linux-sg2042/drivers/clk/sunxi/clk-mod0.c

385 lines
9.2 KiB
C

/*
* Copyright 2013 Emilio López
*
* Emilio López <emilio@elopez.com.ar>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/clk.h>
#include <linux/clk-provider.h>
#include <linux/of_address.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
#include "clk-factors.h"
/**
* sun4i_a10_get_mod0_factors() - calculates m, n factors for MOD0-style clocks
* MOD0 rate is calculated as follows
* rate = (parent_rate >> p) / (m + 1);
*/
static void sun4i_a10_get_mod0_factors(struct factors_request *req)
{
u8 div, calcm, calcp;
/* These clocks can only divide, so we will never be able to achieve
* frequencies higher than the parent frequency */
if (req->rate > req->parent_rate)
req->rate = req->parent_rate;
div = DIV_ROUND_UP(req->parent_rate, req->rate);
if (div < 16)
calcp = 0;
else if (div / 2 < 16)
calcp = 1;
else if (div / 4 < 16)
calcp = 2;
else
calcp = 3;
calcm = DIV_ROUND_UP(div, 1 << calcp);
req->rate = (req->parent_rate >> calcp) / calcm;
req->m = calcm - 1;
req->p = calcp;
}
/* user manual says "n" but it's really "p" */
static const struct clk_factors_config sun4i_a10_mod0_config = {
.mshift = 0,
.mwidth = 4,
.pshift = 16,
.pwidth = 2,
};
static const struct factors_data sun4i_a10_mod0_data = {
.enable = 31,
.mux = 24,
.muxmask = BIT(1) | BIT(0),
.table = &sun4i_a10_mod0_config,
.getter = sun4i_a10_get_mod0_factors,
};
static DEFINE_SPINLOCK(sun4i_a10_mod0_lock);
static void __init sun4i_a10_mod0_setup(struct device_node *node)
{
void __iomem *reg;
reg = of_iomap(node, 0);
if (!reg) {
/*
* This happens with mod0 clk nodes instantiated through
* mfd, as those do not have their resources assigned at
* CLK_OF_DECLARE time yet, so do not print an error.
*/
return;
}
sunxi_factors_register(node, &sun4i_a10_mod0_data,
&sun4i_a10_mod0_lock, reg);
}
CLK_OF_DECLARE_DRIVER(sun4i_a10_mod0, "allwinner,sun4i-a10-mod0-clk",
sun4i_a10_mod0_setup);
static int sun4i_a10_mod0_clk_probe(struct platform_device *pdev)
{
struct device_node *np = pdev->dev.of_node;
struct resource *r;
void __iomem *reg;
if (!np)
return -ENODEV;
r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
reg = devm_ioremap_resource(&pdev->dev, r);
if (IS_ERR(reg))
return PTR_ERR(reg);
sunxi_factors_register(np, &sun4i_a10_mod0_data,
&sun4i_a10_mod0_lock, reg);
return 0;
}
static const struct of_device_id sun4i_a10_mod0_clk_dt_ids[] = {
{ .compatible = "allwinner,sun4i-a10-mod0-clk" },
{ /* sentinel */ }
};
static struct platform_driver sun4i_a10_mod0_clk_driver = {
.driver = {
.name = "sun4i-a10-mod0-clk",
.of_match_table = sun4i_a10_mod0_clk_dt_ids,
},
.probe = sun4i_a10_mod0_clk_probe,
};
builtin_platform_driver(sun4i_a10_mod0_clk_driver);
static const struct factors_data sun9i_a80_mod0_data __initconst = {
.enable = 31,
.mux = 24,
.muxmask = BIT(3) | BIT(2) | BIT(1) | BIT(0),
.table = &sun4i_a10_mod0_config,
.getter = sun4i_a10_get_mod0_factors,
};
static void __init sun9i_a80_mod0_setup(struct device_node *node)
{
void __iomem *reg;
reg = of_io_request_and_map(node, 0, of_node_full_name(node));
if (IS_ERR(reg)) {
pr_err("Could not get registers for mod0-clk: %s\n",
node->name);
return;
}
sunxi_factors_register(node, &sun9i_a80_mod0_data,
&sun4i_a10_mod0_lock, reg);
}
CLK_OF_DECLARE(sun9i_a80_mod0, "allwinner,sun9i-a80-mod0-clk", sun9i_a80_mod0_setup);
static DEFINE_SPINLOCK(sun5i_a13_mbus_lock);
static void __init sun5i_a13_mbus_setup(struct device_node *node)
{
void __iomem *reg;
reg = of_iomap(node, 0);
if (!reg) {
pr_err("Could not get registers for a13-mbus-clk\n");
return;
}
/* The MBUS clocks needs to be always enabled */
sunxi_factors_register_critical(node, &sun4i_a10_mod0_data,
&sun5i_a13_mbus_lock, reg);
}
CLK_OF_DECLARE(sun5i_a13_mbus, "allwinner,sun5i-a13-mbus-clk", sun5i_a13_mbus_setup);
struct mmc_phase {
struct clk_hw hw;
u8 offset;
void __iomem *reg;
spinlock_t *lock;
};
#define to_mmc_phase(_hw) container_of(_hw, struct mmc_phase, hw)
static int mmc_get_phase(struct clk_hw *hw)
{
struct clk *mmc, *mmc_parent, *clk = hw->clk;
struct mmc_phase *phase = to_mmc_phase(hw);
unsigned int mmc_rate, mmc_parent_rate;
u16 step, mmc_div;
u32 value;
u8 delay;
value = readl(phase->reg);
delay = (value >> phase->offset) & 0x3;
if (!delay)
return 180;
/* Get the main MMC clock */
mmc = clk_get_parent(clk);
if (!mmc)
return -EINVAL;
/* And its rate */
mmc_rate = clk_get_rate(mmc);
if (!mmc_rate)
return -EINVAL;
/* Now, get the MMC parent (most likely some PLL) */
mmc_parent = clk_get_parent(mmc);
if (!mmc_parent)
return -EINVAL;
/* And its rate */
mmc_parent_rate = clk_get_rate(mmc_parent);
if (!mmc_parent_rate)
return -EINVAL;
/* Get MMC clock divider */
mmc_div = mmc_parent_rate / mmc_rate;
step = DIV_ROUND_CLOSEST(360, mmc_div);
return delay * step;
}
static int mmc_set_phase(struct clk_hw *hw, int degrees)
{
struct clk *mmc, *mmc_parent, *clk = hw->clk;
struct mmc_phase *phase = to_mmc_phase(hw);
unsigned int mmc_rate, mmc_parent_rate;
unsigned long flags;
u32 value;
u8 delay;
/* Get the main MMC clock */
mmc = clk_get_parent(clk);
if (!mmc)
return -EINVAL;
/* And its rate */
mmc_rate = clk_get_rate(mmc);
if (!mmc_rate)
return -EINVAL;
/* Now, get the MMC parent (most likely some PLL) */
mmc_parent = clk_get_parent(mmc);
if (!mmc_parent)
return -EINVAL;
/* And its rate */
mmc_parent_rate = clk_get_rate(mmc_parent);
if (!mmc_parent_rate)
return -EINVAL;
if (degrees != 180) {
u16 step, mmc_div;
/* Get MMC clock divider */
mmc_div = mmc_parent_rate / mmc_rate;
/*
* We can only outphase the clocks by multiple of the
* PLL's period.
*
* Since the MMC clock in only a divider, and the
* formula to get the outphasing in degrees is deg =
* 360 * delta / period
*
* If we simplify this formula, we can see that the
* only thing that we're concerned about is the number
* of period we want to outphase our clock from, and
* the divider set by the MMC clock.
*/
step = DIV_ROUND_CLOSEST(360, mmc_div);
delay = DIV_ROUND_CLOSEST(degrees, step);
} else {
delay = 0;
}
spin_lock_irqsave(phase->lock, flags);
value = readl(phase->reg);
value &= ~GENMASK(phase->offset + 3, phase->offset);
value |= delay << phase->offset;
writel(value, phase->reg);
spin_unlock_irqrestore(phase->lock, flags);
return 0;
}
static const struct clk_ops mmc_clk_ops = {
.get_phase = mmc_get_phase,
.set_phase = mmc_set_phase,
};
/*
* sunxi_mmc_setup - Common setup function for mmc module clocks
*
* The only difference between module clocks on different platforms is the
* width of the mux register bits and the valid values, which are passed in
* through struct factors_data. The phase clocks parts are identical.
*/
static void __init sunxi_mmc_setup(struct device_node *node,
const struct factors_data *data,
spinlock_t *lock)
{
struct clk_onecell_data *clk_data;
const char *parent;
void __iomem *reg;
int i;
reg = of_io_request_and_map(node, 0, of_node_full_name(node));
if (IS_ERR(reg)) {
pr_err("Couldn't map the %s clock registers\n", node->name);
return;
}
clk_data = kmalloc(sizeof(*clk_data), GFP_KERNEL);
if (!clk_data)
return;
clk_data->clks = kcalloc(3, sizeof(*clk_data->clks), GFP_KERNEL);
if (!clk_data->clks)
goto err_free_data;
clk_data->clk_num = 3;
clk_data->clks[0] = sunxi_factors_register(node, data, lock, reg);
if (!clk_data->clks[0])
goto err_free_clks;
parent = __clk_get_name(clk_data->clks[0]);
for (i = 1; i < 3; i++) {
struct clk_init_data init = {
.num_parents = 1,
.parent_names = &parent,
.ops = &mmc_clk_ops,
};
struct mmc_phase *phase;
phase = kmalloc(sizeof(*phase), GFP_KERNEL);
if (!phase)
continue;
phase->hw.init = &init;
phase->reg = reg;
phase->lock = lock;
if (i == 1)
phase->offset = 8;
else
phase->offset = 20;
if (of_property_read_string_index(node, "clock-output-names",
i, &init.name))
init.name = node->name;
clk_data->clks[i] = clk_register(NULL, &phase->hw);
if (IS_ERR(clk_data->clks[i])) {
kfree(phase);
continue;
}
}
of_clk_add_provider(node, of_clk_src_onecell_get, clk_data);
return;
err_free_clks:
kfree(clk_data->clks);
err_free_data:
kfree(clk_data);
}
static DEFINE_SPINLOCK(sun4i_a10_mmc_lock);
static void __init sun4i_a10_mmc_setup(struct device_node *node)
{
sunxi_mmc_setup(node, &sun4i_a10_mod0_data, &sun4i_a10_mmc_lock);
}
CLK_OF_DECLARE(sun4i_a10_mmc, "allwinner,sun4i-a10-mmc-clk", sun4i_a10_mmc_setup);
static DEFINE_SPINLOCK(sun9i_a80_mmc_lock);
static void __init sun9i_a80_mmc_setup(struct device_node *node)
{
sunxi_mmc_setup(node, &sun9i_a80_mod0_data, &sun9i_a80_mmc_lock);
}
CLK_OF_DECLARE(sun9i_a80_mmc, "allwinner,sun9i-a80-mmc-clk", sun9i_a80_mmc_setup);