348 lines
11 KiB
C
348 lines
11 KiB
C
/*
|
|
* arch/arm/include/asm/cacheflush.h
|
|
*
|
|
* Copyright (C) 1999-2002 Russell King
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*/
|
|
#ifndef _ASMARM_CACHEFLUSH_H
|
|
#define _ASMARM_CACHEFLUSH_H
|
|
|
|
#include <linux/mm.h>
|
|
|
|
#include <asm/glue-cache.h>
|
|
#include <asm/shmparam.h>
|
|
#include <asm/cachetype.h>
|
|
#include <asm/outercache.h>
|
|
|
|
#define CACHE_COLOUR(vaddr) ((vaddr & (SHMLBA - 1)) >> PAGE_SHIFT)
|
|
|
|
/*
|
|
* This flag is used to indicate that the page pointed to by a pte is clean
|
|
* and does not require cleaning before returning it to the user.
|
|
*/
|
|
#define PG_dcache_clean PG_arch_1
|
|
|
|
/*
|
|
* MM Cache Management
|
|
* ===================
|
|
*
|
|
* The arch/arm/mm/cache-*.S and arch/arm/mm/proc-*.S files
|
|
* implement these methods.
|
|
*
|
|
* Start addresses are inclusive and end addresses are exclusive;
|
|
* start addresses should be rounded down, end addresses up.
|
|
*
|
|
* See Documentation/cachetlb.txt for more information.
|
|
* Please note that the implementation of these, and the required
|
|
* effects are cache-type (VIVT/VIPT/PIPT) specific.
|
|
*
|
|
* flush_icache_all()
|
|
*
|
|
* Unconditionally clean and invalidate the entire icache.
|
|
* Currently only needed for cache-v6.S and cache-v7.S, see
|
|
* __flush_icache_all for the generic implementation.
|
|
*
|
|
* flush_kern_all()
|
|
*
|
|
* Unconditionally clean and invalidate the entire cache.
|
|
*
|
|
* flush_user_all()
|
|
*
|
|
* Clean and invalidate all user space cache entries
|
|
* before a change of page tables.
|
|
*
|
|
* flush_user_range(start, end, flags)
|
|
*
|
|
* Clean and invalidate a range of cache entries in the
|
|
* specified address space before a change of page tables.
|
|
* - start - user start address (inclusive, page aligned)
|
|
* - end - user end address (exclusive, page aligned)
|
|
* - flags - vma->vm_flags field
|
|
*
|
|
* coherent_kern_range(start, end)
|
|
*
|
|
* Ensure coherency between the Icache and the Dcache in the
|
|
* region described by start, end. If you have non-snooping
|
|
* Harvard caches, you need to implement this function.
|
|
* - start - virtual start address
|
|
* - end - virtual end address
|
|
*
|
|
* coherent_user_range(start, end)
|
|
*
|
|
* Ensure coherency between the Icache and the Dcache in the
|
|
* region described by start, end. If you have non-snooping
|
|
* Harvard caches, you need to implement this function.
|
|
* - start - virtual start address
|
|
* - end - virtual end address
|
|
*
|
|
* flush_kern_dcache_area(kaddr, size)
|
|
*
|
|
* Ensure that the data held in page is written back.
|
|
* - kaddr - page address
|
|
* - size - region size
|
|
*
|
|
* DMA Cache Coherency
|
|
* ===================
|
|
*
|
|
* dma_flush_range(start, end)
|
|
*
|
|
* Clean and invalidate the specified virtual address range.
|
|
* - start - virtual start address
|
|
* - end - virtual end address
|
|
*/
|
|
|
|
struct cpu_cache_fns {
|
|
void (*flush_icache_all)(void);
|
|
void (*flush_kern_all)(void);
|
|
void (*flush_user_all)(void);
|
|
void (*flush_user_range)(unsigned long, unsigned long, unsigned int);
|
|
|
|
void (*coherent_kern_range)(unsigned long, unsigned long);
|
|
void (*coherent_user_range)(unsigned long, unsigned long);
|
|
void (*flush_kern_dcache_area)(void *, size_t);
|
|
|
|
void (*dma_map_area)(const void *, size_t, int);
|
|
void (*dma_unmap_area)(const void *, size_t, int);
|
|
|
|
void (*dma_flush_range)(const void *, const void *);
|
|
};
|
|
|
|
/*
|
|
* Select the calling method
|
|
*/
|
|
#ifdef MULTI_CACHE
|
|
|
|
extern struct cpu_cache_fns cpu_cache;
|
|
|
|
#define __cpuc_flush_icache_all cpu_cache.flush_icache_all
|
|
#define __cpuc_flush_kern_all cpu_cache.flush_kern_all
|
|
#define __cpuc_flush_user_all cpu_cache.flush_user_all
|
|
#define __cpuc_flush_user_range cpu_cache.flush_user_range
|
|
#define __cpuc_coherent_kern_range cpu_cache.coherent_kern_range
|
|
#define __cpuc_coherent_user_range cpu_cache.coherent_user_range
|
|
#define __cpuc_flush_dcache_area cpu_cache.flush_kern_dcache_area
|
|
|
|
/*
|
|
* These are private to the dma-mapping API. Do not use directly.
|
|
* Their sole purpose is to ensure that data held in the cache
|
|
* is visible to DMA, or data written by DMA to system memory is
|
|
* visible to the CPU.
|
|
*/
|
|
#define dmac_map_area cpu_cache.dma_map_area
|
|
#define dmac_unmap_area cpu_cache.dma_unmap_area
|
|
#define dmac_flush_range cpu_cache.dma_flush_range
|
|
|
|
#else
|
|
|
|
extern void __cpuc_flush_icache_all(void);
|
|
extern void __cpuc_flush_kern_all(void);
|
|
extern void __cpuc_flush_user_all(void);
|
|
extern void __cpuc_flush_user_range(unsigned long, unsigned long, unsigned int);
|
|
extern void __cpuc_coherent_kern_range(unsigned long, unsigned long);
|
|
extern void __cpuc_coherent_user_range(unsigned long, unsigned long);
|
|
extern void __cpuc_flush_dcache_area(void *, size_t);
|
|
|
|
/*
|
|
* These are private to the dma-mapping API. Do not use directly.
|
|
* Their sole purpose is to ensure that data held in the cache
|
|
* is visible to DMA, or data written by DMA to system memory is
|
|
* visible to the CPU.
|
|
*/
|
|
extern void dmac_map_area(const void *, size_t, int);
|
|
extern void dmac_unmap_area(const void *, size_t, int);
|
|
extern void dmac_flush_range(const void *, const void *);
|
|
|
|
#endif
|
|
|
|
/*
|
|
* Copy user data from/to a page which is mapped into a different
|
|
* processes address space. Really, we want to allow our "user
|
|
* space" model to handle this.
|
|
*/
|
|
extern void copy_to_user_page(struct vm_area_struct *, struct page *,
|
|
unsigned long, void *, const void *, unsigned long);
|
|
#define copy_from_user_page(vma, page, vaddr, dst, src, len) \
|
|
do { \
|
|
memcpy(dst, src, len); \
|
|
} while (0)
|
|
|
|
/*
|
|
* Convert calls to our calling convention.
|
|
*/
|
|
|
|
/* Invalidate I-cache */
|
|
#define __flush_icache_all_generic() \
|
|
asm("mcr p15, 0, %0, c7, c5, 0" \
|
|
: : "r" (0));
|
|
|
|
/* Invalidate I-cache inner shareable */
|
|
#define __flush_icache_all_v7_smp() \
|
|
asm("mcr p15, 0, %0, c7, c1, 0" \
|
|
: : "r" (0));
|
|
|
|
/*
|
|
* Optimized __flush_icache_all for the common cases. Note that UP ARMv7
|
|
* will fall through to use __flush_icache_all_generic.
|
|
*/
|
|
#if (defined(CONFIG_CPU_V7) && \
|
|
(defined(CONFIG_CPU_V6) || defined(CONFIG_CPU_V6K))) || \
|
|
defined(CONFIG_SMP_ON_UP)
|
|
#define __flush_icache_preferred __cpuc_flush_icache_all
|
|
#elif __LINUX_ARM_ARCH__ >= 7 && defined(CONFIG_SMP)
|
|
#define __flush_icache_preferred __flush_icache_all_v7_smp
|
|
#elif __LINUX_ARM_ARCH__ == 6 && defined(CONFIG_ARM_ERRATA_411920)
|
|
#define __flush_icache_preferred __cpuc_flush_icache_all
|
|
#else
|
|
#define __flush_icache_preferred __flush_icache_all_generic
|
|
#endif
|
|
|
|
static inline void __flush_icache_all(void)
|
|
{
|
|
__flush_icache_preferred();
|
|
}
|
|
|
|
#define flush_cache_all() __cpuc_flush_kern_all()
|
|
|
|
static inline void vivt_flush_cache_mm(struct mm_struct *mm)
|
|
{
|
|
if (cpumask_test_cpu(smp_processor_id(), mm_cpumask(mm)))
|
|
__cpuc_flush_user_all();
|
|
}
|
|
|
|
static inline void
|
|
vivt_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
|
|
{
|
|
if (cpumask_test_cpu(smp_processor_id(), mm_cpumask(vma->vm_mm)))
|
|
__cpuc_flush_user_range(start & PAGE_MASK, PAGE_ALIGN(end),
|
|
vma->vm_flags);
|
|
}
|
|
|
|
static inline void
|
|
vivt_flush_cache_page(struct vm_area_struct *vma, unsigned long user_addr, unsigned long pfn)
|
|
{
|
|
if (cpumask_test_cpu(smp_processor_id(), mm_cpumask(vma->vm_mm))) {
|
|
unsigned long addr = user_addr & PAGE_MASK;
|
|
__cpuc_flush_user_range(addr, addr + PAGE_SIZE, vma->vm_flags);
|
|
}
|
|
}
|
|
|
|
#ifndef CONFIG_CPU_CACHE_VIPT
|
|
#define flush_cache_mm(mm) \
|
|
vivt_flush_cache_mm(mm)
|
|
#define flush_cache_range(vma,start,end) \
|
|
vivt_flush_cache_range(vma,start,end)
|
|
#define flush_cache_page(vma,addr,pfn) \
|
|
vivt_flush_cache_page(vma,addr,pfn)
|
|
#else
|
|
extern void flush_cache_mm(struct mm_struct *mm);
|
|
extern void flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
|
|
extern void flush_cache_page(struct vm_area_struct *vma, unsigned long user_addr, unsigned long pfn);
|
|
#endif
|
|
|
|
#define flush_cache_dup_mm(mm) flush_cache_mm(mm)
|
|
|
|
/*
|
|
* flush_cache_user_range is used when we want to ensure that the
|
|
* Harvard caches are synchronised for the user space address range.
|
|
* This is used for the ARM private sys_cacheflush system call.
|
|
*/
|
|
#define flush_cache_user_range(vma,start,end) \
|
|
__cpuc_coherent_user_range((start) & PAGE_MASK, PAGE_ALIGN(end))
|
|
|
|
/*
|
|
* Perform necessary cache operations to ensure that data previously
|
|
* stored within this range of addresses can be executed by the CPU.
|
|
*/
|
|
#define flush_icache_range(s,e) __cpuc_coherent_kern_range(s,e)
|
|
|
|
/*
|
|
* Perform necessary cache operations to ensure that the TLB will
|
|
* see data written in the specified area.
|
|
*/
|
|
#define clean_dcache_area(start,size) cpu_dcache_clean_area(start, size)
|
|
|
|
/*
|
|
* flush_dcache_page is used when the kernel has written to the page
|
|
* cache page at virtual address page->virtual.
|
|
*
|
|
* If this page isn't mapped (ie, page_mapping == NULL), or it might
|
|
* have userspace mappings, then we _must_ always clean + invalidate
|
|
* the dcache entries associated with the kernel mapping.
|
|
*
|
|
* Otherwise we can defer the operation, and clean the cache when we are
|
|
* about to change to user space. This is the same method as used on SPARC64.
|
|
* See update_mmu_cache for the user space part.
|
|
*/
|
|
#define ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 1
|
|
extern void flush_dcache_page(struct page *);
|
|
|
|
static inline void flush_kernel_vmap_range(void *addr, int size)
|
|
{
|
|
if ((cache_is_vivt() || cache_is_vipt_aliasing()))
|
|
__cpuc_flush_dcache_area(addr, (size_t)size);
|
|
}
|
|
static inline void invalidate_kernel_vmap_range(void *addr, int size)
|
|
{
|
|
if ((cache_is_vivt() || cache_is_vipt_aliasing()))
|
|
__cpuc_flush_dcache_area(addr, (size_t)size);
|
|
}
|
|
|
|
#define ARCH_HAS_FLUSH_ANON_PAGE
|
|
static inline void flush_anon_page(struct vm_area_struct *vma,
|
|
struct page *page, unsigned long vmaddr)
|
|
{
|
|
extern void __flush_anon_page(struct vm_area_struct *vma,
|
|
struct page *, unsigned long);
|
|
if (PageAnon(page))
|
|
__flush_anon_page(vma, page, vmaddr);
|
|
}
|
|
|
|
#define ARCH_HAS_FLUSH_KERNEL_DCACHE_PAGE
|
|
static inline void flush_kernel_dcache_page(struct page *page)
|
|
{
|
|
}
|
|
|
|
#define flush_dcache_mmap_lock(mapping) \
|
|
spin_lock_irq(&(mapping)->tree_lock)
|
|
#define flush_dcache_mmap_unlock(mapping) \
|
|
spin_unlock_irq(&(mapping)->tree_lock)
|
|
|
|
#define flush_icache_user_range(vma,page,addr,len) \
|
|
flush_dcache_page(page)
|
|
|
|
/*
|
|
* We don't appear to need to do anything here. In fact, if we did, we'd
|
|
* duplicate cache flushing elsewhere performed by flush_dcache_page().
|
|
*/
|
|
#define flush_icache_page(vma,page) do { } while (0)
|
|
|
|
/*
|
|
* flush_cache_vmap() is used when creating mappings (eg, via vmap,
|
|
* vmalloc, ioremap etc) in kernel space for pages. On non-VIPT
|
|
* caches, since the direct-mappings of these pages may contain cached
|
|
* data, we need to do a full cache flush to ensure that writebacks
|
|
* don't corrupt data placed into these pages via the new mappings.
|
|
*/
|
|
static inline void flush_cache_vmap(unsigned long start, unsigned long end)
|
|
{
|
|
if (!cache_is_vipt_nonaliasing())
|
|
flush_cache_all();
|
|
else
|
|
/*
|
|
* set_pte_at() called from vmap_pte_range() does not
|
|
* have a DSB after cleaning the cache line.
|
|
*/
|
|
dsb();
|
|
}
|
|
|
|
static inline void flush_cache_vunmap(unsigned long start, unsigned long end)
|
|
{
|
|
if (!cache_is_vipt_nonaliasing())
|
|
flush_cache_all();
|
|
}
|
|
|
|
#endif
|