9),
le32_to_cpu(range->nlb) << (ns->blksize_shift - 9),
GFP_KERNEL, 0, bio);
if (ret && ret != -EOPNOTSUPP) {
req->error_slba = le64_to_cpu(range->slba);
return errno_to_nvme_status(req, ret);
}
return NVME_SC_SUCCESS;
}
static void nvmet_bdev_execute_discard(struct nvmet_req *req)
{
struct nvme_dsm_range range;
struct bio *bio = NULL;
int i;
u16 status;
for (i = 0; i <= le32_to_cpu(req->cmd->dsm.nr); i++) {
status = nvmet_copy_from_sgl(req, i * sizeof(range), &range,
sizeof(range));
if (status)
break;
status = nvmet_bdev_discard_range(req, &range, &bio);
if (status)
break;
}
if (bio) {
bio->bi_private = req;
bio->bi_end_io = nvmet_bio_done;
if (status) {
bio->bi_status = BLK_STS_IOERR;
bio_endio(bio);
} else {
submit_bio(bio);
}
} else {
nvmet_req_complete(req, status);
}
}
static void nvmet_bdev_execute_dsm(struct nvmet_req *req)
{
switch (le32_to_cpu(req->cmd->dsm.attributes)) {
case NVME_DSMGMT_AD:
nvmet_bdev_execute_discard(req);
return;
case NVME_DSMGMT_IDR:
case NVME_DSMGMT_IDW:
default:
/* Not supported yet */
nvmet_req_complete(req, 0);
return;
}
}
static void nvmet_bdev_execute_write_zeroes(struct nvmet_req *req)
{
struct nvme_write_zeroes_cmd *write_zeroes = &req->cmd->write_zeroes;
struct bio *bio = NULL;
sector_t sector;
sector_t nr_sector;
int ret;
sector = le64_to_cpu(write_zeroes->slba) <<
(req->ns->blksize_shift - 9);
nr_sector = (((sector_t)le16_to_cpu(write_zeroes->length) + 1) <<
(req->ns->blksize_shift - 9));
ret = __blkdev_issue_zeroout(req->ns->bdev, sector, nr_sector,
GFP_KERNEL, &bio, 0);
if (bio) {
bio->bi_private = req;
bio->bi_end_io = nvmet_bio_done;
submit_bio(bio);
} else {
nvmet_req_complete(req, errno_to_nvme_status(req, ret));
}
}
u16 nvmet_bdev_parse_io_cmd(struct nvmet_req *req)
{
struct nvme_command *cmd = req->cmd;
switch (cmd->common.opcode) {
case nvme_cmd_read:
case nvme_cmd_write:
req->execute = nvmet_bdev_execute_rw;
req->data_len = nvmet_rw_len(req);
return 0;
case nvme_cmd_flush:
req->execute = nvmet_bdev_execute_flush;
req->data_len = 0;
return 0;
case nvme_cmd_dsm:
req->execute = nvmet_bdev_execute_dsm;
req->data_len = (le32_to_cpu(cmd->dsm.nr) + 1) *
sizeof(struct nvme_dsm_range);
return 0;
case nvme_cmd_write_zeroes:
req->execute = nvmet_bdev_execute_write_zeroes;
req->data_len = 0;
return 0;
default:
pr_err("unhandled cmd %d on qid %d\n", cmd->common.opcode,
req->sq->qid);
req->error_loc = offsetof(struct nvme_common_command, opcode);
return NVME_SC_INVALID_OPCODE | NVME_SC_DNR;
}
}