linux-sg2042/drivers/iommu/omap-iommu.c

1860 lines
43 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* omap iommu: tlb and pagetable primitives
*
* Copyright (C) 2008-2010 Nokia Corporation
* Copyright (C) 2013-2017 Texas Instruments Incorporated - http://www.ti.com/
*
* Written by Hiroshi DOYU <Hiroshi.DOYU@nokia.com>,
* Paul Mundt and Toshihiro Kobayashi
*/
#include <linux/dma-mapping.h>
#include <linux/err.h>
#include <linux/slab.h>
#include <linux/interrupt.h>
#include <linux/ioport.h>
#include <linux/platform_device.h>
#include <linux/iommu.h>
#include <linux/omap-iommu.h>
#include <linux/mutex.h>
#include <linux/spinlock.h>
#include <linux/io.h>
#include <linux/pm_runtime.h>
#include <linux/of.h>
#include <linux/of_iommu.h>
#include <linux/of_irq.h>
#include <linux/of_platform.h>
#include <linux/regmap.h>
#include <linux/mfd/syscon.h>
#include <linux/platform_data/iommu-omap.h>
#include "omap-iopgtable.h"
#include "omap-iommu.h"
static const struct iommu_ops omap_iommu_ops;
struct orphan_dev {
struct device *dev;
struct list_head node;
};
static LIST_HEAD(orphan_dev_list);
static DEFINE_SPINLOCK(orphan_lock);
#define to_iommu(dev) ((struct omap_iommu *)dev_get_drvdata(dev))
/* bitmap of the page sizes currently supported */
#define OMAP_IOMMU_PGSIZES (SZ_4K | SZ_64K | SZ_1M | SZ_16M)
#define MMU_LOCK_BASE_SHIFT 10
#define MMU_LOCK_BASE_MASK (0x1f << MMU_LOCK_BASE_SHIFT)
#define MMU_LOCK_BASE(x) \
((x & MMU_LOCK_BASE_MASK) >> MMU_LOCK_BASE_SHIFT)
#define MMU_LOCK_VICT_SHIFT 4
#define MMU_LOCK_VICT_MASK (0x1f << MMU_LOCK_VICT_SHIFT)
#define MMU_LOCK_VICT(x) \
((x & MMU_LOCK_VICT_MASK) >> MMU_LOCK_VICT_SHIFT)
static struct platform_driver omap_iommu_driver;
static struct kmem_cache *iopte_cachep;
static int _omap_iommu_add_device(struct device *dev);
/**
* to_omap_domain - Get struct omap_iommu_domain from generic iommu_domain
* @dom: generic iommu domain handle
**/
static struct omap_iommu_domain *to_omap_domain(struct iommu_domain *dom)
{
return container_of(dom, struct omap_iommu_domain, domain);
}
/**
* omap_iommu_save_ctx - Save registers for pm off-mode support
* @dev: client device
*
* This should be treated as an deprecated API. It is preserved only
* to maintain existing functionality for OMAP3 ISP driver.
**/
void omap_iommu_save_ctx(struct device *dev)
{
struct omap_iommu_arch_data *arch_data = dev->archdata.iommu;
struct omap_iommu *obj;
u32 *p;
int i;
if (!arch_data)
return;
while (arch_data->iommu_dev) {
obj = arch_data->iommu_dev;
p = obj->ctx;
for (i = 0; i < (MMU_REG_SIZE / sizeof(u32)); i++) {
p[i] = iommu_read_reg(obj, i * sizeof(u32));
dev_dbg(obj->dev, "%s\t[%02d] %08x\n", __func__, i,
p[i]);
}
arch_data++;
}
}
EXPORT_SYMBOL_GPL(omap_iommu_save_ctx);
/**
* omap_iommu_restore_ctx - Restore registers for pm off-mode support
* @dev: client device
*
* This should be treated as an deprecated API. It is preserved only
* to maintain existing functionality for OMAP3 ISP driver.
**/
void omap_iommu_restore_ctx(struct device *dev)
{
struct omap_iommu_arch_data *arch_data = dev->archdata.iommu;
struct omap_iommu *obj;
u32 *p;
int i;
if (!arch_data)
return;
while (arch_data->iommu_dev) {
obj = arch_data->iommu_dev;
p = obj->ctx;
for (i = 0; i < (MMU_REG_SIZE / sizeof(u32)); i++) {
iommu_write_reg(obj, p[i], i * sizeof(u32));
dev_dbg(obj->dev, "%s\t[%02d] %08x\n", __func__, i,
p[i]);
}
arch_data++;
}
}
EXPORT_SYMBOL_GPL(omap_iommu_restore_ctx);
static void dra7_cfg_dspsys_mmu(struct omap_iommu *obj, bool enable)
{
u32 val, mask;
if (!obj->syscfg)
return;
mask = (1 << (obj->id * DSP_SYS_MMU_CONFIG_EN_SHIFT));
val = enable ? mask : 0;
regmap_update_bits(obj->syscfg, DSP_SYS_MMU_CONFIG, mask, val);
}
static void __iommu_set_twl(struct omap_iommu *obj, bool on)
{
u32 l = iommu_read_reg(obj, MMU_CNTL);
if (on)
iommu_write_reg(obj, MMU_IRQ_TWL_MASK, MMU_IRQENABLE);
else
iommu_write_reg(obj, MMU_IRQ_TLB_MISS_MASK, MMU_IRQENABLE);
l &= ~MMU_CNTL_MASK;
if (on)
l |= (MMU_CNTL_MMU_EN | MMU_CNTL_TWL_EN);
else
l |= (MMU_CNTL_MMU_EN);
iommu_write_reg(obj, l, MMU_CNTL);
}
static int omap2_iommu_enable(struct omap_iommu *obj)
{
u32 l, pa;
if (!obj->iopgd || !IS_ALIGNED((u32)obj->iopgd, SZ_16K))
return -EINVAL;
pa = virt_to_phys(obj->iopgd);
if (!IS_ALIGNED(pa, SZ_16K))
return -EINVAL;
l = iommu_read_reg(obj, MMU_REVISION);
dev_info(obj->dev, "%s: version %d.%d\n", obj->name,
(l >> 4) & 0xf, l & 0xf);
iommu_write_reg(obj, pa, MMU_TTB);
dra7_cfg_dspsys_mmu(obj, true);
if (obj->has_bus_err_back)
iommu_write_reg(obj, MMU_GP_REG_BUS_ERR_BACK_EN, MMU_GP_REG);
__iommu_set_twl(obj, true);
return 0;
}
static void omap2_iommu_disable(struct omap_iommu *obj)
{
u32 l = iommu_read_reg(obj, MMU_CNTL);
l &= ~MMU_CNTL_MASK;
iommu_write_reg(obj, l, MMU_CNTL);
dra7_cfg_dspsys_mmu(obj, false);
dev_dbg(obj->dev, "%s is shutting down\n", obj->name);
}
static int iommu_enable(struct omap_iommu *obj)
{
int ret;
ret = pm_runtime_get_sync(obj->dev);
if (ret < 0)
pm_runtime_put_noidle(obj->dev);
return ret < 0 ? ret : 0;
}
static void iommu_disable(struct omap_iommu *obj)
{
pm_runtime_put_sync(obj->dev);
}
/*
* TLB operations
*/
static u32 iotlb_cr_to_virt(struct cr_regs *cr)
{
u32 page_size = cr->cam & MMU_CAM_PGSZ_MASK;
u32 mask = get_cam_va_mask(cr->cam & page_size);
return cr->cam & mask;
}
static u32 get_iopte_attr(struct iotlb_entry *e)
{
u32 attr;
attr = e->mixed << 5;
attr |= e->endian;
attr |= e->elsz >> 3;
attr <<= (((e->pgsz == MMU_CAM_PGSZ_4K) ||
(e->pgsz == MMU_CAM_PGSZ_64K)) ? 0 : 6);
return attr;
}
static u32 iommu_report_fault(struct omap_iommu *obj, u32 *da)
{
u32 status, fault_addr;
status = iommu_read_reg(obj, MMU_IRQSTATUS);
status &= MMU_IRQ_MASK;
if (!status) {
*da = 0;
return 0;
}
fault_addr = iommu_read_reg(obj, MMU_FAULT_AD);
*da = fault_addr;
iommu_write_reg(obj, status, MMU_IRQSTATUS);
return status;
}
void iotlb_lock_get(struct omap_iommu *obj, struct iotlb_lock *l)
{
u32 val;
val = iommu_read_reg(obj, MMU_LOCK);
l->base = MMU_LOCK_BASE(val);
l->vict = MMU_LOCK_VICT(val);
}
void iotlb_lock_set(struct omap_iommu *obj, struct iotlb_lock *l)
{
u32 val;
val = (l->base << MMU_LOCK_BASE_SHIFT);
val |= (l->vict << MMU_LOCK_VICT_SHIFT);
iommu_write_reg(obj, val, MMU_LOCK);
}
static void iotlb_read_cr(struct omap_iommu *obj, struct cr_regs *cr)
{
cr->cam = iommu_read_reg(obj, MMU_READ_CAM);
cr->ram = iommu_read_reg(obj, MMU_READ_RAM);
}
static void iotlb_load_cr(struct omap_iommu *obj, struct cr_regs *cr)
{
iommu_write_reg(obj, cr->cam | MMU_CAM_V, MMU_CAM);
iommu_write_reg(obj, cr->ram, MMU_RAM);
iommu_write_reg(obj, 1, MMU_FLUSH_ENTRY);
iommu_write_reg(obj, 1, MMU_LD_TLB);
}
/* only used in iotlb iteration for-loop */
struct cr_regs __iotlb_read_cr(struct omap_iommu *obj, int n)
{
struct cr_regs cr;
struct iotlb_lock l;
iotlb_lock_get(obj, &l);
l.vict = n;
iotlb_lock_set(obj, &l);
iotlb_read_cr(obj, &cr);
return cr;
}
#ifdef PREFETCH_IOTLB
static struct cr_regs *iotlb_alloc_cr(struct omap_iommu *obj,
struct iotlb_entry *e)
{
struct cr_regs *cr;
if (!e)
return NULL;
if (e->da & ~(get_cam_va_mask(e->pgsz))) {
dev_err(obj->dev, "%s:\twrong alignment: %08x\n", __func__,
e->da);
return ERR_PTR(-EINVAL);
}
cr = kmalloc(sizeof(*cr), GFP_KERNEL);
if (!cr)
return ERR_PTR(-ENOMEM);
cr->cam = (e->da & MMU_CAM_VATAG_MASK) | e->prsvd | e->pgsz | e->valid;
cr->ram = e->pa | e->endian | e->elsz | e->mixed;
return cr;
}
/**
* load_iotlb_entry - Set an iommu tlb entry
* @obj: target iommu
* @e: an iommu tlb entry info
**/
static int load_iotlb_entry(struct omap_iommu *obj, struct iotlb_entry *e)
{
int err = 0;
struct iotlb_lock l;
struct cr_regs *cr;
if (!obj || !obj->nr_tlb_entries || !e)
return -EINVAL;
pm_runtime_get_sync(obj->dev);
iotlb_lock_get(obj, &l);
if (l.base == obj->nr_tlb_entries) {
dev_warn(obj->dev, "%s: preserve entries full\n", __func__);
err = -EBUSY;
goto out;
}
if (!e->prsvd) {
int i;
struct cr_regs tmp;
for_each_iotlb_cr(obj, obj->nr_tlb_entries, i, tmp)
if (!iotlb_cr_valid(&tmp))
break;
if (i == obj->nr_tlb_entries) {
dev_dbg(obj->dev, "%s: full: no entry\n", __func__);
err = -EBUSY;
goto out;
}
iotlb_lock_get(obj, &l);
} else {
l.vict = l.base;
iotlb_lock_set(obj, &l);
}
cr = iotlb_alloc_cr(obj, e);
if (IS_ERR(cr)) {
pm_runtime_put_sync(obj->dev);
return PTR_ERR(cr);
}
iotlb_load_cr(obj, cr);
kfree(cr);
if (e->prsvd)
l.base++;
/* increment victim for next tlb load */
if (++l.vict == obj->nr_tlb_entries)
l.vict = l.base;
iotlb_lock_set(obj, &l);
out:
pm_runtime_put_sync(obj->dev);
return err;
}
#else /* !PREFETCH_IOTLB */
static int load_iotlb_entry(struct omap_iommu *obj, struct iotlb_entry *e)
{
return 0;
}
#endif /* !PREFETCH_IOTLB */
static int prefetch_iotlb_entry(struct omap_iommu *obj, struct iotlb_entry *e)
{
return load_iotlb_entry(obj, e);
}
/**
* flush_iotlb_page - Clear an iommu tlb entry
* @obj: target iommu
* @da: iommu device virtual address
*
* Clear an iommu tlb entry which includes 'da' address.
**/
static void flush_iotlb_page(struct omap_iommu *obj, u32 da)
{
int i;
struct cr_regs cr;
pm_runtime_get_sync(obj->dev);
for_each_iotlb_cr(obj, obj->nr_tlb_entries, i, cr) {
u32 start;
size_t bytes;
if (!iotlb_cr_valid(&cr))
continue;
start = iotlb_cr_to_virt(&cr);
bytes = iopgsz_to_bytes(cr.cam & 3);
if ((start <= da) && (da < start + bytes)) {
dev_dbg(obj->dev, "%s: %08x<=%08x(%x)\n",
__func__, start, da, bytes);
iotlb_load_cr(obj, &cr);
iommu_write_reg(obj, 1, MMU_FLUSH_ENTRY);
break;
}
}
pm_runtime_put_sync(obj->dev);
if (i == obj->nr_tlb_entries)
dev_dbg(obj->dev, "%s: no page for %08x\n", __func__, da);
}
/**
* flush_iotlb_all - Clear all iommu tlb entries
* @obj: target iommu
**/
static void flush_iotlb_all(struct omap_iommu *obj)
{
struct iotlb_lock l;
pm_runtime_get_sync(obj->dev);
l.base = 0;
l.vict = 0;
iotlb_lock_set(obj, &l);
iommu_write_reg(obj, 1, MMU_GFLUSH);
pm_runtime_put_sync(obj->dev);
}
/*
* H/W pagetable operations
*/
static void flush_iopte_range(struct device *dev, dma_addr_t dma,
unsigned long offset, int num_entries)
{
size_t size = num_entries * sizeof(u32);
dma_sync_single_range_for_device(dev, dma, offset, size, DMA_TO_DEVICE);
}
static void iopte_free(struct omap_iommu *obj, u32 *iopte, bool dma_valid)
{
dma_addr_t pt_dma;
/* Note: freed iopte's must be clean ready for re-use */
if (iopte) {
if (dma_valid) {
pt_dma = virt_to_phys(iopte);
dma_unmap_single(obj->dev, pt_dma, IOPTE_TABLE_SIZE,
DMA_TO_DEVICE);
}
kmem_cache_free(iopte_cachep, iopte);
}
}
static u32 *iopte_alloc(struct omap_iommu *obj, u32 *iopgd,
dma_addr_t *pt_dma, u32 da)
{
u32 *iopte;
unsigned long offset = iopgd_index(da) * sizeof(da);
/* a table has already existed */
if (*iopgd)
goto pte_ready;
/*
* do the allocation outside the page table lock
*/
spin_unlock(&obj->page_table_lock);
iopte = kmem_cache_zalloc(iopte_cachep, GFP_KERNEL);
spin_lock(&obj->page_table_lock);
if (!*iopgd) {
if (!iopte)
return ERR_PTR(-ENOMEM);
*pt_dma = dma_map_single(obj->dev, iopte, IOPTE_TABLE_SIZE,
DMA_TO_DEVICE);
if (dma_mapping_error(obj->dev, *pt_dma)) {
dev_err(obj->dev, "DMA map error for L2 table\n");
iopte_free(obj, iopte, false);
return ERR_PTR(-ENOMEM);
}
/*
* we rely on dma address and the physical address to be
* the same for mapping the L2 table
*/
if (WARN_ON(*pt_dma != virt_to_phys(iopte))) {
dev_err(obj->dev, "DMA translation error for L2 table\n");
dma_unmap_single(obj->dev, *pt_dma, IOPTE_TABLE_SIZE,
DMA_TO_DEVICE);
iopte_free(obj, iopte, false);
return ERR_PTR(-ENOMEM);
}
*iopgd = virt_to_phys(iopte) | IOPGD_TABLE;
flush_iopte_range(obj->dev, obj->pd_dma, offset, 1);
dev_vdbg(obj->dev, "%s: a new pte:%p\n", __func__, iopte);
} else {
/* We raced, free the reduniovant table */
iopte_free(obj, iopte, false);
}
pte_ready:
iopte = iopte_offset(iopgd, da);
*pt_dma = iopgd_page_paddr(iopgd);
dev_vdbg(obj->dev,
"%s: da:%08x pgd:%p *pgd:%08x pte:%p *pte:%08x\n",
__func__, da, iopgd, *iopgd, iopte, *iopte);
return iopte;
}
static int iopgd_alloc_section(struct omap_iommu *obj, u32 da, u32 pa, u32 prot)
{
u32 *iopgd = iopgd_offset(obj, da);
unsigned long offset = iopgd_index(da) * sizeof(da);
if ((da | pa) & ~IOSECTION_MASK) {
dev_err(obj->dev, "%s: %08x:%08x should aligned on %08lx\n",
__func__, da, pa, IOSECTION_SIZE);
return -EINVAL;
}
*iopgd = (pa & IOSECTION_MASK) | prot | IOPGD_SECTION;
flush_iopte_range(obj->dev, obj->pd_dma, offset, 1);
return 0;
}
static int iopgd_alloc_super(struct omap_iommu *obj, u32 da, u32 pa, u32 prot)
{
u32 *iopgd = iopgd_offset(obj, da);
unsigned long offset = iopgd_index(da) * sizeof(da);
int i;
if ((da | pa) & ~IOSUPER_MASK) {
dev_err(obj->dev, "%s: %08x:%08x should aligned on %08lx\n",
__func__, da, pa, IOSUPER_SIZE);
return -EINVAL;
}
for (i = 0; i < 16; i++)
*(iopgd + i) = (pa & IOSUPER_MASK) | prot | IOPGD_SUPER;
flush_iopte_range(obj->dev, obj->pd_dma, offset, 16);
return 0;
}
static int iopte_alloc_page(struct omap_iommu *obj, u32 da, u32 pa, u32 prot)
{
u32 *iopgd = iopgd_offset(obj, da);
dma_addr_t pt_dma;
u32 *iopte = iopte_alloc(obj, iopgd, &pt_dma, da);
unsigned long offset = iopte_index(da) * sizeof(da);
if (IS_ERR(iopte))
return PTR_ERR(iopte);
*iopte = (pa & IOPAGE_MASK) | prot | IOPTE_SMALL;
flush_iopte_range(obj->dev, pt_dma, offset, 1);
dev_vdbg(obj->dev, "%s: da:%08x pa:%08x pte:%p *pte:%08x\n",
__func__, da, pa, iopte, *iopte);
return 0;
}
static int iopte_alloc_large(struct omap_iommu *obj, u32 da, u32 pa, u32 prot)
{
u32 *iopgd = iopgd_offset(obj, da);
dma_addr_t pt_dma;
u32 *iopte = iopte_alloc(obj, iopgd, &pt_dma, da);
unsigned long offset = iopte_index(da) * sizeof(da);
int i;
if ((da | pa) & ~IOLARGE_MASK) {
dev_err(obj->dev, "%s: %08x:%08x should aligned on %08lx\n",
__func__, da, pa, IOLARGE_SIZE);
return -EINVAL;
}
if (IS_ERR(iopte))
return PTR_ERR(iopte);
for (i = 0; i < 16; i++)
*(iopte + i) = (pa & IOLARGE_MASK) | prot | IOPTE_LARGE;
flush_iopte_range(obj->dev, pt_dma, offset, 16);
return 0;
}
static int
iopgtable_store_entry_core(struct omap_iommu *obj, struct iotlb_entry *e)
{
int (*fn)(struct omap_iommu *, u32, u32, u32);
u32 prot;
int err;
if (!obj || !e)
return -EINVAL;
switch (e->pgsz) {
case MMU_CAM_PGSZ_16M:
fn = iopgd_alloc_super;
break;
case MMU_CAM_PGSZ_1M:
fn = iopgd_alloc_section;
break;
case MMU_CAM_PGSZ_64K:
fn = iopte_alloc_large;
break;
case MMU_CAM_PGSZ_4K:
fn = iopte_alloc_page;
break;
default:
fn = NULL;
break;
}
if (WARN_ON(!fn))
return -EINVAL;
prot = get_iopte_attr(e);
spin_lock(&obj->page_table_lock);
err = fn(obj, e->da, e->pa, prot);
spin_unlock(&obj->page_table_lock);
return err;
}
/**
* omap_iopgtable_store_entry - Make an iommu pte entry
* @obj: target iommu
* @e: an iommu tlb entry info
**/
static int
omap_iopgtable_store_entry(struct omap_iommu *obj, struct iotlb_entry *e)
{
int err;
flush_iotlb_page(obj, e->da);
err = iopgtable_store_entry_core(obj, e);
if (!err)
prefetch_iotlb_entry(obj, e);
return err;
}
/**
* iopgtable_lookup_entry - Lookup an iommu pte entry
* @obj: target iommu
* @da: iommu device virtual address
* @ppgd: iommu pgd entry pointer to be returned
* @ppte: iommu pte entry pointer to be returned
**/
static void
iopgtable_lookup_entry(struct omap_iommu *obj, u32 da, u32 **ppgd, u32 **ppte)
{
u32 *iopgd, *iopte = NULL;
iopgd = iopgd_offset(obj, da);
if (!*iopgd)
goto out;
if (iopgd_is_table(*iopgd))
iopte = iopte_offset(iopgd, da);
out:
*ppgd = iopgd;
*ppte = iopte;
}
static size_t iopgtable_clear_entry_core(struct omap_iommu *obj, u32 da)
{
size_t bytes;
u32 *iopgd = iopgd_offset(obj, da);
int nent = 1;
dma_addr_t pt_dma;
unsigned long pd_offset = iopgd_index(da) * sizeof(da);
unsigned long pt_offset = iopte_index(da) * sizeof(da);
if (!*iopgd)
return 0;
if (iopgd_is_table(*iopgd)) {
int i;
u32 *iopte = iopte_offset(iopgd, da);
bytes = IOPTE_SIZE;
if (*iopte & IOPTE_LARGE) {
nent *= 16;
/* rewind to the 1st entry */
iopte = iopte_offset(iopgd, (da & IOLARGE_MASK));
}
bytes *= nent;
memset(iopte, 0, nent * sizeof(*iopte));
pt_dma = iopgd_page_paddr(iopgd);
flush_iopte_range(obj->dev, pt_dma, pt_offset, nent);
/*
* do table walk to check if this table is necessary or not
*/
iopte = iopte_offset(iopgd, 0);
for (i = 0; i < PTRS_PER_IOPTE; i++)
if (iopte[i])
goto out;
iopte_free(obj, iopte, true);
nent = 1; /* for the next L1 entry */
} else {
bytes = IOPGD_SIZE;
if ((*iopgd & IOPGD_SUPER) == IOPGD_SUPER) {
nent *= 16;
/* rewind to the 1st entry */
iopgd = iopgd_offset(obj, (da & IOSUPER_MASK));
}
bytes *= nent;
}
memset(iopgd, 0, nent * sizeof(*iopgd));
flush_iopte_range(obj->dev, obj->pd_dma, pd_offset, nent);
out:
return bytes;
}
/**
* iopgtable_clear_entry - Remove an iommu pte entry
* @obj: target iommu
* @da: iommu device virtual address
**/
static size_t iopgtable_clear_entry(struct omap_iommu *obj, u32 da)
{
size_t bytes;
spin_lock(&obj->page_table_lock);
bytes = iopgtable_clear_entry_core(obj, da);
flush_iotlb_page(obj, da);
spin_unlock(&obj->page_table_lock);
return bytes;
}
static void iopgtable_clear_entry_all(struct omap_iommu *obj)
{
unsigned long offset;
int i;
spin_lock(&obj->page_table_lock);
for (i = 0; i < PTRS_PER_IOPGD; i++) {
u32 da;
u32 *iopgd;
da = i << IOPGD_SHIFT;
iopgd = iopgd_offset(obj, da);
offset = iopgd_index(da) * sizeof(da);
if (!*iopgd)
continue;
if (iopgd_is_table(*iopgd))
iopte_free(obj, iopte_offset(iopgd, 0), true);
*iopgd = 0;
flush_iopte_range(obj->dev, obj->pd_dma, offset, 1);
}
flush_iotlb_all(obj);
spin_unlock(&obj->page_table_lock);
}
/*
* Device IOMMU generic operations
*/
static irqreturn_t iommu_fault_handler(int irq, void *data)
{
u32 da, errs;
u32 *iopgd, *iopte;
struct omap_iommu *obj = data;
struct iommu_domain *domain = obj->domain;
struct omap_iommu_domain *omap_domain = to_omap_domain(domain);
if (!omap_domain->dev)
return IRQ_NONE;
errs = iommu_report_fault(obj, &da);
if (errs == 0)
return IRQ_HANDLED;
/* Fault callback or TLB/PTE Dynamic loading */
if (!report_iommu_fault(domain, obj->dev, da, 0))
return IRQ_HANDLED;
iommu_write_reg(obj, 0, MMU_IRQENABLE);
iopgd = iopgd_offset(obj, da);
if (!iopgd_is_table(*iopgd)) {
dev_err(obj->dev, "%s: errs:0x%08x da:0x%08x pgd:0x%p *pgd:px%08x\n",
obj->name, errs, da, iopgd, *iopgd);
return IRQ_NONE;
}
iopte = iopte_offset(iopgd, da);
dev_err(obj->dev, "%s: errs:0x%08x da:0x%08x pgd:0x%p *pgd:0x%08x pte:0x%p *pte:0x%08x\n",
obj->name, errs, da, iopgd, *iopgd, iopte, *iopte);
return IRQ_NONE;
}
/**
* omap_iommu_attach() - attach iommu device to an iommu domain
* @obj: target omap iommu device
* @iopgd: page table
**/
static int omap_iommu_attach(struct omap_iommu *obj, u32 *iopgd)
{
int err;
spin_lock(&obj->iommu_lock);
obj->pd_dma = dma_map_single(obj->dev, iopgd, IOPGD_TABLE_SIZE,
DMA_TO_DEVICE);
if (dma_mapping_error(obj->dev, obj->pd_dma)) {
dev_err(obj->dev, "DMA map error for L1 table\n");
err = -ENOMEM;
goto out_err;
}
obj->iopgd = iopgd;
err = iommu_enable(obj);
if (err)
goto out_err;
flush_iotlb_all(obj);
spin_unlock(&obj->iommu_lock);
dev_dbg(obj->dev, "%s: %s\n", __func__, obj->name);
return 0;
out_err:
spin_unlock(&obj->iommu_lock);
return err;
}
/**
* omap_iommu_detach - release iommu device
* @obj: target iommu
**/
static void omap_iommu_detach(struct omap_iommu *obj)
{
if (!obj || IS_ERR(obj))
return;
spin_lock(&obj->iommu_lock);
dma_unmap_single(obj->dev, obj->pd_dma, IOPGD_TABLE_SIZE,
DMA_TO_DEVICE);
obj->pd_dma = 0;
obj->iopgd = NULL;
iommu_disable(obj);
spin_unlock(&obj->iommu_lock);
dev_dbg(obj->dev, "%s: %s\n", __func__, obj->name);
}
static void omap_iommu_save_tlb_entries(struct omap_iommu *obj)
{
struct iotlb_lock lock;
struct cr_regs cr;
struct cr_regs *tmp;
int i;
/* check if there are any locked tlbs to save */
iotlb_lock_get(obj, &lock);
obj->num_cr_ctx = lock.base;
if (!obj->num_cr_ctx)
return;
tmp = obj->cr_ctx;
for_each_iotlb_cr(obj, obj->num_cr_ctx, i, cr)
* tmp++ = cr;
}
static void omap_iommu_restore_tlb_entries(struct omap_iommu *obj)
{
struct iotlb_lock l;
struct cr_regs *tmp;
int i;
/* no locked tlbs to restore */
if (!obj->num_cr_ctx)
return;
l.base = 0;
tmp = obj->cr_ctx;
for (i = 0; i < obj->num_cr_ctx; i++, tmp++) {
l.vict = i;
iotlb_lock_set(obj, &l);
iotlb_load_cr(obj, tmp);
}
l.base = obj->num_cr_ctx;
l.vict = i;
iotlb_lock_set(obj, &l);
}
/**
* omap_iommu_domain_deactivate - deactivate attached iommu devices
* @domain: iommu domain attached to the target iommu device
*
* This API allows the client devices of IOMMU devices to suspend
* the IOMMUs they control at runtime, after they are idled and
* suspended all activity. System Suspend will leverage the PM
* driver late callbacks.
**/
int omap_iommu_domain_deactivate(struct iommu_domain *domain)
{
struct omap_iommu_domain *omap_domain = to_omap_domain(domain);
struct omap_iommu_device *iommu;
struct omap_iommu *oiommu;
int i;
if (!omap_domain->dev)
return 0;
iommu = omap_domain->iommus;
iommu += (omap_domain->num_iommus - 1);
for (i = 0; i < omap_domain->num_iommus; i++, iommu--) {
oiommu = iommu->iommu_dev;
pm_runtime_put_sync(oiommu->dev);
}
return 0;
}
EXPORT_SYMBOL_GPL(omap_iommu_domain_deactivate);
/**
* omap_iommu_domain_activate - activate attached iommu devices
* @domain: iommu domain attached to the target iommu device
*
* This API allows the client devices of IOMMU devices to resume the
* IOMMUs they control at runtime, before they can resume operations.
* System Resume will leverage the PM driver late callbacks.
**/
int omap_iommu_domain_activate(struct iommu_domain *domain)
{
struct omap_iommu_domain *omap_domain = to_omap_domain(domain);
struct omap_iommu_device *iommu;
struct omap_iommu *oiommu;
int i;
if (!omap_domain->dev)
return 0;
iommu = omap_domain->iommus;
for (i = 0; i < omap_domain->num_iommus; i++, iommu++) {
oiommu = iommu->iommu_dev;
pm_runtime_get_sync(oiommu->dev);
}
return 0;
}
EXPORT_SYMBOL_GPL(omap_iommu_domain_activate);
/**
* omap_iommu_runtime_suspend - disable an iommu device
* @dev: iommu device
*
* This function performs all that is necessary to disable an
* IOMMU device, either during final detachment from a client
* device, or during system/runtime suspend of the device. This
* includes programming all the appropriate IOMMU registers, and
* managing the associated omap_hwmod's state and the device's
* reset line. This function also saves the context of any
* locked TLBs if suspending.
**/
static __maybe_unused int omap_iommu_runtime_suspend(struct device *dev)
{
struct platform_device *pdev = to_platform_device(dev);
struct iommu_platform_data *pdata = dev_get_platdata(dev);
struct omap_iommu *obj = to_iommu(dev);
int ret;
/* save the TLBs only during suspend, and not for power down */
if (obj->domain && obj->iopgd)
omap_iommu_save_tlb_entries(obj);
omap2_iommu_disable(obj);
if (pdata && pdata->device_idle)
pdata->device_idle(pdev);
if (pdata && pdata->assert_reset)
pdata->assert_reset(pdev, pdata->reset_name);
if (pdata && pdata->set_pwrdm_constraint) {
ret = pdata->set_pwrdm_constraint(pdev, false, &obj->pwrst);
if (ret) {
dev_warn(obj->dev, "pwrdm_constraint failed to be reset, status = %d\n",
ret);
}
}
return 0;
}
/**
* omap_iommu_runtime_resume - enable an iommu device
* @dev: iommu device
*
* This function performs all that is necessary to enable an
* IOMMU device, either during initial attachment to a client
* device, or during system/runtime resume of the device. This
* includes programming all the appropriate IOMMU registers, and
* managing the associated omap_hwmod's state and the device's
* reset line. The function also restores any locked TLBs if
* resuming after a suspend.
**/
static __maybe_unused int omap_iommu_runtime_resume(struct device *dev)
{
struct platform_device *pdev = to_platform_device(dev);
struct iommu_platform_data *pdata = dev_get_platdata(dev);
struct omap_iommu *obj = to_iommu(dev);
int ret = 0;
if (pdata && pdata->set_pwrdm_constraint) {
ret = pdata->set_pwrdm_constraint(pdev, true, &obj->pwrst);
if (ret) {
dev_warn(obj->dev, "pwrdm_constraint failed to be set, status = %d\n",
ret);
}
}
if (pdata && pdata->deassert_reset) {
ret = pdata->deassert_reset(pdev, pdata->reset_name);
if (ret) {
dev_err(dev, "deassert_reset failed: %d\n", ret);
return ret;
}
}
if (pdata && pdata->device_enable)
pdata->device_enable(pdev);
/* restore the TLBs only during resume, and not for power up */
if (obj->domain)
omap_iommu_restore_tlb_entries(obj);
ret = omap2_iommu_enable(obj);
return ret;
}
/**
* omap_iommu_suspend_prepare - prepare() dev_pm_ops implementation
* @dev: iommu device
*
* This function performs the necessary checks to determine if the IOMMU
* device needs suspending or not. The function checks if the runtime_pm
* status of the device is suspended, and returns 1 in that case. This
* results in the PM core to skip invoking any of the Sleep PM callbacks
* (suspend, suspend_late, resume, resume_early etc).
*/
static int omap_iommu_prepare(struct device *dev)
{
if (pm_runtime_status_suspended(dev))
return 1;
return 0;
}
static bool omap_iommu_can_register(struct platform_device *pdev)
{
struct device_node *np = pdev->dev.of_node;
if (!of_device_is_compatible(np, "ti,dra7-dsp-iommu"))
return true;
/*
* restrict IOMMU core registration only for processor-port MDMA MMUs
* on DRA7 DSPs
*/
if ((!strcmp(dev_name(&pdev->dev), "40d01000.mmu")) ||
(!strcmp(dev_name(&pdev->dev), "41501000.mmu")))
return true;
return false;
}
static int omap_iommu_dra7_get_dsp_system_cfg(struct platform_device *pdev,
struct omap_iommu *obj)
{
struct device_node *np = pdev->dev.of_node;
int ret;
if (!of_device_is_compatible(np, "ti,dra7-dsp-iommu"))
return 0;
if (!of_property_read_bool(np, "ti,syscon-mmuconfig")) {
dev_err(&pdev->dev, "ti,syscon-mmuconfig property is missing\n");
return -EINVAL;
}
obj->syscfg =
syscon_regmap_lookup_by_phandle(np, "ti,syscon-mmuconfig");
if (IS_ERR(obj->syscfg)) {
/* can fail with -EPROBE_DEFER */
ret = PTR_ERR(obj->syscfg);
return ret;
}
if (of_property_read_u32_index(np, "ti,syscon-mmuconfig", 1,
&obj->id)) {
dev_err(&pdev->dev, "couldn't get the IOMMU instance id within subsystem\n");
return -EINVAL;
}
if (obj->id != 0 && obj->id != 1) {
dev_err(&pdev->dev, "invalid IOMMU instance id\n");
return -EINVAL;
}
return 0;
}
/*
* OMAP Device MMU(IOMMU) detection
*/
static int omap_iommu_probe(struct platform_device *pdev)
{
int err = -ENODEV;
int irq;
struct omap_iommu *obj;
struct resource *res;
struct device_node *of = pdev->dev.of_node;
struct orphan_dev *orphan_dev, *tmp;
if (!of) {
pr_err("%s: only DT-based devices are supported\n", __func__);
return -ENODEV;
}
obj = devm_kzalloc(&pdev->dev, sizeof(*obj) + MMU_REG_SIZE, GFP_KERNEL);
if (!obj)
return -ENOMEM;
/*
* self-manage the ordering dependencies between omap_device_enable/idle
* and omap_device_assert/deassert_hardreset API
*/
if (pdev->dev.pm_domain) {
dev_dbg(&pdev->dev, "device pm_domain is being reset\n");
pdev->dev.pm_domain = NULL;
}
obj->name = dev_name(&pdev->dev);
obj->nr_tlb_entries = 32;
err = of_property_read_u32(of, "ti,#tlb-entries", &obj->nr_tlb_entries);
if (err && err != -EINVAL)
return err;
if (obj->nr_tlb_entries != 32 && obj->nr_tlb_entries != 8)
return -EINVAL;
if (of_find_property(of, "ti,iommu-bus-err-back", NULL))
obj->has_bus_err_back = MMU_GP_REG_BUS_ERR_BACK_EN;
obj->dev = &pdev->dev;
obj->ctx = (void *)obj + sizeof(*obj);
obj->cr_ctx = devm_kzalloc(&pdev->dev,
sizeof(*obj->cr_ctx) * obj->nr_tlb_entries,
GFP_KERNEL);
if (!obj->cr_ctx)
return -ENOMEM;
spin_lock_init(&obj->iommu_lock);
spin_lock_init(&obj->page_table_lock);
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
obj->regbase = devm_ioremap_resource(obj->dev, res);
if (IS_ERR(obj->regbase))
return PTR_ERR(obj->regbase);
err = omap_iommu_dra7_get_dsp_system_cfg(pdev, obj);
if (err)
return err;
irq = platform_get_irq(pdev, 0);
if (irq < 0)
return -ENODEV;
err = devm_request_irq(obj->dev, irq, iommu_fault_handler, IRQF_SHARED,
dev_name(obj->dev), obj);
if (err < 0)
return err;
platform_set_drvdata(pdev, obj);
if (omap_iommu_can_register(pdev)) {
obj->group = iommu_group_alloc();
if (IS_ERR(obj->group))
return PTR_ERR(obj->group);
err = iommu_device_sysfs_add(&obj->iommu, obj->dev, NULL,
obj->name);
if (err)
goto out_group;
iommu_device_set_ops(&obj->iommu, &omap_iommu_ops);
err = iommu_device_register(&obj->iommu);
if (err)
goto out_sysfs;
}
pm_runtime_enable(obj->dev);
omap_iommu_debugfs_add(obj);
dev_info(&pdev->dev, "%s registered\n", obj->name);
list_for_each_entry_safe(orphan_dev, tmp, &orphan_dev_list, node) {
err = _omap_iommu_add_device(orphan_dev->dev);
if (!err) {
list_del(&orphan_dev->node);
kfree(orphan_dev);
}
}
return 0;
out_sysfs:
iommu_device_sysfs_remove(&obj->iommu);
out_group:
iommu_group_put(obj->group);
return err;
}
static int omap_iommu_remove(struct platform_device *pdev)
{
struct omap_iommu *obj = platform_get_drvdata(pdev);
if (obj->group) {
iommu_group_put(obj->group);
obj->group = NULL;
iommu_device_sysfs_remove(&obj->iommu);
iommu_device_unregister(&obj->iommu);
}
omap_iommu_debugfs_remove(obj);
pm_runtime_disable(obj->dev);
dev_info(&pdev->dev, "%s removed\n", obj->name);
return 0;
}
static const struct dev_pm_ops omap_iommu_pm_ops = {
.prepare = omap_iommu_prepare,
SET_LATE_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
pm_runtime_force_resume)
SET_RUNTIME_PM_OPS(omap_iommu_runtime_suspend,
omap_iommu_runtime_resume, NULL)
};
static const struct of_device_id omap_iommu_of_match[] = {
{ .compatible = "ti,omap2-iommu" },
{ .compatible = "ti,omap4-iommu" },
{ .compatible = "ti,dra7-iommu" },
{ .compatible = "ti,dra7-dsp-iommu" },
{},
};
static struct platform_driver omap_iommu_driver = {
.probe = omap_iommu_probe,
.remove = omap_iommu_remove,
.driver = {
.name = "omap-iommu",
.pm = &omap_iommu_pm_ops,
.of_match_table = of_match_ptr(omap_iommu_of_match),
},
};
static u32 iotlb_init_entry(struct iotlb_entry *e, u32 da, u32 pa, int pgsz)
{
memset(e, 0, sizeof(*e));
e->da = da;
e->pa = pa;
e->valid = MMU_CAM_V;
e->pgsz = pgsz;
e->endian = MMU_RAM_ENDIAN_LITTLE;
e->elsz = MMU_RAM_ELSZ_8;
e->mixed = 0;
return iopgsz_to_bytes(e->pgsz);
}
static int omap_iommu_map(struct iommu_domain *domain, unsigned long da,
phys_addr_t pa, size_t bytes, int prot, gfp_t gfp)
{
struct omap_iommu_domain *omap_domain = to_omap_domain(domain);
struct device *dev = omap_domain->dev;
struct omap_iommu_device *iommu;
struct omap_iommu *oiommu;
struct iotlb_entry e;
int omap_pgsz;
u32 ret = -EINVAL;
int i;
omap_pgsz = bytes_to_iopgsz(bytes);
if (omap_pgsz < 0) {
dev_err(dev, "invalid size to map: %d\n", bytes);
return -EINVAL;
}
dev_dbg(dev, "mapping da 0x%lx to pa %pa size 0x%x\n", da, &pa, bytes);
iotlb_init_entry(&e, da, pa, omap_pgsz);
iommu = omap_domain->iommus;
for (i = 0; i < omap_domain->num_iommus; i++, iommu++) {
oiommu = iommu->iommu_dev;
ret = omap_iopgtable_store_entry(oiommu, &e);
if (ret) {
dev_err(dev, "omap_iopgtable_store_entry failed: %d\n",
ret);
break;
}
}
if (ret) {
while (i--) {
iommu--;
oiommu = iommu->iommu_dev;
iopgtable_clear_entry(oiommu, da);
}
}
return ret;
}
static size_t omap_iommu_unmap(struct iommu_domain *domain, unsigned long da,
size_t size, struct iommu_iotlb_gather *gather)
{
struct omap_iommu_domain *omap_domain = to_omap_domain(domain);
struct device *dev = omap_domain->dev;
struct omap_iommu_device *iommu;
struct omap_iommu *oiommu;
bool error = false;
size_t bytes = 0;
int i;
dev_dbg(dev, "unmapping da 0x%lx size %u\n", da, size);
iommu = omap_domain->iommus;
for (i = 0; i < omap_domain->num_iommus; i++, iommu++) {
oiommu = iommu->iommu_dev;
bytes = iopgtable_clear_entry(oiommu, da);
if (!bytes)
error = true;
}
/*
* simplify return - we are only checking if any of the iommus
* reported an error, but not if all of them are unmapping the
* same number of entries. This should not occur due to the
* mirror programming.
*/
return error ? 0 : bytes;
}
static int omap_iommu_count(struct device *dev)
{
struct omap_iommu_arch_data *arch_data = dev->archdata.iommu;
int count = 0;
while (arch_data->iommu_dev) {
count++;
arch_data++;
}
return count;
}
/* caller should call cleanup if this function fails */
static int omap_iommu_attach_init(struct device *dev,
struct omap_iommu_domain *odomain)
{
struct omap_iommu_device *iommu;
int i;
odomain->num_iommus = omap_iommu_count(dev);
if (!odomain->num_iommus)
return -EINVAL;
odomain->iommus = kcalloc(odomain->num_iommus, sizeof(*iommu),
GFP_ATOMIC);
if (!odomain->iommus)
return -ENOMEM;
iommu = odomain->iommus;
for (i = 0; i < odomain->num_iommus; i++, iommu++) {
iommu->pgtable = kzalloc(IOPGD_TABLE_SIZE, GFP_ATOMIC);
if (!iommu->pgtable)
return -ENOMEM;
/*
* should never fail, but please keep this around to ensure
* we keep the hardware happy
*/
if (WARN_ON(!IS_ALIGNED((long)iommu->pgtable,
IOPGD_TABLE_SIZE)))
return -EINVAL;
}
return 0;
}
static void omap_iommu_detach_fini(struct omap_iommu_domain *odomain)
{
int i;
struct omap_iommu_device *iommu = odomain->iommus;
for (i = 0; iommu && i < odomain->num_iommus; i++, iommu++)
kfree(iommu->pgtable);
kfree(odomain->iommus);
odomain->num_iommus = 0;
odomain->iommus = NULL;
}
static int
omap_iommu_attach_dev(struct iommu_domain *domain, struct device *dev)
{
struct omap_iommu_domain *omap_domain = to_omap_domain(domain);
struct omap_iommu_arch_data *arch_data = dev->archdata.iommu;
struct omap_iommu_device *iommu;
struct omap_iommu *oiommu;
int ret = 0;
int i;
if (!arch_data || !arch_data->iommu_dev) {
dev_err(dev, "device doesn't have an associated iommu\n");
return -EINVAL;
}
spin_lock(&omap_domain->lock);
/* only a single client device can be attached to a domain */
if (omap_domain->dev) {
dev_err(dev, "iommu domain is already attached\n");
ret = -EBUSY;
goto out;
}
ret = omap_iommu_attach_init(dev, omap_domain);
if (ret) {
dev_err(dev, "failed to allocate required iommu data %d\n",
ret);
goto init_fail;
}
iommu = omap_domain->iommus;
for (i = 0; i < omap_domain->num_iommus; i++, iommu++, arch_data++) {
/* configure and enable the omap iommu */
oiommu = arch_data->iommu_dev;
ret = omap_iommu_attach(oiommu, iommu->pgtable);
if (ret) {
dev_err(dev, "can't get omap iommu: %d\n", ret);
goto attach_fail;
}
oiommu->domain = domain;
iommu->iommu_dev = oiommu;
}
omap_domain->dev = dev;
goto out;
attach_fail:
while (i--) {
iommu--;
arch_data--;
oiommu = iommu->iommu_dev;
omap_iommu_detach(oiommu);
iommu->iommu_dev = NULL;
oiommu->domain = NULL;
}
init_fail:
omap_iommu_detach_fini(omap_domain);
out:
spin_unlock(&omap_domain->lock);
return ret;
}
static void _omap_iommu_detach_dev(struct omap_iommu_domain *omap_domain,
struct device *dev)
{
struct omap_iommu_arch_data *arch_data = dev->archdata.iommu;
struct omap_iommu_device *iommu = omap_domain->iommus;
struct omap_iommu *oiommu;
int i;
if (!omap_domain->dev) {
dev_err(dev, "domain has no attached device\n");
return;
}
/* only a single device is supported per domain for now */
if (omap_domain->dev != dev) {
dev_err(dev, "invalid attached device\n");
return;
}
/*
* cleanup in the reverse order of attachment - this addresses
* any h/w dependencies between multiple instances, if any
*/
iommu += (omap_domain->num_iommus - 1);
arch_data += (omap_domain->num_iommus - 1);
for (i = 0; i < omap_domain->num_iommus; i++, iommu--, arch_data--) {
oiommu = iommu->iommu_dev;
iopgtable_clear_entry_all(oiommu);
omap_iommu_detach(oiommu);
iommu->iommu_dev = NULL;
oiommu->domain = NULL;
}
omap_iommu_detach_fini(omap_domain);
omap_domain->dev = NULL;
}
static void omap_iommu_detach_dev(struct iommu_domain *domain,
struct device *dev)
{
struct omap_iommu_domain *omap_domain = to_omap_domain(domain);
spin_lock(&omap_domain->lock);
_omap_iommu_detach_dev(omap_domain, dev);
spin_unlock(&omap_domain->lock);
}
static struct iommu_domain *omap_iommu_domain_alloc(unsigned type)
{
struct omap_iommu_domain *omap_domain;
if (type != IOMMU_DOMAIN_UNMANAGED)
return NULL;
omap_domain = kzalloc(sizeof(*omap_domain), GFP_KERNEL);
if (!omap_domain)
return NULL;
spin_lock_init(&omap_domain->lock);
omap_domain->domain.geometry.aperture_start = 0;
omap_domain->domain.geometry.aperture_end = (1ULL << 32) - 1;
omap_domain->domain.geometry.force_aperture = true;
return &omap_domain->domain;
}
static void omap_iommu_domain_free(struct iommu_domain *domain)
{
struct omap_iommu_domain *omap_domain = to_omap_domain(domain);
/*
* An iommu device is still attached
* (currently, only one device can be attached) ?
*/
if (omap_domain->dev)
_omap_iommu_detach_dev(omap_domain, omap_domain->dev);
kfree(omap_domain);
}
static phys_addr_t omap_iommu_iova_to_phys(struct iommu_domain *domain,
dma_addr_t da)
{
struct omap_iommu_domain *omap_domain = to_omap_domain(domain);
struct omap_iommu_device *iommu = omap_domain->iommus;
struct omap_iommu *oiommu = iommu->iommu_dev;
struct device *dev = oiommu->dev;
u32 *pgd, *pte;
phys_addr_t ret = 0;
/*
* all the iommus within the domain will have identical programming,
* so perform the lookup using just the first iommu
*/
iopgtable_lookup_entry(oiommu, da, &pgd, &pte);
if (pte) {
if (iopte_is_small(*pte))
ret = omap_iommu_translate(*pte, da, IOPTE_MASK);
else if (iopte_is_large(*pte))
ret = omap_iommu_translate(*pte, da, IOLARGE_MASK);
else
dev_err(dev, "bogus pte 0x%x, da 0x%llx", *pte,
(unsigned long long)da);
} else {
if (iopgd_is_section(*pgd))
ret = omap_iommu_translate(*pgd, da, IOSECTION_MASK);
else if (iopgd_is_super(*pgd))
ret = omap_iommu_translate(*pgd, da, IOSUPER_MASK);
else
dev_err(dev, "bogus pgd 0x%x, da 0x%llx", *pgd,
(unsigned long long)da);
}
return ret;
}
static int _omap_iommu_add_device(struct device *dev)
{
struct omap_iommu_arch_data *arch_data, *tmp;
struct omap_iommu *oiommu;
struct iommu_group *group;
struct device_node *np;
struct platform_device *pdev;
int num_iommus, i;
int ret;
struct orphan_dev *orphan_dev;
unsigned long flags;
/*
* Allocate the archdata iommu structure for DT-based devices.
*
* TODO: Simplify this when removing non-DT support completely from the
* IOMMU users.
*/
if (!dev->of_node)
return 0;
/*
* retrieve the count of IOMMU nodes using phandle size as element size
* since #iommu-cells = 0 for OMAP
*/
num_iommus = of_property_count_elems_of_size(dev->of_node, "iommus",
sizeof(phandle));
if (num_iommus < 0)
return 0;
arch_data = kcalloc(num_iommus + 1, sizeof(*arch_data), GFP_KERNEL);
if (!arch_data)
return -ENOMEM;
for (i = 0, tmp = arch_data; i < num_iommus; i++, tmp++) {
np = of_parse_phandle(dev->of_node, "iommus", i);
if (!np) {
kfree(arch_data);
return -EINVAL;
}
pdev = of_find_device_by_node(np);
if (!pdev) {
of_node_put(np);
kfree(arch_data);
spin_lock_irqsave(&orphan_lock, flags);
list_for_each_entry(orphan_dev, &orphan_dev_list,
node) {
if (orphan_dev->dev == dev)
break;
}
spin_unlock_irqrestore(&orphan_lock, flags);
if (orphan_dev && orphan_dev->dev == dev)
return -EPROBE_DEFER;
orphan_dev = kzalloc(sizeof(*orphan_dev), GFP_KERNEL);
orphan_dev->dev = dev;
spin_lock_irqsave(&orphan_lock, flags);
list_add(&orphan_dev->node, &orphan_dev_list);
spin_unlock_irqrestore(&orphan_lock, flags);
return -EPROBE_DEFER;
}
oiommu = platform_get_drvdata(pdev);
if (!oiommu) {
of_node_put(np);
kfree(arch_data);
return -EINVAL;
}
tmp->iommu_dev = oiommu;
tmp->dev = &pdev->dev;
of_node_put(np);
}
/*
* use the first IOMMU alone for the sysfs device linking.
* TODO: Evaluate if a single iommu_group needs to be
* maintained for both IOMMUs
*/
oiommu = arch_data->iommu_dev;
ret = iommu_device_link(&oiommu->iommu, dev);
if (ret) {
kfree(arch_data);
return ret;
}
dev->archdata.iommu = arch_data;
/*
* IOMMU group initialization calls into omap_iommu_device_group, which
* needs a valid dev->archdata.iommu pointer
*/
group = iommu_group_get_for_dev(dev);
if (IS_ERR(group)) {
iommu_device_unlink(&oiommu->iommu, dev);
dev->archdata.iommu = NULL;
kfree(arch_data);
return PTR_ERR(group);
}
iommu_group_put(group);
return 0;
}
static int omap_iommu_add_device(struct device *dev)
{
int ret;
ret = _omap_iommu_add_device(dev);
if (ret == -EPROBE_DEFER)
return 0;
return ret;
}
static void omap_iommu_remove_device(struct device *dev)
{
struct omap_iommu_arch_data *arch_data = dev->archdata.iommu;
if (!dev->of_node || !arch_data)
return;
iommu_device_unlink(&arch_data->iommu_dev->iommu, dev);
iommu_group_remove_device(dev);
dev->archdata.iommu = NULL;
kfree(arch_data);
}
static struct iommu_group *omap_iommu_device_group(struct device *dev)
{
struct omap_iommu_arch_data *arch_data = dev->archdata.iommu;
struct iommu_group *group = ERR_PTR(-EINVAL);
if (arch_data->iommu_dev)
group = iommu_group_ref_get(arch_data->iommu_dev->group);
return group;
}
static const struct iommu_ops omap_iommu_ops = {
.domain_alloc = omap_iommu_domain_alloc,
.domain_free = omap_iommu_domain_free,
.attach_dev = omap_iommu_attach_dev,
.detach_dev = omap_iommu_detach_dev,
.map = omap_iommu_map,
.unmap = omap_iommu_unmap,
.iova_to_phys = omap_iommu_iova_to_phys,
.add_device = omap_iommu_add_device,
.remove_device = omap_iommu_remove_device,
.device_group = omap_iommu_device_group,
.pgsize_bitmap = OMAP_IOMMU_PGSIZES,
};
static int __init omap_iommu_init(void)
{
struct kmem_cache *p;
const slab_flags_t flags = SLAB_HWCACHE_ALIGN;
size_t align = 1 << 10; /* L2 pagetable alignement */
struct device_node *np;
int ret;
np = of_find_matching_node(NULL, omap_iommu_of_match);
if (!np)
return 0;
of_node_put(np);
p = kmem_cache_create("iopte_cache", IOPTE_TABLE_SIZE, align, flags,
NULL);
if (!p)
return -ENOMEM;
iopte_cachep = p;
omap_iommu_debugfs_init();
ret = platform_driver_register(&omap_iommu_driver);
if (ret) {
pr_err("%s: failed to register driver\n", __func__);
goto fail_driver;
}
ret = bus_set_iommu(&platform_bus_type, &omap_iommu_ops);
if (ret)
goto fail_bus;
return 0;
fail_bus:
platform_driver_unregister(&omap_iommu_driver);
fail_driver:
kmem_cache_destroy(iopte_cachep);
return ret;
}
subsys_initcall(omap_iommu_init);
/* must be ready before omap3isp is probed */