linux-sg2042/drivers/crypto/bcm/util.c

529 lines
15 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright 2016 Broadcom
*/
#include <linux/debugfs.h>
#include "cipher.h"
#include "util.h"
/* offset of SPU_OFIFO_CTRL register */
#define SPU_OFIFO_CTRL 0x40
#define SPU_FIFO_WATERMARK 0x1FF
/**
* spu_sg_at_offset() - Find the scatterlist entry at a given distance from the
* start of a scatterlist.
* @sg: [in] Start of a scatterlist
* @skip: [in] Distance from the start of the scatterlist, in bytes
* @sge: [out] Scatterlist entry at skip bytes from start
* @sge_offset: [out] Number of bytes from start of sge buffer to get to
* requested distance.
*
* Return: 0 if entry found at requested distance
* < 0 otherwise
*/
int spu_sg_at_offset(struct scatterlist *sg, unsigned int skip,
struct scatterlist **sge, unsigned int *sge_offset)
{
/* byte index from start of sg to the end of the previous entry */
unsigned int index = 0;
/* byte index from start of sg to the end of the current entry */
unsigned int next_index;
next_index = sg->length;
while (next_index <= skip) {
sg = sg_next(sg);
index = next_index;
if (!sg)
return -EINVAL;
next_index += sg->length;
}
*sge_offset = skip - index;
*sge = sg;
return 0;
}
/* Copy len bytes of sg data, starting at offset skip, to a dest buffer */
void sg_copy_part_to_buf(struct scatterlist *src, u8 *dest,
unsigned int len, unsigned int skip)
{
size_t copied;
unsigned int nents = sg_nents(src);
copied = sg_pcopy_to_buffer(src, nents, dest, len, skip);
if (copied != len) {
flow_log("%s copied %u bytes of %u requested. ",
__func__, (u32)copied, len);
flow_log("sg with %u entries and skip %u\n", nents, skip);
}
}
/*
* Copy data into a scatterlist starting at a specified offset in the
* scatterlist. Specifically, copy len bytes of data in the buffer src
* into the scatterlist dest, starting skip bytes into the scatterlist.
*/
void sg_copy_part_from_buf(struct scatterlist *dest, u8 *src,
unsigned int len, unsigned int skip)
{
size_t copied;
unsigned int nents = sg_nents(dest);
copied = sg_pcopy_from_buffer(dest, nents, src, len, skip);
if (copied != len) {
flow_log("%s copied %u bytes of %u requested. ",
__func__, (u32)copied, len);
flow_log("sg with %u entries and skip %u\n", nents, skip);
}
}
/**
* spu_sg_count() - Determine number of elements in scatterlist to provide a
* specified number of bytes.
* @sg_list: scatterlist to examine
* @skip: index of starting point
* @nbytes: consider elements of scatterlist until reaching this number of
* bytes
*
* Return: the number of sg entries contributing to nbytes of data
*/
int spu_sg_count(struct scatterlist *sg_list, unsigned int skip, int nbytes)
{
struct scatterlist *sg;
int sg_nents = 0;
unsigned int offset;
if (!sg_list)
return 0;
if (spu_sg_at_offset(sg_list, skip, &sg, &offset) < 0)
return 0;
while (sg && (nbytes > 0)) {
sg_nents++;
nbytes -= (sg->length - offset);
offset = 0;
sg = sg_next(sg);
}
return sg_nents;
}
/**
* spu_msg_sg_add() - Copy scatterlist entries from one sg to another, up to a
* given length.
* @to_sg: scatterlist to copy to
* @from_sg: scatterlist to copy from
* @from_skip: number of bytes to skip in from_sg. Non-zero when previous
* request included part of the buffer in entry in from_sg.
* Assumes from_skip < from_sg->length.
* @from_nents number of entries in from_sg
* @length number of bytes to copy. may reach this limit before exhausting
* from_sg.
*
* Copies the entries themselves, not the data in the entries. Assumes to_sg has
* enough entries. Does not limit the size of an individual buffer in to_sg.
*
* to_sg, from_sg, skip are all updated to end of copy
*
* Return: Number of bytes copied
*/
u32 spu_msg_sg_add(struct scatterlist **to_sg,
struct scatterlist **from_sg, u32 *from_skip,
u8 from_nents, u32 length)
{
struct scatterlist *sg; /* an entry in from_sg */
struct scatterlist *to = *to_sg;
struct scatterlist *from = *from_sg;
u32 skip = *from_skip;
u32 offset;
int i;
u32 entry_len = 0;
u32 frag_len = 0; /* length of entry added to to_sg */
u32 copied = 0; /* number of bytes copied so far */
if (length == 0)
return 0;
for_each_sg(from, sg, from_nents, i) {
/* number of bytes in this from entry not yet used */
entry_len = sg->length - skip;
frag_len = min(entry_len, length - copied);
offset = sg->offset + skip;
if (frag_len)
sg_set_page(to++, sg_page(sg), frag_len, offset);
copied += frag_len;
if (copied == entry_len) {
/* used up all of from entry */
skip = 0; /* start at beginning of next entry */
}
if (copied == length)
break;
}
*to_sg = to;
*from_sg = sg;
if (frag_len < entry_len)
*from_skip = skip + frag_len;
else
*from_skip = 0;
return copied;
}
void add_to_ctr(u8 *ctr_pos, unsigned int increment)
{
__be64 *high_be = (__be64 *)ctr_pos;
__be64 *low_be = high_be + 1;
u64 orig_low = __be64_to_cpu(*low_be);
u64 new_low = orig_low + (u64)increment;
*low_be = __cpu_to_be64(new_low);
if (new_low < orig_low)
/* there was a carry from the low 8 bytes */
*high_be = __cpu_to_be64(__be64_to_cpu(*high_be) + 1);
}
struct sdesc {
struct shash_desc shash;
char ctx[];
};
/**
* do_shash() - Do a synchronous hash operation in software
* @name: The name of the hash algorithm
* @result: Buffer where digest is to be written
* @data1: First part of data to hash. May be NULL.
* @data1_len: Length of data1, in bytes
* @data2: Second part of data to hash. May be NULL.
* @data2_len: Length of data2, in bytes
* @key: Key (if keyed hash)
* @key_len: Length of key, in bytes (or 0 if non-keyed hash)
*
* Note that the crypto API will not select this driver's own transform because
* this driver only registers asynchronous algos.
*
* Return: 0 if hash successfully stored in result
* < 0 otherwise
*/
int do_shash(unsigned char *name, unsigned char *result,
const u8 *data1, unsigned int data1_len,
const u8 *data2, unsigned int data2_len,
const u8 *key, unsigned int key_len)
{
int rc;
unsigned int size;
struct crypto_shash *hash;
struct sdesc *sdesc;
hash = crypto_alloc_shash(name, 0, 0);
if (IS_ERR(hash)) {
rc = PTR_ERR(hash);
pr_err("%s: Crypto %s allocation error %d\n", __func__, name, rc);
return rc;
}
size = sizeof(struct shash_desc) + crypto_shash_descsize(hash);
sdesc = kmalloc(size, GFP_KERNEL);
if (!sdesc) {
rc = -ENOMEM;
goto do_shash_err;
}
sdesc->shash.tfm = hash;
if (key_len > 0) {
rc = crypto_shash_setkey(hash, key, key_len);
if (rc) {
pr_err("%s: Could not setkey %s shash\n", __func__, name);
goto do_shash_err;
}
}
rc = crypto_shash_init(&sdesc->shash);
if (rc) {
pr_err("%s: Could not init %s shash\n", __func__, name);
goto do_shash_err;
}
rc = crypto_shash_update(&sdesc->shash, data1, data1_len);
if (rc) {
pr_err("%s: Could not update1\n", __func__);
goto do_shash_err;
}
if (data2 && data2_len) {
rc = crypto_shash_update(&sdesc->shash, data2, data2_len);
if (rc) {
pr_err("%s: Could not update2\n", __func__);
goto do_shash_err;
}
}
rc = crypto_shash_final(&sdesc->shash, result);
if (rc)
pr_err("%s: Could not generate %s hash\n", __func__, name);
do_shash_err:
crypto_free_shash(hash);
kfree(sdesc);
return rc;
}
/* Dump len bytes of a scatterlist starting at skip bytes into the sg */
void __dump_sg(struct scatterlist *sg, unsigned int skip, unsigned int len)
{
u8 dbuf[16];
unsigned int idx = skip;
unsigned int num_out = 0; /* number of bytes dumped so far */
unsigned int count;
if (packet_debug_logging) {
while (num_out < len) {
count = (len - num_out > 16) ? 16 : len - num_out;
sg_copy_part_to_buf(sg, dbuf, count, idx);
num_out += count;
print_hex_dump(KERN_ALERT, " sg: ", DUMP_PREFIX_NONE,
4, 1, dbuf, count, false);
idx += 16;
}
}
if (debug_logging_sleep)
msleep(debug_logging_sleep);
}
/* Returns the name for a given cipher alg/mode */
char *spu_alg_name(enum spu_cipher_alg alg, enum spu_cipher_mode mode)
{
switch (alg) {
case CIPHER_ALG_RC4:
return "rc4";
case CIPHER_ALG_AES:
switch (mode) {
case CIPHER_MODE_CBC:
return "cbc(aes)";
case CIPHER_MODE_ECB:
return "ecb(aes)";
case CIPHER_MODE_OFB:
return "ofb(aes)";
case CIPHER_MODE_CFB:
return "cfb(aes)";
case CIPHER_MODE_CTR:
return "ctr(aes)";
case CIPHER_MODE_XTS:
return "xts(aes)";
case CIPHER_MODE_GCM:
return "gcm(aes)";
default:
return "aes";
}
break;
case CIPHER_ALG_DES:
switch (mode) {
case CIPHER_MODE_CBC:
return "cbc(des)";
case CIPHER_MODE_ECB:
return "ecb(des)";
case CIPHER_MODE_CTR:
return "ctr(des)";
default:
return "des";
}
break;
case CIPHER_ALG_3DES:
switch (mode) {
case CIPHER_MODE_CBC:
return "cbc(des3_ede)";
case CIPHER_MODE_ECB:
return "ecb(des3_ede)";
case CIPHER_MODE_CTR:
return "ctr(des3_ede)";
default:
return "3des";
}
break;
default:
return "other";
}
}
static ssize_t spu_debugfs_read(struct file *filp, char __user *ubuf,
size_t count, loff_t *offp)
{
struct device_private *ipriv;
char *buf;
ssize_t ret, out_offset, out_count;
int i;
u32 fifo_len;
u32 spu_ofifo_ctrl;
u32 alg;
u32 mode;
u32 op_cnt;
out_count = 2048;
buf = kmalloc(out_count, GFP_KERNEL);
if (!buf)
return -ENOMEM;
ipriv = filp->private_data;
out_offset = 0;
out_offset += snprintf(buf + out_offset, out_count - out_offset,
"Number of SPUs.........%u\n",
ipriv->spu.num_spu);
out_offset += snprintf(buf + out_offset, out_count - out_offset,
"Current sessions.......%u\n",
atomic_read(&ipriv->session_count));
out_offset += snprintf(buf + out_offset, out_count - out_offset,
"Session count..........%u\n",
atomic_read(&ipriv->stream_count));
out_offset += snprintf(buf + out_offset, out_count - out_offset,
"Cipher setkey..........%u\n",
atomic_read(&ipriv->setkey_cnt[SPU_OP_CIPHER]));
out_offset += snprintf(buf + out_offset, out_count - out_offset,
"Cipher Ops.............%u\n",
atomic_read(&ipriv->op_counts[SPU_OP_CIPHER]));
for (alg = 0; alg < CIPHER_ALG_LAST; alg++) {
for (mode = 0; mode < CIPHER_MODE_LAST; mode++) {
op_cnt = atomic_read(&ipriv->cipher_cnt[alg][mode]);
if (op_cnt) {
out_offset += snprintf(buf + out_offset,
out_count - out_offset,
" %-13s%11u\n",
spu_alg_name(alg, mode), op_cnt);
}
}
}
out_offset += snprintf(buf + out_offset, out_count - out_offset,
"Hash Ops...............%u\n",
atomic_read(&ipriv->op_counts[SPU_OP_HASH]));
for (alg = 0; alg < HASH_ALG_LAST; alg++) {
op_cnt = atomic_read(&ipriv->hash_cnt[alg]);
if (op_cnt) {
out_offset += snprintf(buf + out_offset,
out_count - out_offset,
" %-13s%11u\n",
hash_alg_name[alg], op_cnt);
}
}
out_offset += snprintf(buf + out_offset, out_count - out_offset,
"HMAC setkey............%u\n",
atomic_read(&ipriv->setkey_cnt[SPU_OP_HMAC]));
out_offset += snprintf(buf + out_offset, out_count - out_offset,
"HMAC Ops...............%u\n",
atomic_read(&ipriv->op_counts[SPU_OP_HMAC]));
for (alg = 0; alg < HASH_ALG_LAST; alg++) {
op_cnt = atomic_read(&ipriv->hmac_cnt[alg]);
if (op_cnt) {
out_offset += snprintf(buf + out_offset,
out_count - out_offset,
" %-13s%11u\n",
hash_alg_name[alg], op_cnt);
}
}
out_offset += snprintf(buf + out_offset, out_count - out_offset,
"AEAD setkey............%u\n",
atomic_read(&ipriv->setkey_cnt[SPU_OP_AEAD]));
out_offset += snprintf(buf + out_offset, out_count - out_offset,
"AEAD Ops...............%u\n",
atomic_read(&ipriv->op_counts[SPU_OP_AEAD]));
for (alg = 0; alg < AEAD_TYPE_LAST; alg++) {
op_cnt = atomic_read(&ipriv->aead_cnt[alg]);
if (op_cnt) {
out_offset += snprintf(buf + out_offset,
out_count - out_offset,
" %-13s%11u\n",
aead_alg_name[alg], op_cnt);
}
}
out_offset += snprintf(buf + out_offset, out_count - out_offset,
"Bytes of req data......%llu\n",
(u64)atomic64_read(&ipriv->bytes_out));
out_offset += snprintf(buf + out_offset, out_count - out_offset,
"Bytes of resp data.....%llu\n",
(u64)atomic64_read(&ipriv->bytes_in));
out_offset += snprintf(buf + out_offset, out_count - out_offset,
"Mailbox full...........%u\n",
atomic_read(&ipriv->mb_no_spc));
out_offset += snprintf(buf + out_offset, out_count - out_offset,
"Mailbox send failures..%u\n",
atomic_read(&ipriv->mb_send_fail));
out_offset += snprintf(buf + out_offset, out_count - out_offset,
"Check ICV errors.......%u\n",
atomic_read(&ipriv->bad_icv));
if (ipriv->spu.spu_type == SPU_TYPE_SPUM)
for (i = 0; i < ipriv->spu.num_spu; i++) {
spu_ofifo_ctrl = ioread32(ipriv->spu.reg_vbase[i] +
SPU_OFIFO_CTRL);
fifo_len = spu_ofifo_ctrl & SPU_FIFO_WATERMARK;
out_offset += snprintf(buf + out_offset,
out_count - out_offset,
"SPU %d output FIFO high water.....%u\n",
i, fifo_len);
}
if (out_offset > out_count)
out_offset = out_count;
ret = simple_read_from_buffer(ubuf, count, offp, buf, out_offset);
kfree(buf);
return ret;
}
static const struct file_operations spu_debugfs_stats = {
.owner = THIS_MODULE,
.open = simple_open,
.read = spu_debugfs_read,
};
/*
* Create the debug FS directories. If the top-level directory has not yet
* been created, create it now. Create a stats file in this directory for
* a SPU.
*/
void spu_setup_debugfs(void)
{
if (!debugfs_initialized())
return;
if (!iproc_priv.debugfs_dir)
iproc_priv.debugfs_dir = debugfs_create_dir(KBUILD_MODNAME,
NULL);
if (!iproc_priv.debugfs_stats)
/* Create file with permissions S_IRUSR */
debugfs_create_file("stats", 0400, iproc_priv.debugfs_dir,
&iproc_priv, &spu_debugfs_stats);
}
void spu_free_debugfs(void)
{
debugfs_remove_recursive(iproc_priv.debugfs_dir);
iproc_priv.debugfs_dir = NULL;
}
/**
* format_value_ccm() - Format a value into a buffer, using a specified number
* of bytes (i.e. maybe writing value X into a 4 byte
* buffer, or maybe into a 12 byte buffer), as per the
* SPU CCM spec.
*
* @val: value to write (up to max of unsigned int)
* @buf: (pointer to) buffer to write the value
* @len: number of bytes to use (0 to 255)
*
*/
void format_value_ccm(unsigned int val, u8 *buf, u8 len)
{
int i;
/* First clear full output buffer */
memset(buf, 0, len);
/* Then, starting from right side, fill in with data */
for (i = 0; i < len; i++) {
buf[len - i - 1] = (val >> (8 * i)) & 0xff;
if (i >= 3)
break; /* Only handle up to 32 bits of 'val' */
}
}