561 lines
14 KiB
C
561 lines
14 KiB
C
/*
|
|
* STMicroelectronics st_lsm6dsx FIFO buffer library driver
|
|
*
|
|
* LSM6DS3/LSM6DS3H/LSM6DSL/LSM6DSM: The FIFO buffer can be configured
|
|
* to store data from gyroscope and accelerometer. Samples are queued
|
|
* without any tag according to a specific pattern based on 'FIFO data sets'
|
|
* (6 bytes each):
|
|
* - 1st data set is reserved for gyroscope data
|
|
* - 2nd data set is reserved for accelerometer data
|
|
* The FIFO pattern changes depending on the ODRs and decimation factors
|
|
* assigned to the FIFO data sets. The first sequence of data stored in FIFO
|
|
* buffer contains the data of all the enabled FIFO data sets
|
|
* (e.g. Gx, Gy, Gz, Ax, Ay, Az), then data are repeated depending on the
|
|
* value of the decimation factor and ODR set for each FIFO data set.
|
|
* FIFO supported modes:
|
|
* - BYPASS: FIFO disabled
|
|
* - CONTINUOUS: FIFO enabled. When the buffer is full, the FIFO index
|
|
* restarts from the beginning and the oldest sample is overwritten
|
|
*
|
|
* Copyright 2016 STMicroelectronics Inc.
|
|
*
|
|
* Lorenzo Bianconi <lorenzo.bianconi@st.com>
|
|
* Denis Ciocca <denis.ciocca@st.com>
|
|
*
|
|
* Licensed under the GPL-2.
|
|
*/
|
|
#include <linux/module.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/irq.h>
|
|
#include <linux/iio/kfifo_buf.h>
|
|
#include <linux/iio/iio.h>
|
|
#include <linux/iio/buffer.h>
|
|
#include <linux/regmap.h>
|
|
#include <linux/bitfield.h>
|
|
|
|
#include <linux/platform_data/st_sensors_pdata.h>
|
|
|
|
#include "st_lsm6dsx.h"
|
|
|
|
#define ST_LSM6DSX_REG_HLACTIVE_ADDR 0x12
|
|
#define ST_LSM6DSX_REG_HLACTIVE_MASK BIT(5)
|
|
#define ST_LSM6DSX_REG_PP_OD_ADDR 0x12
|
|
#define ST_LSM6DSX_REG_PP_OD_MASK BIT(4)
|
|
#define ST_LSM6DSX_REG_FIFO_MODE_ADDR 0x0a
|
|
#define ST_LSM6DSX_FIFO_MODE_MASK GENMASK(2, 0)
|
|
#define ST_LSM6DSX_FIFO_ODR_MASK GENMASK(6, 3)
|
|
#define ST_LSM6DSX_FIFO_EMPTY_MASK BIT(12)
|
|
#define ST_LSM6DSX_REG_FIFO_OUTL_ADDR 0x3e
|
|
#define ST_LSM6DSX_REG_TS_RESET_ADDR 0x42
|
|
|
|
#define ST_LSM6DSX_MAX_FIFO_ODR_VAL 0x08
|
|
|
|
#define ST_LSM6DSX_TS_SENSITIVITY 25000UL /* 25us */
|
|
#define ST_LSM6DSX_TS_RESET_VAL 0xaa
|
|
|
|
struct st_lsm6dsx_decimator_entry {
|
|
u8 decimator;
|
|
u8 val;
|
|
};
|
|
|
|
static const
|
|
struct st_lsm6dsx_decimator_entry st_lsm6dsx_decimator_table[] = {
|
|
{ 0, 0x0 },
|
|
{ 1, 0x1 },
|
|
{ 2, 0x2 },
|
|
{ 3, 0x3 },
|
|
{ 4, 0x4 },
|
|
{ 8, 0x5 },
|
|
{ 16, 0x6 },
|
|
{ 32, 0x7 },
|
|
};
|
|
|
|
static int st_lsm6dsx_get_decimator_val(u8 val)
|
|
{
|
|
const int max_size = ARRAY_SIZE(st_lsm6dsx_decimator_table);
|
|
int i;
|
|
|
|
for (i = 0; i < max_size; i++)
|
|
if (st_lsm6dsx_decimator_table[i].decimator == val)
|
|
break;
|
|
|
|
return i == max_size ? 0 : st_lsm6dsx_decimator_table[i].val;
|
|
}
|
|
|
|
static void st_lsm6dsx_get_max_min_odr(struct st_lsm6dsx_hw *hw,
|
|
u16 *max_odr, u16 *min_odr)
|
|
{
|
|
struct st_lsm6dsx_sensor *sensor;
|
|
int i;
|
|
|
|
*max_odr = 0, *min_odr = ~0;
|
|
for (i = 0; i < ST_LSM6DSX_ID_MAX; i++) {
|
|
sensor = iio_priv(hw->iio_devs[i]);
|
|
|
|
if (!(hw->enable_mask & BIT(sensor->id)))
|
|
continue;
|
|
|
|
*max_odr = max_t(u16, *max_odr, sensor->odr);
|
|
*min_odr = min_t(u16, *min_odr, sensor->odr);
|
|
}
|
|
}
|
|
|
|
static int st_lsm6dsx_update_decimators(struct st_lsm6dsx_hw *hw)
|
|
{
|
|
u16 max_odr, min_odr, sip = 0, ts_sip = 0;
|
|
const struct st_lsm6dsx_reg *ts_dec_reg;
|
|
struct st_lsm6dsx_sensor *sensor;
|
|
int err = 0, i;
|
|
u8 data;
|
|
|
|
st_lsm6dsx_get_max_min_odr(hw, &max_odr, &min_odr);
|
|
|
|
for (i = 0; i < ST_LSM6DSX_ID_MAX; i++) {
|
|
const struct st_lsm6dsx_reg *dec_reg;
|
|
|
|
sensor = iio_priv(hw->iio_devs[i]);
|
|
/* update fifo decimators and sample in pattern */
|
|
if (hw->enable_mask & BIT(sensor->id)) {
|
|
sensor->sip = sensor->odr / min_odr;
|
|
sensor->decimator = max_odr / sensor->odr;
|
|
data = st_lsm6dsx_get_decimator_val(sensor->decimator);
|
|
} else {
|
|
sensor->sip = 0;
|
|
sensor->decimator = 0;
|
|
data = 0;
|
|
}
|
|
ts_sip = max_t(u16, ts_sip, sensor->sip);
|
|
|
|
dec_reg = &hw->settings->decimator[sensor->id];
|
|
if (dec_reg->addr) {
|
|
int val = ST_LSM6DSX_SHIFT_VAL(data, dec_reg->mask);
|
|
|
|
err = regmap_update_bits(hw->regmap, dec_reg->addr,
|
|
dec_reg->mask, val);
|
|
if (err < 0)
|
|
return err;
|
|
}
|
|
sip += sensor->sip;
|
|
}
|
|
hw->sip = sip + ts_sip;
|
|
hw->ts_sip = ts_sip;
|
|
|
|
/*
|
|
* update hw ts decimator if necessary. Decimator for hw timestamp
|
|
* is always 1 or 0 in order to have a ts sample for each data
|
|
* sample in FIFO
|
|
*/
|
|
ts_dec_reg = &hw->settings->ts_settings.decimator;
|
|
if (ts_dec_reg->addr) {
|
|
int val, ts_dec = !!hw->ts_sip;
|
|
|
|
val = ST_LSM6DSX_SHIFT_VAL(ts_dec, ts_dec_reg->mask);
|
|
err = regmap_update_bits(hw->regmap, ts_dec_reg->addr,
|
|
ts_dec_reg->mask, val);
|
|
}
|
|
return err;
|
|
}
|
|
|
|
int st_lsm6dsx_set_fifo_mode(struct st_lsm6dsx_hw *hw,
|
|
enum st_lsm6dsx_fifo_mode fifo_mode)
|
|
{
|
|
int err;
|
|
|
|
err = regmap_update_bits(hw->regmap, ST_LSM6DSX_REG_FIFO_MODE_ADDR,
|
|
ST_LSM6DSX_FIFO_MODE_MASK,
|
|
FIELD_PREP(ST_LSM6DSX_FIFO_MODE_MASK,
|
|
fifo_mode));
|
|
if (err < 0)
|
|
return err;
|
|
|
|
hw->fifo_mode = fifo_mode;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int st_lsm6dsx_set_fifo_odr(struct st_lsm6dsx_sensor *sensor,
|
|
bool enable)
|
|
{
|
|
struct st_lsm6dsx_hw *hw = sensor->hw;
|
|
u8 data;
|
|
|
|
data = hw->enable_mask ? ST_LSM6DSX_MAX_FIFO_ODR_VAL : 0;
|
|
return regmap_update_bits(hw->regmap, ST_LSM6DSX_REG_FIFO_MODE_ADDR,
|
|
ST_LSM6DSX_FIFO_ODR_MASK,
|
|
FIELD_PREP(ST_LSM6DSX_FIFO_ODR_MASK, data));
|
|
}
|
|
|
|
int st_lsm6dsx_update_watermark(struct st_lsm6dsx_sensor *sensor, u16 watermark)
|
|
{
|
|
u16 fifo_watermark = ~0, cur_watermark, sip = 0, fifo_th_mask;
|
|
struct st_lsm6dsx_hw *hw = sensor->hw;
|
|
struct st_lsm6dsx_sensor *cur_sensor;
|
|
int i, err, data;
|
|
__le16 wdata;
|
|
|
|
for (i = 0; i < ST_LSM6DSX_ID_MAX; i++) {
|
|
cur_sensor = iio_priv(hw->iio_devs[i]);
|
|
|
|
if (!(hw->enable_mask & BIT(cur_sensor->id)))
|
|
continue;
|
|
|
|
cur_watermark = (cur_sensor == sensor) ? watermark
|
|
: cur_sensor->watermark;
|
|
|
|
fifo_watermark = min_t(u16, fifo_watermark, cur_watermark);
|
|
sip += cur_sensor->sip;
|
|
}
|
|
|
|
if (!sip)
|
|
return 0;
|
|
|
|
fifo_watermark = max_t(u16, fifo_watermark, sip);
|
|
fifo_watermark = (fifo_watermark / sip) * sip;
|
|
fifo_watermark = fifo_watermark * hw->settings->fifo_ops.th_wl;
|
|
|
|
err = regmap_read(hw->regmap, hw->settings->fifo_ops.fifo_th.addr + 1,
|
|
&data);
|
|
if (err < 0)
|
|
return err;
|
|
|
|
fifo_th_mask = hw->settings->fifo_ops.fifo_th.mask;
|
|
fifo_watermark = ((data << 8) & ~fifo_th_mask) |
|
|
(fifo_watermark & fifo_th_mask);
|
|
|
|
wdata = cpu_to_le16(fifo_watermark);
|
|
return regmap_bulk_write(hw->regmap,
|
|
hw->settings->fifo_ops.fifo_th.addr,
|
|
&wdata, sizeof(wdata));
|
|
}
|
|
|
|
static int st_lsm6dsx_reset_hw_ts(struct st_lsm6dsx_hw *hw)
|
|
{
|
|
struct st_lsm6dsx_sensor *sensor;
|
|
int i, err;
|
|
|
|
/* reset hw ts counter */
|
|
err = regmap_write(hw->regmap, ST_LSM6DSX_REG_TS_RESET_ADDR,
|
|
ST_LSM6DSX_TS_RESET_VAL);
|
|
if (err < 0)
|
|
return err;
|
|
|
|
for (i = 0; i < ST_LSM6DSX_ID_MAX; i++) {
|
|
sensor = iio_priv(hw->iio_devs[i]);
|
|
/*
|
|
* store enable buffer timestamp as reference for
|
|
* hw timestamp
|
|
*/
|
|
sensor->ts_ref = iio_get_time_ns(hw->iio_devs[i]);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Set max bulk read to ST_LSM6DSX_MAX_WORD_LEN in order to avoid
|
|
* a kmalloc for each bus access
|
|
*/
|
|
static inline int st_lsm6dsx_read_block(struct st_lsm6dsx_hw *hw, u8 *data,
|
|
unsigned int data_len)
|
|
{
|
|
unsigned int word_len, read_len = 0;
|
|
int err;
|
|
|
|
while (read_len < data_len) {
|
|
word_len = min_t(unsigned int, data_len - read_len,
|
|
ST_LSM6DSX_MAX_WORD_LEN);
|
|
err = regmap_bulk_read(hw->regmap,
|
|
ST_LSM6DSX_REG_FIFO_OUTL_ADDR,
|
|
data + read_len, word_len);
|
|
if (err < 0)
|
|
return err;
|
|
read_len += word_len;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
#define ST_LSM6DSX_IIO_BUFF_SIZE (ALIGN(ST_LSM6DSX_SAMPLE_SIZE, \
|
|
sizeof(s64)) + sizeof(s64))
|
|
/**
|
|
* st_lsm6dsx_read_fifo() - LSM6DS3-LSM6DS3H-LSM6DSL-LSM6DSM read FIFO routine
|
|
* @hw: Pointer to instance of struct st_lsm6dsx_hw.
|
|
*
|
|
* Read samples from the hw FIFO and push them to IIO buffers.
|
|
*
|
|
* Return: Number of bytes read from the FIFO
|
|
*/
|
|
static int st_lsm6dsx_read_fifo(struct st_lsm6dsx_hw *hw)
|
|
{
|
|
u16 fifo_len, pattern_len = hw->sip * ST_LSM6DSX_SAMPLE_SIZE;
|
|
u16 fifo_diff_mask = hw->settings->fifo_ops.fifo_diff.mask;
|
|
int err, acc_sip, gyro_sip, ts_sip, read_len, offset;
|
|
struct st_lsm6dsx_sensor *acc_sensor, *gyro_sensor;
|
|
u8 gyro_buff[ST_LSM6DSX_IIO_BUFF_SIZE];
|
|
u8 acc_buff[ST_LSM6DSX_IIO_BUFF_SIZE];
|
|
bool reset_ts = false;
|
|
__le16 fifo_status;
|
|
s64 ts = 0;
|
|
|
|
err = regmap_bulk_read(hw->regmap,
|
|
hw->settings->fifo_ops.fifo_diff.addr,
|
|
&fifo_status, sizeof(fifo_status));
|
|
if (err < 0)
|
|
return err;
|
|
|
|
if (fifo_status & cpu_to_le16(ST_LSM6DSX_FIFO_EMPTY_MASK))
|
|
return 0;
|
|
|
|
fifo_len = (le16_to_cpu(fifo_status) & fifo_diff_mask) *
|
|
ST_LSM6DSX_CHAN_SIZE;
|
|
fifo_len = (fifo_len / pattern_len) * pattern_len;
|
|
|
|
acc_sensor = iio_priv(hw->iio_devs[ST_LSM6DSX_ID_ACC]);
|
|
gyro_sensor = iio_priv(hw->iio_devs[ST_LSM6DSX_ID_GYRO]);
|
|
|
|
for (read_len = 0; read_len < fifo_len; read_len += pattern_len) {
|
|
err = st_lsm6dsx_read_block(hw, hw->buff, pattern_len);
|
|
if (err < 0)
|
|
return err;
|
|
|
|
/*
|
|
* Data are written to the FIFO with a specific pattern
|
|
* depending on the configured ODRs. The first sequence of data
|
|
* stored in FIFO contains the data of all enabled sensors
|
|
* (e.g. Gx, Gy, Gz, Ax, Ay, Az, Ts), then data are repeated
|
|
* depending on the value of the decimation factor set for each
|
|
* sensor.
|
|
*
|
|
* Supposing the FIFO is storing data from gyroscope and
|
|
* accelerometer at different ODRs:
|
|
* - gyroscope ODR = 208Hz, accelerometer ODR = 104Hz
|
|
* Since the gyroscope ODR is twice the accelerometer one, the
|
|
* following pattern is repeated every 9 samples:
|
|
* - Gx, Gy, Gz, Ax, Ay, Az, Ts, Gx, Gy, Gz, Ts, Gx, ..
|
|
*/
|
|
gyro_sip = gyro_sensor->sip;
|
|
acc_sip = acc_sensor->sip;
|
|
ts_sip = hw->ts_sip;
|
|
offset = 0;
|
|
|
|
while (acc_sip > 0 || gyro_sip > 0) {
|
|
if (gyro_sip > 0) {
|
|
memcpy(gyro_buff, &hw->buff[offset],
|
|
ST_LSM6DSX_SAMPLE_SIZE);
|
|
offset += ST_LSM6DSX_SAMPLE_SIZE;
|
|
}
|
|
if (acc_sip > 0) {
|
|
memcpy(acc_buff, &hw->buff[offset],
|
|
ST_LSM6DSX_SAMPLE_SIZE);
|
|
offset += ST_LSM6DSX_SAMPLE_SIZE;
|
|
}
|
|
|
|
if (ts_sip-- > 0) {
|
|
u8 data[ST_LSM6DSX_SAMPLE_SIZE];
|
|
|
|
memcpy(data, &hw->buff[offset], sizeof(data));
|
|
/*
|
|
* hw timestamp is 3B long and it is stored
|
|
* in FIFO using 6B as 4th FIFO data set
|
|
* according to this schema:
|
|
* B0 = ts[15:8], B1 = ts[23:16], B3 = ts[7:0]
|
|
*/
|
|
ts = data[1] << 16 | data[0] << 8 | data[3];
|
|
/*
|
|
* check if hw timestamp engine is going to
|
|
* reset (the sensor generates an interrupt
|
|
* to signal the hw timestamp will reset in
|
|
* 1.638s)
|
|
*/
|
|
if (!reset_ts && ts >= 0xff0000)
|
|
reset_ts = true;
|
|
ts *= ST_LSM6DSX_TS_SENSITIVITY;
|
|
|
|
offset += ST_LSM6DSX_SAMPLE_SIZE;
|
|
}
|
|
|
|
if (gyro_sip-- > 0)
|
|
iio_push_to_buffers_with_timestamp(
|
|
hw->iio_devs[ST_LSM6DSX_ID_GYRO],
|
|
gyro_buff, gyro_sensor->ts_ref + ts);
|
|
if (acc_sip-- > 0)
|
|
iio_push_to_buffers_with_timestamp(
|
|
hw->iio_devs[ST_LSM6DSX_ID_ACC],
|
|
acc_buff, acc_sensor->ts_ref + ts);
|
|
}
|
|
}
|
|
|
|
if (unlikely(reset_ts)) {
|
|
err = st_lsm6dsx_reset_hw_ts(hw);
|
|
if (err < 0)
|
|
return err;
|
|
}
|
|
return read_len;
|
|
}
|
|
|
|
int st_lsm6dsx_flush_fifo(struct st_lsm6dsx_hw *hw)
|
|
{
|
|
int err;
|
|
|
|
mutex_lock(&hw->fifo_lock);
|
|
|
|
st_lsm6dsx_read_fifo(hw);
|
|
err = st_lsm6dsx_set_fifo_mode(hw, ST_LSM6DSX_FIFO_BYPASS);
|
|
|
|
mutex_unlock(&hw->fifo_lock);
|
|
|
|
return err;
|
|
}
|
|
|
|
static int st_lsm6dsx_update_fifo(struct iio_dev *iio_dev, bool enable)
|
|
{
|
|
struct st_lsm6dsx_sensor *sensor = iio_priv(iio_dev);
|
|
struct st_lsm6dsx_hw *hw = sensor->hw;
|
|
int err;
|
|
|
|
mutex_lock(&hw->conf_lock);
|
|
|
|
if (hw->fifo_mode != ST_LSM6DSX_FIFO_BYPASS) {
|
|
err = st_lsm6dsx_flush_fifo(hw);
|
|
if (err < 0)
|
|
goto out;
|
|
}
|
|
|
|
if (enable) {
|
|
err = st_lsm6dsx_sensor_enable(sensor);
|
|
if (err < 0)
|
|
goto out;
|
|
} else {
|
|
err = st_lsm6dsx_sensor_disable(sensor);
|
|
if (err < 0)
|
|
goto out;
|
|
}
|
|
|
|
err = st_lsm6dsx_set_fifo_odr(sensor, enable);
|
|
if (err < 0)
|
|
goto out;
|
|
|
|
err = st_lsm6dsx_update_decimators(hw);
|
|
if (err < 0)
|
|
goto out;
|
|
|
|
err = st_lsm6dsx_update_watermark(sensor, sensor->watermark);
|
|
if (err < 0)
|
|
goto out;
|
|
|
|
if (hw->enable_mask) {
|
|
/* reset hw ts counter */
|
|
err = st_lsm6dsx_reset_hw_ts(hw);
|
|
if (err < 0)
|
|
goto out;
|
|
|
|
err = st_lsm6dsx_set_fifo_mode(hw, ST_LSM6DSX_FIFO_CONT);
|
|
}
|
|
|
|
out:
|
|
mutex_unlock(&hw->conf_lock);
|
|
|
|
return err;
|
|
}
|
|
|
|
static irqreturn_t st_lsm6dsx_handler_irq(int irq, void *private)
|
|
{
|
|
struct st_lsm6dsx_hw *hw = private;
|
|
|
|
return hw->sip > 0 ? IRQ_WAKE_THREAD : IRQ_NONE;
|
|
}
|
|
|
|
static irqreturn_t st_lsm6dsx_handler_thread(int irq, void *private)
|
|
{
|
|
struct st_lsm6dsx_hw *hw = private;
|
|
int count;
|
|
|
|
mutex_lock(&hw->fifo_lock);
|
|
count = st_lsm6dsx_read_fifo(hw);
|
|
mutex_unlock(&hw->fifo_lock);
|
|
|
|
return !count ? IRQ_NONE : IRQ_HANDLED;
|
|
}
|
|
|
|
static int st_lsm6dsx_buffer_preenable(struct iio_dev *iio_dev)
|
|
{
|
|
return st_lsm6dsx_update_fifo(iio_dev, true);
|
|
}
|
|
|
|
static int st_lsm6dsx_buffer_postdisable(struct iio_dev *iio_dev)
|
|
{
|
|
return st_lsm6dsx_update_fifo(iio_dev, false);
|
|
}
|
|
|
|
static const struct iio_buffer_setup_ops st_lsm6dsx_buffer_ops = {
|
|
.preenable = st_lsm6dsx_buffer_preenable,
|
|
.postdisable = st_lsm6dsx_buffer_postdisable,
|
|
};
|
|
|
|
int st_lsm6dsx_fifo_setup(struct st_lsm6dsx_hw *hw)
|
|
{
|
|
struct device_node *np = hw->dev->of_node;
|
|
struct st_sensors_platform_data *pdata;
|
|
struct iio_buffer *buffer;
|
|
unsigned long irq_type;
|
|
bool irq_active_low;
|
|
int i, err;
|
|
|
|
irq_type = irqd_get_trigger_type(irq_get_irq_data(hw->irq));
|
|
|
|
switch (irq_type) {
|
|
case IRQF_TRIGGER_HIGH:
|
|
case IRQF_TRIGGER_RISING:
|
|
irq_active_low = false;
|
|
break;
|
|
case IRQF_TRIGGER_LOW:
|
|
case IRQF_TRIGGER_FALLING:
|
|
irq_active_low = true;
|
|
break;
|
|
default:
|
|
dev_info(hw->dev, "mode %lx unsupported\n", irq_type);
|
|
return -EINVAL;
|
|
}
|
|
|
|
err = regmap_update_bits(hw->regmap, ST_LSM6DSX_REG_HLACTIVE_ADDR,
|
|
ST_LSM6DSX_REG_HLACTIVE_MASK,
|
|
FIELD_PREP(ST_LSM6DSX_REG_HLACTIVE_MASK,
|
|
irq_active_low));
|
|
if (err < 0)
|
|
return err;
|
|
|
|
pdata = (struct st_sensors_platform_data *)hw->dev->platform_data;
|
|
if ((np && of_property_read_bool(np, "drive-open-drain")) ||
|
|
(pdata && pdata->open_drain)) {
|
|
err = regmap_update_bits(hw->regmap, ST_LSM6DSX_REG_PP_OD_ADDR,
|
|
ST_LSM6DSX_REG_PP_OD_MASK,
|
|
FIELD_PREP(ST_LSM6DSX_REG_PP_OD_MASK,
|
|
1));
|
|
if (err < 0)
|
|
return err;
|
|
|
|
irq_type |= IRQF_SHARED;
|
|
}
|
|
|
|
err = devm_request_threaded_irq(hw->dev, hw->irq,
|
|
st_lsm6dsx_handler_irq,
|
|
st_lsm6dsx_handler_thread,
|
|
irq_type | IRQF_ONESHOT,
|
|
"lsm6dsx", hw);
|
|
if (err) {
|
|
dev_err(hw->dev, "failed to request trigger irq %d\n",
|
|
hw->irq);
|
|
return err;
|
|
}
|
|
|
|
for (i = 0; i < ST_LSM6DSX_ID_MAX; i++) {
|
|
buffer = devm_iio_kfifo_allocate(hw->dev);
|
|
if (!buffer)
|
|
return -ENOMEM;
|
|
|
|
iio_device_attach_buffer(hw->iio_devs[i], buffer);
|
|
hw->iio_devs[i]->modes |= INDIO_BUFFER_SOFTWARE;
|
|
hw->iio_devs[i]->setup_ops = &st_lsm6dsx_buffer_ops;
|
|
}
|
|
|
|
return 0;
|
|
}
|