linux-sg2042/drivers/mtd/onenand/samsung.c

1013 lines
25 KiB
C

/*
* Samsung S3C64XX/S5PC1XX OneNAND driver
*
* Copyright © 2008-2010 Samsung Electronics
* Kyungmin Park <kyungmin.park@samsung.com>
* Marek Szyprowski <m.szyprowski@samsung.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* Implementation:
* S3C64XX: emulate the pseudo BufferRAM
* S5PC110: use DMA
*/
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/onenand.h>
#include <linux/mtd/partitions.h>
#include <linux/dma-mapping.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include "samsung.h"
enum soc_type {
TYPE_S3C6400,
TYPE_S3C6410,
TYPE_S5PC110,
};
#define ONENAND_ERASE_STATUS 0x00
#define ONENAND_MULTI_ERASE_SET 0x01
#define ONENAND_ERASE_START 0x03
#define ONENAND_UNLOCK_START 0x08
#define ONENAND_UNLOCK_END 0x09
#define ONENAND_LOCK_START 0x0A
#define ONENAND_LOCK_END 0x0B
#define ONENAND_LOCK_TIGHT_START 0x0C
#define ONENAND_LOCK_TIGHT_END 0x0D
#define ONENAND_UNLOCK_ALL 0x0E
#define ONENAND_OTP_ACCESS 0x12
#define ONENAND_SPARE_ACCESS_ONLY 0x13
#define ONENAND_MAIN_ACCESS_ONLY 0x14
#define ONENAND_ERASE_VERIFY 0x15
#define ONENAND_MAIN_SPARE_ACCESS 0x16
#define ONENAND_PIPELINE_READ 0x4000
#define MAP_00 (0x0)
#define MAP_01 (0x1)
#define MAP_10 (0x2)
#define MAP_11 (0x3)
#define S3C64XX_CMD_MAP_SHIFT 24
#define S3C6400_FBA_SHIFT 10
#define S3C6400_FPA_SHIFT 4
#define S3C6400_FSA_SHIFT 2
#define S3C6410_FBA_SHIFT 12
#define S3C6410_FPA_SHIFT 6
#define S3C6410_FSA_SHIFT 4
/* S5PC110 specific definitions */
#define S5PC110_DMA_SRC_ADDR 0x400
#define S5PC110_DMA_SRC_CFG 0x404
#define S5PC110_DMA_DST_ADDR 0x408
#define S5PC110_DMA_DST_CFG 0x40C
#define S5PC110_DMA_TRANS_SIZE 0x414
#define S5PC110_DMA_TRANS_CMD 0x418
#define S5PC110_DMA_TRANS_STATUS 0x41C
#define S5PC110_DMA_TRANS_DIR 0x420
#define S5PC110_INTC_DMA_CLR 0x1004
#define S5PC110_INTC_ONENAND_CLR 0x1008
#define S5PC110_INTC_DMA_MASK 0x1024
#define S5PC110_INTC_ONENAND_MASK 0x1028
#define S5PC110_INTC_DMA_PEND 0x1044
#define S5PC110_INTC_ONENAND_PEND 0x1048
#define S5PC110_INTC_DMA_STATUS 0x1064
#define S5PC110_INTC_ONENAND_STATUS 0x1068
#define S5PC110_INTC_DMA_TD (1 << 24)
#define S5PC110_INTC_DMA_TE (1 << 16)
#define S5PC110_DMA_CFG_SINGLE (0x0 << 16)
#define S5PC110_DMA_CFG_4BURST (0x2 << 16)
#define S5PC110_DMA_CFG_8BURST (0x3 << 16)
#define S5PC110_DMA_CFG_16BURST (0x4 << 16)
#define S5PC110_DMA_CFG_INC (0x0 << 8)
#define S5PC110_DMA_CFG_CNT (0x1 << 8)
#define S5PC110_DMA_CFG_8BIT (0x0 << 0)
#define S5PC110_DMA_CFG_16BIT (0x1 << 0)
#define S5PC110_DMA_CFG_32BIT (0x2 << 0)
#define S5PC110_DMA_SRC_CFG_READ (S5PC110_DMA_CFG_16BURST | \
S5PC110_DMA_CFG_INC | \
S5PC110_DMA_CFG_16BIT)
#define S5PC110_DMA_DST_CFG_READ (S5PC110_DMA_CFG_16BURST | \
S5PC110_DMA_CFG_INC | \
S5PC110_DMA_CFG_32BIT)
#define S5PC110_DMA_SRC_CFG_WRITE (S5PC110_DMA_CFG_16BURST | \
S5PC110_DMA_CFG_INC | \
S5PC110_DMA_CFG_32BIT)
#define S5PC110_DMA_DST_CFG_WRITE (S5PC110_DMA_CFG_16BURST | \
S5PC110_DMA_CFG_INC | \
S5PC110_DMA_CFG_16BIT)
#define S5PC110_DMA_TRANS_CMD_TDC (0x1 << 18)
#define S5PC110_DMA_TRANS_CMD_TEC (0x1 << 16)
#define S5PC110_DMA_TRANS_CMD_TR (0x1 << 0)
#define S5PC110_DMA_TRANS_STATUS_TD (0x1 << 18)
#define S5PC110_DMA_TRANS_STATUS_TB (0x1 << 17)
#define S5PC110_DMA_TRANS_STATUS_TE (0x1 << 16)
#define S5PC110_DMA_DIR_READ 0x0
#define S5PC110_DMA_DIR_WRITE 0x1
struct s3c_onenand {
struct mtd_info *mtd;
struct platform_device *pdev;
enum soc_type type;
void __iomem *base;
void __iomem *ahb_addr;
int bootram_command;
void *page_buf;
void *oob_buf;
unsigned int (*mem_addr)(int fba, int fpa, int fsa);
unsigned int (*cmd_map)(unsigned int type, unsigned int val);
void __iomem *dma_addr;
unsigned long phys_base;
struct completion complete;
};
#define CMD_MAP_00(dev, addr) (dev->cmd_map(MAP_00, ((addr) << 1)))
#define CMD_MAP_01(dev, mem_addr) (dev->cmd_map(MAP_01, (mem_addr)))
#define CMD_MAP_10(dev, mem_addr) (dev->cmd_map(MAP_10, (mem_addr)))
#define CMD_MAP_11(dev, addr) (dev->cmd_map(MAP_11, ((addr) << 2)))
static struct s3c_onenand *onenand;
static inline int s3c_read_reg(int offset)
{
return readl(onenand->base + offset);
}
static inline void s3c_write_reg(int value, int offset)
{
writel(value, onenand->base + offset);
}
static inline int s3c_read_cmd(unsigned int cmd)
{
return readl(onenand->ahb_addr + cmd);
}
static inline void s3c_write_cmd(int value, unsigned int cmd)
{
writel(value, onenand->ahb_addr + cmd);
}
#ifdef SAMSUNG_DEBUG
static void s3c_dump_reg(void)
{
int i;
for (i = 0; i < 0x400; i += 0x40) {
printk(KERN_INFO "0x%08X: 0x%08x 0x%08x 0x%08x 0x%08x\n",
(unsigned int) onenand->base + i,
s3c_read_reg(i), s3c_read_reg(i + 0x10),
s3c_read_reg(i + 0x20), s3c_read_reg(i + 0x30));
}
}
#endif
static unsigned int s3c64xx_cmd_map(unsigned type, unsigned val)
{
return (type << S3C64XX_CMD_MAP_SHIFT) | val;
}
static unsigned int s3c6400_mem_addr(int fba, int fpa, int fsa)
{
return (fba << S3C6400_FBA_SHIFT) | (fpa << S3C6400_FPA_SHIFT) |
(fsa << S3C6400_FSA_SHIFT);
}
static unsigned int s3c6410_mem_addr(int fba, int fpa, int fsa)
{
return (fba << S3C6410_FBA_SHIFT) | (fpa << S3C6410_FPA_SHIFT) |
(fsa << S3C6410_FSA_SHIFT);
}
static void s3c_onenand_reset(void)
{
unsigned long timeout = 0x10000;
int stat;
s3c_write_reg(ONENAND_MEM_RESET_COLD, MEM_RESET_OFFSET);
while (1 && timeout--) {
stat = s3c_read_reg(INT_ERR_STAT_OFFSET);
if (stat & RST_CMP)
break;
}
stat = s3c_read_reg(INT_ERR_STAT_OFFSET);
s3c_write_reg(stat, INT_ERR_ACK_OFFSET);
/* Clear interrupt */
s3c_write_reg(0x0, INT_ERR_ACK_OFFSET);
/* Clear the ECC status */
s3c_write_reg(0x0, ECC_ERR_STAT_OFFSET);
}
static unsigned short s3c_onenand_readw(void __iomem *addr)
{
struct onenand_chip *this = onenand->mtd->priv;
struct device *dev = &onenand->pdev->dev;
int reg = addr - this->base;
int word_addr = reg >> 1;
int value;
/* It's used for probing time */
switch (reg) {
case ONENAND_REG_MANUFACTURER_ID:
return s3c_read_reg(MANUFACT_ID_OFFSET);
case ONENAND_REG_DEVICE_ID:
return s3c_read_reg(DEVICE_ID_OFFSET);
case ONENAND_REG_VERSION_ID:
return s3c_read_reg(FLASH_VER_ID_OFFSET);
case ONENAND_REG_DATA_BUFFER_SIZE:
return s3c_read_reg(DATA_BUF_SIZE_OFFSET);
case ONENAND_REG_TECHNOLOGY:
return s3c_read_reg(TECH_OFFSET);
case ONENAND_REG_SYS_CFG1:
return s3c_read_reg(MEM_CFG_OFFSET);
/* Used at unlock all status */
case ONENAND_REG_CTRL_STATUS:
return 0;
case ONENAND_REG_WP_STATUS:
return ONENAND_WP_US;
default:
break;
}
/* BootRAM access control */
if ((unsigned int) addr < ONENAND_DATARAM && onenand->bootram_command) {
if (word_addr == 0)
return s3c_read_reg(MANUFACT_ID_OFFSET);
if (word_addr == 1)
return s3c_read_reg(DEVICE_ID_OFFSET);
if (word_addr == 2)
return s3c_read_reg(FLASH_VER_ID_OFFSET);
}
value = s3c_read_cmd(CMD_MAP_11(onenand, word_addr)) & 0xffff;
dev_info(dev, "%s: Illegal access at reg 0x%x, value 0x%x\n", __func__,
word_addr, value);
return value;
}
static void s3c_onenand_writew(unsigned short value, void __iomem *addr)
{
struct onenand_chip *this = onenand->mtd->priv;
struct device *dev = &onenand->pdev->dev;
unsigned int reg = addr - this->base;
unsigned int word_addr = reg >> 1;
/* It's used for probing time */
switch (reg) {
case ONENAND_REG_SYS_CFG1:
s3c_write_reg(value, MEM_CFG_OFFSET);
return;
case ONENAND_REG_START_ADDRESS1:
case ONENAND_REG_START_ADDRESS2:
return;
/* Lock/lock-tight/unlock/unlock_all */
case ONENAND_REG_START_BLOCK_ADDRESS:
return;
default:
break;
}
/* BootRAM access control */
if ((unsigned int)addr < ONENAND_DATARAM) {
if (value == ONENAND_CMD_READID) {
onenand->bootram_command = 1;
return;
}
if (value == ONENAND_CMD_RESET) {
s3c_write_reg(ONENAND_MEM_RESET_COLD, MEM_RESET_OFFSET);
onenand->bootram_command = 0;
return;
}
}
dev_info(dev, "%s: Illegal access at reg 0x%x, value 0x%x\n", __func__,
word_addr, value);
s3c_write_cmd(value, CMD_MAP_11(onenand, word_addr));
}
static int s3c_onenand_wait(struct mtd_info *mtd, int state)
{
struct device *dev = &onenand->pdev->dev;
unsigned int flags = INT_ACT;
unsigned int stat, ecc;
unsigned long timeout;
switch (state) {
case FL_READING:
flags |= BLK_RW_CMP | LOAD_CMP;
break;
case FL_WRITING:
flags |= BLK_RW_CMP | PGM_CMP;
break;
case FL_ERASING:
flags |= BLK_RW_CMP | ERS_CMP;
break;
case FL_LOCKING:
flags |= BLK_RW_CMP;
break;
default:
break;
}
/* The 20 msec is enough */
timeout = jiffies + msecs_to_jiffies(20);
while (time_before(jiffies, timeout)) {
stat = s3c_read_reg(INT_ERR_STAT_OFFSET);
if (stat & flags)
break;
if (state != FL_READING)
cond_resched();
}
/* To get correct interrupt status in timeout case */
stat = s3c_read_reg(INT_ERR_STAT_OFFSET);
s3c_write_reg(stat, INT_ERR_ACK_OFFSET);
/*
* In the Spec. it checks the controller status first
* However if you get the correct information in case of
* power off recovery (POR) test, it should read ECC status first
*/
if (stat & LOAD_CMP) {
ecc = s3c_read_reg(ECC_ERR_STAT_OFFSET);
if (ecc & ONENAND_ECC_4BIT_UNCORRECTABLE) {
dev_info(dev, "%s: ECC error = 0x%04x\n", __func__,
ecc);
mtd->ecc_stats.failed++;
return -EBADMSG;
}
}
if (stat & (LOCKED_BLK | ERS_FAIL | PGM_FAIL | LD_FAIL_ECC_ERR)) {
dev_info(dev, "%s: controller error = 0x%04x\n", __func__,
stat);
if (stat & LOCKED_BLK)
dev_info(dev, "%s: it's locked error = 0x%04x\n",
__func__, stat);
return -EIO;
}
return 0;
}
static int s3c_onenand_command(struct mtd_info *mtd, int cmd, loff_t addr,
size_t len)
{
struct onenand_chip *this = mtd->priv;
unsigned int *m, *s;
int fba, fpa, fsa = 0;
unsigned int mem_addr, cmd_map_01, cmd_map_10;
int i, mcount, scount;
int index;
fba = (int) (addr >> this->erase_shift);
fpa = (int) (addr >> this->page_shift);
fpa &= this->page_mask;
mem_addr = onenand->mem_addr(fba, fpa, fsa);
cmd_map_01 = CMD_MAP_01(onenand, mem_addr);
cmd_map_10 = CMD_MAP_10(onenand, mem_addr);
switch (cmd) {
case ONENAND_CMD_READ:
case ONENAND_CMD_READOOB:
case ONENAND_CMD_BUFFERRAM:
ONENAND_SET_NEXT_BUFFERRAM(this);
default:
break;
}
index = ONENAND_CURRENT_BUFFERRAM(this);
/*
* Emulate Two BufferRAMs and access with 4 bytes pointer
*/
m = onenand->page_buf;
s = onenand->oob_buf;
if (index) {
m += (this->writesize >> 2);
s += (mtd->oobsize >> 2);
}
mcount = mtd->writesize >> 2;
scount = mtd->oobsize >> 2;
switch (cmd) {
case ONENAND_CMD_READ:
/* Main */
for (i = 0; i < mcount; i++)
*m++ = s3c_read_cmd(cmd_map_01);
return 0;
case ONENAND_CMD_READOOB:
s3c_write_reg(TSRF, TRANS_SPARE_OFFSET);
/* Main */
for (i = 0; i < mcount; i++)
*m++ = s3c_read_cmd(cmd_map_01);
/* Spare */
for (i = 0; i < scount; i++)
*s++ = s3c_read_cmd(cmd_map_01);
s3c_write_reg(0, TRANS_SPARE_OFFSET);
return 0;
case ONENAND_CMD_PROG:
/* Main */
for (i = 0; i < mcount; i++)
s3c_write_cmd(*m++, cmd_map_01);
return 0;
case ONENAND_CMD_PROGOOB:
s3c_write_reg(TSRF, TRANS_SPARE_OFFSET);
/* Main - dummy write */
for (i = 0; i < mcount; i++)
s3c_write_cmd(0xffffffff, cmd_map_01);
/* Spare */
for (i = 0; i < scount; i++)
s3c_write_cmd(*s++, cmd_map_01);
s3c_write_reg(0, TRANS_SPARE_OFFSET);
return 0;
case ONENAND_CMD_UNLOCK_ALL:
s3c_write_cmd(ONENAND_UNLOCK_ALL, cmd_map_10);
return 0;
case ONENAND_CMD_ERASE:
s3c_write_cmd(ONENAND_ERASE_START, cmd_map_10);
return 0;
default:
break;
}
return 0;
}
static unsigned char *s3c_get_bufferram(struct mtd_info *mtd, int area)
{
struct onenand_chip *this = mtd->priv;
int index = ONENAND_CURRENT_BUFFERRAM(this);
unsigned char *p;
if (area == ONENAND_DATARAM) {
p = onenand->page_buf;
if (index == 1)
p += this->writesize;
} else {
p = onenand->oob_buf;
if (index == 1)
p += mtd->oobsize;
}
return p;
}
static int onenand_read_bufferram(struct mtd_info *mtd, int area,
unsigned char *buffer, int offset,
size_t count)
{
unsigned char *p;
p = s3c_get_bufferram(mtd, area);
memcpy(buffer, p + offset, count);
return 0;
}
static int onenand_write_bufferram(struct mtd_info *mtd, int area,
const unsigned char *buffer, int offset,
size_t count)
{
unsigned char *p;
p = s3c_get_bufferram(mtd, area);
memcpy(p + offset, buffer, count);
return 0;
}
static int (*s5pc110_dma_ops)(dma_addr_t dst, dma_addr_t src, size_t count, int direction);
static int s5pc110_dma_poll(dma_addr_t dst, dma_addr_t src, size_t count, int direction)
{
void __iomem *base = onenand->dma_addr;
int status;
unsigned long timeout;
writel(src, base + S5PC110_DMA_SRC_ADDR);
writel(dst, base + S5PC110_DMA_DST_ADDR);
if (direction == S5PC110_DMA_DIR_READ) {
writel(S5PC110_DMA_SRC_CFG_READ, base + S5PC110_DMA_SRC_CFG);
writel(S5PC110_DMA_DST_CFG_READ, base + S5PC110_DMA_DST_CFG);
} else {
writel(S5PC110_DMA_SRC_CFG_WRITE, base + S5PC110_DMA_SRC_CFG);
writel(S5PC110_DMA_DST_CFG_WRITE, base + S5PC110_DMA_DST_CFG);
}
writel(count, base + S5PC110_DMA_TRANS_SIZE);
writel(direction, base + S5PC110_DMA_TRANS_DIR);
writel(S5PC110_DMA_TRANS_CMD_TR, base + S5PC110_DMA_TRANS_CMD);
/*
* There's no exact timeout values at Spec.
* In real case it takes under 1 msec.
* So 20 msecs are enough.
*/
timeout = jiffies + msecs_to_jiffies(20);
do {
status = readl(base + S5PC110_DMA_TRANS_STATUS);
if (status & S5PC110_DMA_TRANS_STATUS_TE) {
writel(S5PC110_DMA_TRANS_CMD_TEC,
base + S5PC110_DMA_TRANS_CMD);
return -EIO;
}
} while (!(status & S5PC110_DMA_TRANS_STATUS_TD) &&
time_before(jiffies, timeout));
writel(S5PC110_DMA_TRANS_CMD_TDC, base + S5PC110_DMA_TRANS_CMD);
return 0;
}
static irqreturn_t s5pc110_onenand_irq(int irq, void *data)
{
void __iomem *base = onenand->dma_addr;
int status, cmd = 0;
status = readl(base + S5PC110_INTC_DMA_STATUS);
if (likely(status & S5PC110_INTC_DMA_TD))
cmd = S5PC110_DMA_TRANS_CMD_TDC;
if (unlikely(status & S5PC110_INTC_DMA_TE))
cmd = S5PC110_DMA_TRANS_CMD_TEC;
writel(cmd, base + S5PC110_DMA_TRANS_CMD);
writel(status, base + S5PC110_INTC_DMA_CLR);
if (!onenand->complete.done)
complete(&onenand->complete);
return IRQ_HANDLED;
}
static int s5pc110_dma_irq(dma_addr_t dst, dma_addr_t src, size_t count, int direction)
{
void __iomem *base = onenand->dma_addr;
int status;
status = readl(base + S5PC110_INTC_DMA_MASK);
if (status) {
status &= ~(S5PC110_INTC_DMA_TD | S5PC110_INTC_DMA_TE);
writel(status, base + S5PC110_INTC_DMA_MASK);
}
writel(src, base + S5PC110_DMA_SRC_ADDR);
writel(dst, base + S5PC110_DMA_DST_ADDR);
if (direction == S5PC110_DMA_DIR_READ) {
writel(S5PC110_DMA_SRC_CFG_READ, base + S5PC110_DMA_SRC_CFG);
writel(S5PC110_DMA_DST_CFG_READ, base + S5PC110_DMA_DST_CFG);
} else {
writel(S5PC110_DMA_SRC_CFG_WRITE, base + S5PC110_DMA_SRC_CFG);
writel(S5PC110_DMA_DST_CFG_WRITE, base + S5PC110_DMA_DST_CFG);
}
writel(count, base + S5PC110_DMA_TRANS_SIZE);
writel(direction, base + S5PC110_DMA_TRANS_DIR);
writel(S5PC110_DMA_TRANS_CMD_TR, base + S5PC110_DMA_TRANS_CMD);
wait_for_completion_timeout(&onenand->complete, msecs_to_jiffies(20));
return 0;
}
static int s5pc110_read_bufferram(struct mtd_info *mtd, int area,
unsigned char *buffer, int offset, size_t count)
{
struct onenand_chip *this = mtd->priv;
void __iomem *p;
void *buf = (void *) buffer;
dma_addr_t dma_src, dma_dst;
int err, ofs, page_dma = 0;
struct device *dev = &onenand->pdev->dev;
p = this->base + area;
if (ONENAND_CURRENT_BUFFERRAM(this)) {
if (area == ONENAND_DATARAM)
p += this->writesize;
else
p += mtd->oobsize;
}
if (offset & 3 || (size_t) buf & 3 ||
!onenand->dma_addr || count != mtd->writesize)
goto normal;
/* Handle vmalloc address */
if (buf >= high_memory) {
struct page *page;
if (((size_t) buf & PAGE_MASK) !=
((size_t) (buf + count - 1) & PAGE_MASK))
goto normal;
page = vmalloc_to_page(buf);
if (!page)
goto normal;
/* Page offset */
ofs = ((size_t) buf & ~PAGE_MASK);
page_dma = 1;
/* DMA routine */
dma_src = onenand->phys_base + (p - this->base);
dma_dst = dma_map_page(dev, page, ofs, count, DMA_FROM_DEVICE);
} else {
/* DMA routine */
dma_src = onenand->phys_base + (p - this->base);
dma_dst = dma_map_single(dev, buf, count, DMA_FROM_DEVICE);
}
if (dma_mapping_error(dev, dma_dst)) {
dev_err(dev, "Couldn't map a %d byte buffer for DMA\n", count);
goto normal;
}
err = s5pc110_dma_ops(dma_dst, dma_src,
count, S5PC110_DMA_DIR_READ);
if (page_dma)
dma_unmap_page(dev, dma_dst, count, DMA_FROM_DEVICE);
else
dma_unmap_single(dev, dma_dst, count, DMA_FROM_DEVICE);
if (!err)
return 0;
normal:
if (count != mtd->writesize) {
/* Copy the bufferram to memory to prevent unaligned access */
memcpy(this->page_buf, p, mtd->writesize);
p = this->page_buf + offset;
}
memcpy(buffer, p, count);
return 0;
}
static int s5pc110_chip_probe(struct mtd_info *mtd)
{
/* Now just return 0 */
return 0;
}
static int s3c_onenand_bbt_wait(struct mtd_info *mtd, int state)
{
unsigned int flags = INT_ACT | LOAD_CMP;
unsigned int stat;
unsigned long timeout;
/* The 20 msec is enough */
timeout = jiffies + msecs_to_jiffies(20);
while (time_before(jiffies, timeout)) {
stat = s3c_read_reg(INT_ERR_STAT_OFFSET);
if (stat & flags)
break;
}
/* To get correct interrupt status in timeout case */
stat = s3c_read_reg(INT_ERR_STAT_OFFSET);
s3c_write_reg(stat, INT_ERR_ACK_OFFSET);
if (stat & LD_FAIL_ECC_ERR) {
s3c_onenand_reset();
return ONENAND_BBT_READ_ERROR;
}
if (stat & LOAD_CMP) {
int ecc = s3c_read_reg(ECC_ERR_STAT_OFFSET);
if (ecc & ONENAND_ECC_4BIT_UNCORRECTABLE) {
s3c_onenand_reset();
return ONENAND_BBT_READ_ERROR;
}
}
return 0;
}
static void s3c_onenand_check_lock_status(struct mtd_info *mtd)
{
struct onenand_chip *this = mtd->priv;
struct device *dev = &onenand->pdev->dev;
unsigned int block, end;
int tmp;
end = this->chipsize >> this->erase_shift;
for (block = 0; block < end; block++) {
unsigned int mem_addr = onenand->mem_addr(block, 0, 0);
tmp = s3c_read_cmd(CMD_MAP_01(onenand, mem_addr));
if (s3c_read_reg(INT_ERR_STAT_OFFSET) & LOCKED_BLK) {
dev_err(dev, "block %d is write-protected!\n", block);
s3c_write_reg(LOCKED_BLK, INT_ERR_ACK_OFFSET);
}
}
}
static void s3c_onenand_do_lock_cmd(struct mtd_info *mtd, loff_t ofs,
size_t len, int cmd)
{
struct onenand_chip *this = mtd->priv;
int start, end, start_mem_addr, end_mem_addr;
start = ofs >> this->erase_shift;
start_mem_addr = onenand->mem_addr(start, 0, 0);
end = start + (len >> this->erase_shift) - 1;
end_mem_addr = onenand->mem_addr(end, 0, 0);
if (cmd == ONENAND_CMD_LOCK) {
s3c_write_cmd(ONENAND_LOCK_START, CMD_MAP_10(onenand,
start_mem_addr));
s3c_write_cmd(ONENAND_LOCK_END, CMD_MAP_10(onenand,
end_mem_addr));
} else {
s3c_write_cmd(ONENAND_UNLOCK_START, CMD_MAP_10(onenand,
start_mem_addr));
s3c_write_cmd(ONENAND_UNLOCK_END, CMD_MAP_10(onenand,
end_mem_addr));
}
this->wait(mtd, FL_LOCKING);
}
static void s3c_unlock_all(struct mtd_info *mtd)
{
struct onenand_chip *this = mtd->priv;
loff_t ofs = 0;
size_t len = this->chipsize;
if (this->options & ONENAND_HAS_UNLOCK_ALL) {
/* Write unlock command */
this->command(mtd, ONENAND_CMD_UNLOCK_ALL, 0, 0);
/* No need to check return value */
this->wait(mtd, FL_LOCKING);
/* Workaround for all block unlock in DDP */
if (!ONENAND_IS_DDP(this)) {
s3c_onenand_check_lock_status(mtd);
return;
}
/* All blocks on another chip */
ofs = this->chipsize >> 1;
len = this->chipsize >> 1;
}
s3c_onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK);
s3c_onenand_check_lock_status(mtd);
}
static void s3c_onenand_setup(struct mtd_info *mtd)
{
struct onenand_chip *this = mtd->priv;
onenand->mtd = mtd;
if (onenand->type == TYPE_S3C6400) {
onenand->mem_addr = s3c6400_mem_addr;
onenand->cmd_map = s3c64xx_cmd_map;
} else if (onenand->type == TYPE_S3C6410) {
onenand->mem_addr = s3c6410_mem_addr;
onenand->cmd_map = s3c64xx_cmd_map;
} else if (onenand->type == TYPE_S5PC110) {
/* Use generic onenand functions */
this->read_bufferram = s5pc110_read_bufferram;
this->chip_probe = s5pc110_chip_probe;
return;
} else {
BUG();
}
this->read_word = s3c_onenand_readw;
this->write_word = s3c_onenand_writew;
this->wait = s3c_onenand_wait;
this->bbt_wait = s3c_onenand_bbt_wait;
this->unlock_all = s3c_unlock_all;
this->command = s3c_onenand_command;
this->read_bufferram = onenand_read_bufferram;
this->write_bufferram = onenand_write_bufferram;
}
static int s3c_onenand_probe(struct platform_device *pdev)
{
struct onenand_platform_data *pdata;
struct onenand_chip *this;
struct mtd_info *mtd;
struct resource *r;
int size, err;
pdata = dev_get_platdata(&pdev->dev);
/* No need to check pdata. the platform data is optional */
size = sizeof(struct mtd_info) + sizeof(struct onenand_chip);
mtd = devm_kzalloc(&pdev->dev, size, GFP_KERNEL);
if (!mtd)
return -ENOMEM;
onenand = devm_kzalloc(&pdev->dev, sizeof(struct s3c_onenand),
GFP_KERNEL);
if (!onenand)
return -ENOMEM;
this = (struct onenand_chip *) &mtd[1];
mtd->priv = this;
mtd->dev.parent = &pdev->dev;
onenand->pdev = pdev;
onenand->type = platform_get_device_id(pdev)->driver_data;
s3c_onenand_setup(mtd);
r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
onenand->base = devm_ioremap_resource(&pdev->dev, r);
if (IS_ERR(onenand->base))
return PTR_ERR(onenand->base);
onenand->phys_base = r->start;
/* Set onenand_chip also */
this->base = onenand->base;
/* Use runtime badblock check */
this->options |= ONENAND_SKIP_UNLOCK_CHECK;
if (onenand->type != TYPE_S5PC110) {
r = platform_get_resource(pdev, IORESOURCE_MEM, 1);
onenand->ahb_addr = devm_ioremap_resource(&pdev->dev, r);
if (IS_ERR(onenand->ahb_addr))
return PTR_ERR(onenand->ahb_addr);
/* Allocate 4KiB BufferRAM */
onenand->page_buf = devm_kzalloc(&pdev->dev, SZ_4K,
GFP_KERNEL);
if (!onenand->page_buf)
return -ENOMEM;
/* Allocate 128 SpareRAM */
onenand->oob_buf = devm_kzalloc(&pdev->dev, 128, GFP_KERNEL);
if (!onenand->oob_buf)
return -ENOMEM;
/* S3C doesn't handle subpage write */
mtd->subpage_sft = 0;
this->subpagesize = mtd->writesize;
} else { /* S5PC110 */
r = platform_get_resource(pdev, IORESOURCE_MEM, 1);
onenand->dma_addr = devm_ioremap_resource(&pdev->dev, r);
if (IS_ERR(onenand->dma_addr))
return PTR_ERR(onenand->dma_addr);
s5pc110_dma_ops = s5pc110_dma_poll;
/* Interrupt support */
r = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
if (r) {
init_completion(&onenand->complete);
s5pc110_dma_ops = s5pc110_dma_irq;
err = devm_request_irq(&pdev->dev, r->start,
s5pc110_onenand_irq,
IRQF_SHARED, "onenand",
&onenand);
if (err) {
dev_err(&pdev->dev, "failed to get irq\n");
return err;
}
}
}
err = onenand_scan(mtd, 1);
if (err)
return err;
if (onenand->type != TYPE_S5PC110) {
/* S3C doesn't handle subpage write */
mtd->subpage_sft = 0;
this->subpagesize = mtd->writesize;
}
if (s3c_read_reg(MEM_CFG_OFFSET) & ONENAND_SYS_CFG1_SYNC_READ)
dev_info(&onenand->pdev->dev, "OneNAND Sync. Burst Read enabled\n");
err = mtd_device_parse_register(mtd, NULL, NULL,
pdata ? pdata->parts : NULL,
pdata ? pdata->nr_parts : 0);
if (err) {
dev_err(&pdev->dev, "failed to parse partitions and register the MTD device\n");
onenand_release(mtd);
return err;
}
platform_set_drvdata(pdev, mtd);
return 0;
}
static int s3c_onenand_remove(struct platform_device *pdev)
{
struct mtd_info *mtd = platform_get_drvdata(pdev);
onenand_release(mtd);
return 0;
}
static int s3c_pm_ops_suspend(struct device *dev)
{
struct platform_device *pdev = to_platform_device(dev);
struct mtd_info *mtd = platform_get_drvdata(pdev);
struct onenand_chip *this = mtd->priv;
this->wait(mtd, FL_PM_SUSPENDED);
return 0;
}
static int s3c_pm_ops_resume(struct device *dev)
{
struct platform_device *pdev = to_platform_device(dev);
struct mtd_info *mtd = platform_get_drvdata(pdev);
struct onenand_chip *this = mtd->priv;
this->unlock_all(mtd);
return 0;
}
static const struct dev_pm_ops s3c_pm_ops = {
.suspend = s3c_pm_ops_suspend,
.resume = s3c_pm_ops_resume,
};
static const struct platform_device_id s3c_onenand_driver_ids[] = {
{
.name = "s3c6400-onenand",
.driver_data = TYPE_S3C6400,
}, {
.name = "s3c6410-onenand",
.driver_data = TYPE_S3C6410,
}, {
.name = "s5pc110-onenand",
.driver_data = TYPE_S5PC110,
}, { },
};
MODULE_DEVICE_TABLE(platform, s3c_onenand_driver_ids);
static struct platform_driver s3c_onenand_driver = {
.driver = {
.name = "samsung-onenand",
.pm = &s3c_pm_ops,
},
.id_table = s3c_onenand_driver_ids,
.probe = s3c_onenand_probe,
.remove = s3c_onenand_remove,
};
module_platform_driver(s3c_onenand_driver);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Kyungmin Park <kyungmin.park@samsung.com>");
MODULE_DESCRIPTION("Samsung OneNAND controller support");