linux-sg2042/drivers/char/istallion.c

5264 lines
136 KiB
C

/*****************************************************************************/
/*
* istallion.c -- stallion intelligent multiport serial driver.
*
* Copyright (C) 1996-1999 Stallion Technologies
* Copyright (C) 1994-1996 Greg Ungerer.
*
* This code is loosely based on the Linux serial driver, written by
* Linus Torvalds, Theodore T'so and others.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/*****************************************************************************/
#include <linux/config.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/interrupt.h>
#include <linux/tty.h>
#include <linux/tty_flip.h>
#include <linux/serial.h>
#include <linux/cdk.h>
#include <linux/comstats.h>
#include <linux/istallion.h>
#include <linux/ioport.h>
#include <linux/delay.h>
#include <linux/init.h>
#include <linux/devfs_fs_kernel.h>
#include <linux/device.h>
#include <linux/wait.h>
#include <asm/io.h>
#include <asm/uaccess.h>
#ifdef CONFIG_PCI
#include <linux/pci.h>
#endif
/*****************************************************************************/
/*
* Define different board types. Not all of the following board types
* are supported by this driver. But I will use the standard "assigned"
* board numbers. Currently supported boards are abbreviated as:
* ECP = EasyConnection 8/64, ONB = ONboard, BBY = Brumby and
* STAL = Stallion.
*/
#define BRD_UNKNOWN 0
#define BRD_STALLION 1
#define BRD_BRUMBY4 2
#define BRD_ONBOARD2 3
#define BRD_ONBOARD 4
#define BRD_BRUMBY8 5
#define BRD_BRUMBY16 6
#define BRD_ONBOARDE 7
#define BRD_ONBOARD32 9
#define BRD_ONBOARD2_32 10
#define BRD_ONBOARDRS 11
#define BRD_EASYIO 20
#define BRD_ECH 21
#define BRD_ECHMC 22
#define BRD_ECP 23
#define BRD_ECPE 24
#define BRD_ECPMC 25
#define BRD_ECHPCI 26
#define BRD_ECH64PCI 27
#define BRD_EASYIOPCI 28
#define BRD_ECPPCI 29
#define BRD_BRUMBY BRD_BRUMBY4
/*
* Define a configuration structure to hold the board configuration.
* Need to set this up in the code (for now) with the boards that are
* to be configured into the system. This is what needs to be modified
* when adding/removing/modifying boards. Each line entry in the
* stli_brdconf[] array is a board. Each line contains io/irq/memory
* ranges for that board (as well as what type of board it is).
* Some examples:
* { BRD_ECP, 0x2a0, 0, 0xcc000, 0, 0 },
* This line will configure an EasyConnection 8/64 at io address 2a0,
* and shared memory address of cc000. Multiple EasyConnection 8/64
* boards can share the same shared memory address space. No interrupt
* is required for this board type.
* Another example:
* { BRD_ECPE, 0x5000, 0, 0x80000000, 0, 0 },
* This line will configure an EasyConnection 8/64 EISA in slot 5 and
* shared memory address of 0x80000000 (2 GByte). Multiple
* EasyConnection 8/64 EISA boards can share the same shared memory
* address space. No interrupt is required for this board type.
* Another example:
* { BRD_ONBOARD, 0x240, 0, 0xd0000, 0, 0 },
* This line will configure an ONboard (ISA type) at io address 240,
* and shared memory address of d0000. Multiple ONboards can share
* the same shared memory address space. No interrupt required.
* Another example:
* { BRD_BRUMBY4, 0x360, 0, 0xc8000, 0, 0 },
* This line will configure a Brumby board (any number of ports!) at
* io address 360 and shared memory address of c8000. All Brumby boards
* configured into a system must have their own separate io and memory
* addresses. No interrupt is required.
* Another example:
* { BRD_STALLION, 0x330, 0, 0xd0000, 0, 0 },
* This line will configure an original Stallion board at io address 330
* and shared memory address d0000 (this would only be valid for a "V4.0"
* or Rev.O Stallion board). All Stallion boards configured into the
* system must have their own separate io and memory addresses. No
* interrupt is required.
*/
typedef struct {
int brdtype;
int ioaddr1;
int ioaddr2;
unsigned long memaddr;
int irq;
int irqtype;
} stlconf_t;
static stlconf_t stli_brdconf[] = {
/*{ BRD_ECP, 0x2a0, 0, 0xcc000, 0, 0 },*/
};
static int stli_nrbrds = ARRAY_SIZE(stli_brdconf);
/*
* There is some experimental EISA board detection code in this driver.
* By default it is disabled, but for those that want to try it out,
* then set the define below to be 1.
*/
#define STLI_EISAPROBE 0
/*****************************************************************************/
/*
* Define some important driver characteristics. Device major numbers
* allocated as per Linux Device Registry.
*/
#ifndef STL_SIOMEMMAJOR
#define STL_SIOMEMMAJOR 28
#endif
#ifndef STL_SERIALMAJOR
#define STL_SERIALMAJOR 24
#endif
#ifndef STL_CALLOUTMAJOR
#define STL_CALLOUTMAJOR 25
#endif
/*****************************************************************************/
/*
* Define our local driver identity first. Set up stuff to deal with
* all the local structures required by a serial tty driver.
*/
static char *stli_drvtitle = "Stallion Intelligent Multiport Serial Driver";
static char *stli_drvname = "istallion";
static char *stli_drvversion = "5.6.0";
static char *stli_serialname = "ttyE";
static struct tty_driver *stli_serial;
/*
* We will need to allocate a temporary write buffer for chars that
* come direct from user space. The problem is that a copy from user
* space might cause a page fault (typically on a system that is
* swapping!). All ports will share one buffer - since if the system
* is already swapping a shared buffer won't make things any worse.
*/
static char *stli_tmpwritebuf;
#define STLI_TXBUFSIZE 4096
/*
* Use a fast local buffer for cooked characters. Typically a whole
* bunch of cooked characters come in for a port, 1 at a time. So we
* save those up into a local buffer, then write out the whole lot
* with a large memcpy. Just use 1 buffer for all ports, since its
* use it is only need for short periods of time by each port.
*/
static char *stli_txcookbuf;
static int stli_txcooksize;
static int stli_txcookrealsize;
static struct tty_struct *stli_txcooktty;
/*
* Define a local default termios struct. All ports will be created
* with this termios initially. Basically all it defines is a raw port
* at 9600 baud, 8 data bits, no parity, 1 stop bit.
*/
static struct termios stli_deftermios = {
.c_cflag = (B9600 | CS8 | CREAD | HUPCL | CLOCAL),
.c_cc = INIT_C_CC,
};
/*
* Define global stats structures. Not used often, and can be
* re-used for each stats call.
*/
static comstats_t stli_comstats;
static combrd_t stli_brdstats;
static asystats_t stli_cdkstats;
static stlibrd_t stli_dummybrd;
static stliport_t stli_dummyport;
/*****************************************************************************/
static stlibrd_t *stli_brds[STL_MAXBRDS];
static int stli_shared;
/*
* Per board state flags. Used with the state field of the board struct.
* Not really much here... All we need to do is keep track of whether
* the board has been detected, and whether it is actually running a slave
* or not.
*/
#define BST_FOUND 0x1
#define BST_STARTED 0x2
/*
* Define the set of port state flags. These are marked for internal
* state purposes only, usually to do with the state of communications
* with the slave. Most of them need to be updated atomically, so always
* use the bit setting operations (unless protected by cli/sti).
*/
#define ST_INITIALIZING 1
#define ST_OPENING 2
#define ST_CLOSING 3
#define ST_CMDING 4
#define ST_TXBUSY 5
#define ST_RXING 6
#define ST_DOFLUSHRX 7
#define ST_DOFLUSHTX 8
#define ST_DOSIGS 9
#define ST_RXSTOP 10
#define ST_GETSIGS 11
/*
* Define an array of board names as printable strings. Handy for
* referencing boards when printing trace and stuff.
*/
static char *stli_brdnames[] = {
"Unknown",
"Stallion",
"Brumby",
"ONboard-MC",
"ONboard",
"Brumby",
"Brumby",
"ONboard-EI",
(char *) NULL,
"ONboard",
"ONboard-MC",
"ONboard-MC",
(char *) NULL,
(char *) NULL,
(char *) NULL,
(char *) NULL,
(char *) NULL,
(char *) NULL,
(char *) NULL,
(char *) NULL,
"EasyIO",
"EC8/32-AT",
"EC8/32-MC",
"EC8/64-AT",
"EC8/64-EI",
"EC8/64-MC",
"EC8/32-PCI",
"EC8/64-PCI",
"EasyIO-PCI",
"EC/RA-PCI",
};
/*****************************************************************************/
#ifdef MODULE
/*
* Define some string labels for arguments passed from the module
* load line. These allow for easy board definitions, and easy
* modification of the io, memory and irq resoucres.
*/
static char *board0[8];
static char *board1[8];
static char *board2[8];
static char *board3[8];
static char **stli_brdsp[] = {
(char **) &board0,
(char **) &board1,
(char **) &board2,
(char **) &board3
};
/*
* Define a set of common board names, and types. This is used to
* parse any module arguments.
*/
typedef struct stlibrdtype {
char *name;
int type;
} stlibrdtype_t;
static stlibrdtype_t stli_brdstr[] = {
{ "stallion", BRD_STALLION },
{ "1", BRD_STALLION },
{ "brumby", BRD_BRUMBY },
{ "brumby4", BRD_BRUMBY },
{ "brumby/4", BRD_BRUMBY },
{ "brumby-4", BRD_BRUMBY },
{ "brumby8", BRD_BRUMBY },
{ "brumby/8", BRD_BRUMBY },
{ "brumby-8", BRD_BRUMBY },
{ "brumby16", BRD_BRUMBY },
{ "brumby/16", BRD_BRUMBY },
{ "brumby-16", BRD_BRUMBY },
{ "2", BRD_BRUMBY },
{ "onboard2", BRD_ONBOARD2 },
{ "onboard-2", BRD_ONBOARD2 },
{ "onboard/2", BRD_ONBOARD2 },
{ "onboard-mc", BRD_ONBOARD2 },
{ "onboard/mc", BRD_ONBOARD2 },
{ "onboard-mca", BRD_ONBOARD2 },
{ "onboard/mca", BRD_ONBOARD2 },
{ "3", BRD_ONBOARD2 },
{ "onboard", BRD_ONBOARD },
{ "onboardat", BRD_ONBOARD },
{ "4", BRD_ONBOARD },
{ "onboarde", BRD_ONBOARDE },
{ "onboard-e", BRD_ONBOARDE },
{ "onboard/e", BRD_ONBOARDE },
{ "onboard-ei", BRD_ONBOARDE },
{ "onboard/ei", BRD_ONBOARDE },
{ "7", BRD_ONBOARDE },
{ "ecp", BRD_ECP },
{ "ecpat", BRD_ECP },
{ "ec8/64", BRD_ECP },
{ "ec8/64-at", BRD_ECP },
{ "ec8/64-isa", BRD_ECP },
{ "23", BRD_ECP },
{ "ecpe", BRD_ECPE },
{ "ecpei", BRD_ECPE },
{ "ec8/64-e", BRD_ECPE },
{ "ec8/64-ei", BRD_ECPE },
{ "24", BRD_ECPE },
{ "ecpmc", BRD_ECPMC },
{ "ec8/64-mc", BRD_ECPMC },
{ "ec8/64-mca", BRD_ECPMC },
{ "25", BRD_ECPMC },
{ "ecppci", BRD_ECPPCI },
{ "ec/ra", BRD_ECPPCI },
{ "ec/ra-pc", BRD_ECPPCI },
{ "ec/ra-pci", BRD_ECPPCI },
{ "29", BRD_ECPPCI },
};
/*
* Define the module agruments.
*/
MODULE_AUTHOR("Greg Ungerer");
MODULE_DESCRIPTION("Stallion Intelligent Multiport Serial Driver");
MODULE_LICENSE("GPL");
MODULE_PARM(board0, "1-3s");
MODULE_PARM_DESC(board0, "Board 0 config -> name[,ioaddr[,memaddr]");
MODULE_PARM(board1, "1-3s");
MODULE_PARM_DESC(board1, "Board 1 config -> name[,ioaddr[,memaddr]");
MODULE_PARM(board2, "1-3s");
MODULE_PARM_DESC(board2, "Board 2 config -> name[,ioaddr[,memaddr]");
MODULE_PARM(board3, "1-3s");
MODULE_PARM_DESC(board3, "Board 3 config -> name[,ioaddr[,memaddr]");
#endif
/*
* Set up a default memory address table for EISA board probing.
* The default addresses are all bellow 1Mbyte, which has to be the
* case anyway. They should be safe, since we only read values from
* them, and interrupts are disabled while we do it. If the higher
* memory support is compiled in then we also try probing around
* the 1Gb, 2Gb and 3Gb areas as well...
*/
static unsigned long stli_eisamemprobeaddrs[] = {
0xc0000, 0xd0000, 0xe0000, 0xf0000,
0x80000000, 0x80010000, 0x80020000, 0x80030000,
0x40000000, 0x40010000, 0x40020000, 0x40030000,
0xc0000000, 0xc0010000, 0xc0020000, 0xc0030000,
0xff000000, 0xff010000, 0xff020000, 0xff030000,
};
static int stli_eisamempsize = ARRAY_SIZE(stli_eisamemprobeaddrs);
/*
* Define the Stallion PCI vendor and device IDs.
*/
#ifdef CONFIG_PCI
#ifndef PCI_VENDOR_ID_STALLION
#define PCI_VENDOR_ID_STALLION 0x124d
#endif
#ifndef PCI_DEVICE_ID_ECRA
#define PCI_DEVICE_ID_ECRA 0x0004
#endif
static struct pci_device_id istallion_pci_tbl[] = {
{ PCI_VENDOR_ID_STALLION, PCI_DEVICE_ID_ECRA, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
{ 0 }
};
MODULE_DEVICE_TABLE(pci, istallion_pci_tbl);
#endif /* CONFIG_PCI */
/*****************************************************************************/
/*
* Hardware configuration info for ECP boards. These defines apply
* to the directly accessible io ports of the ECP. There is a set of
* defines for each ECP board type, ISA, EISA, MCA and PCI.
*/
#define ECP_IOSIZE 4
#define ECP_MEMSIZE (128 * 1024)
#define ECP_PCIMEMSIZE (256 * 1024)
#define ECP_ATPAGESIZE (4 * 1024)
#define ECP_MCPAGESIZE (4 * 1024)
#define ECP_EIPAGESIZE (64 * 1024)
#define ECP_PCIPAGESIZE (64 * 1024)
#define STL_EISAID 0x8c4e
/*
* Important defines for the ISA class of ECP board.
*/
#define ECP_ATIREG 0
#define ECP_ATCONFR 1
#define ECP_ATMEMAR 2
#define ECP_ATMEMPR 3
#define ECP_ATSTOP 0x1
#define ECP_ATINTENAB 0x10
#define ECP_ATENABLE 0x20
#define ECP_ATDISABLE 0x00
#define ECP_ATADDRMASK 0x3f000
#define ECP_ATADDRSHFT 12
/*
* Important defines for the EISA class of ECP board.
*/
#define ECP_EIIREG 0
#define ECP_EIMEMARL 1
#define ECP_EICONFR 2
#define ECP_EIMEMARH 3
#define ECP_EIENABLE 0x1
#define ECP_EIDISABLE 0x0
#define ECP_EISTOP 0x4
#define ECP_EIEDGE 0x00
#define ECP_EILEVEL 0x80
#define ECP_EIADDRMASKL 0x00ff0000
#define ECP_EIADDRSHFTL 16
#define ECP_EIADDRMASKH 0xff000000
#define ECP_EIADDRSHFTH 24
#define ECP_EIBRDENAB 0xc84
#define ECP_EISAID 0x4
/*
* Important defines for the Micro-channel class of ECP board.
* (It has a lot in common with the ISA boards.)
*/
#define ECP_MCIREG 0
#define ECP_MCCONFR 1
#define ECP_MCSTOP 0x20
#define ECP_MCENABLE 0x80
#define ECP_MCDISABLE 0x00
/*
* Important defines for the PCI class of ECP board.
* (It has a lot in common with the other ECP boards.)
*/
#define ECP_PCIIREG 0
#define ECP_PCICONFR 1
#define ECP_PCISTOP 0x01
/*
* Hardware configuration info for ONboard and Brumby boards. These
* defines apply to the directly accessible io ports of these boards.
*/
#define ONB_IOSIZE 16
#define ONB_MEMSIZE (64 * 1024)
#define ONB_ATPAGESIZE (64 * 1024)
#define ONB_MCPAGESIZE (64 * 1024)
#define ONB_EIMEMSIZE (128 * 1024)
#define ONB_EIPAGESIZE (64 * 1024)
/*
* Important defines for the ISA class of ONboard board.
*/
#define ONB_ATIREG 0
#define ONB_ATMEMAR 1
#define ONB_ATCONFR 2
#define ONB_ATSTOP 0x4
#define ONB_ATENABLE 0x01
#define ONB_ATDISABLE 0x00
#define ONB_ATADDRMASK 0xff0000
#define ONB_ATADDRSHFT 16
#define ONB_MEMENABLO 0
#define ONB_MEMENABHI 0x02
/*
* Important defines for the EISA class of ONboard board.
*/
#define ONB_EIIREG 0
#define ONB_EIMEMARL 1
#define ONB_EICONFR 2
#define ONB_EIMEMARH 3
#define ONB_EIENABLE 0x1
#define ONB_EIDISABLE 0x0
#define ONB_EISTOP 0x4
#define ONB_EIEDGE 0x00
#define ONB_EILEVEL 0x80
#define ONB_EIADDRMASKL 0x00ff0000
#define ONB_EIADDRSHFTL 16
#define ONB_EIADDRMASKH 0xff000000
#define ONB_EIADDRSHFTH 24
#define ONB_EIBRDENAB 0xc84
#define ONB_EISAID 0x1
/*
* Important defines for the Brumby boards. They are pretty simple,
* there is not much that is programmably configurable.
*/
#define BBY_IOSIZE 16
#define BBY_MEMSIZE (64 * 1024)
#define BBY_PAGESIZE (16 * 1024)
#define BBY_ATIREG 0
#define BBY_ATCONFR 1
#define BBY_ATSTOP 0x4
/*
* Important defines for the Stallion boards. They are pretty simple,
* there is not much that is programmably configurable.
*/
#define STAL_IOSIZE 16
#define STAL_MEMSIZE (64 * 1024)
#define STAL_PAGESIZE (64 * 1024)
/*
* Define the set of status register values for EasyConnection panels.
* The signature will return with the status value for each panel. From
* this we can determine what is attached to the board - before we have
* actually down loaded any code to it.
*/
#define ECH_PNLSTATUS 2
#define ECH_PNL16PORT 0x20
#define ECH_PNLIDMASK 0x07
#define ECH_PNLXPID 0x40
#define ECH_PNLINTRPEND 0x80
/*
* Define some macros to do things to the board. Even those these boards
* are somewhat related there is often significantly different ways of
* doing some operation on it (like enable, paging, reset, etc). So each
* board class has a set of functions which do the commonly required
* operations. The macros below basically just call these functions,
* generally checking for a NULL function - which means that the board
* needs nothing done to it to achieve this operation!
*/
#define EBRDINIT(brdp) \
if (brdp->init != NULL) \
(* brdp->init)(brdp)
#define EBRDENABLE(brdp) \
if (brdp->enable != NULL) \
(* brdp->enable)(brdp);
#define EBRDDISABLE(brdp) \
if (brdp->disable != NULL) \
(* brdp->disable)(brdp);
#define EBRDINTR(brdp) \
if (brdp->intr != NULL) \
(* brdp->intr)(brdp);
#define EBRDRESET(brdp) \
if (brdp->reset != NULL) \
(* brdp->reset)(brdp);
#define EBRDGETMEMPTR(brdp,offset) \
(* brdp->getmemptr)(brdp, offset, __LINE__)
/*
* Define the maximal baud rate, and the default baud base for ports.
*/
#define STL_MAXBAUD 460800
#define STL_BAUDBASE 115200
#define STL_CLOSEDELAY (5 * HZ / 10)
/*****************************************************************************/
/*
* Define macros to extract a brd or port number from a minor number.
*/
#define MINOR2BRD(min) (((min) & 0xc0) >> 6)
#define MINOR2PORT(min) ((min) & 0x3f)
/*
* Define a baud rate table that converts termios baud rate selector
* into the actual baud rate value. All baud rate calculations are based
* on the actual baud rate required.
*/
static unsigned int stli_baudrates[] = {
0, 50, 75, 110, 134, 150, 200, 300, 600, 1200, 1800, 2400, 4800,
9600, 19200, 38400, 57600, 115200, 230400, 460800, 921600
};
/*****************************************************************************/
/*
* Define some handy local macros...
*/
#undef MIN
#define MIN(a,b) (((a) <= (b)) ? (a) : (b))
#undef TOLOWER
#define TOLOWER(x) ((((x) >= 'A') && ((x) <= 'Z')) ? ((x) + 0x20) : (x))
/*****************************************************************************/
/*
* Prototype all functions in this driver!
*/
#ifdef MODULE
static void stli_argbrds(void);
static int stli_parsebrd(stlconf_t *confp, char **argp);
static unsigned long stli_atol(char *str);
#endif
int stli_init(void);
static int stli_open(struct tty_struct *tty, struct file *filp);
static void stli_close(struct tty_struct *tty, struct file *filp);
static int stli_write(struct tty_struct *tty, const unsigned char *buf, int count);
static void stli_putchar(struct tty_struct *tty, unsigned char ch);
static void stli_flushchars(struct tty_struct *tty);
static int stli_writeroom(struct tty_struct *tty);
static int stli_charsinbuffer(struct tty_struct *tty);
static int stli_ioctl(struct tty_struct *tty, struct file *file, unsigned int cmd, unsigned long arg);
static void stli_settermios(struct tty_struct *tty, struct termios *old);
static void stli_throttle(struct tty_struct *tty);
static void stli_unthrottle(struct tty_struct *tty);
static void stli_stop(struct tty_struct *tty);
static void stli_start(struct tty_struct *tty);
static void stli_flushbuffer(struct tty_struct *tty);
static void stli_breakctl(struct tty_struct *tty, int state);
static void stli_waituntilsent(struct tty_struct *tty, int timeout);
static void stli_sendxchar(struct tty_struct *tty, char ch);
static void stli_hangup(struct tty_struct *tty);
static int stli_portinfo(stlibrd_t *brdp, stliport_t *portp, int portnr, char *pos);
static int stli_brdinit(stlibrd_t *brdp);
static int stli_startbrd(stlibrd_t *brdp);
static ssize_t stli_memread(struct file *fp, char __user *buf, size_t count, loff_t *offp);
static ssize_t stli_memwrite(struct file *fp, const char __user *buf, size_t count, loff_t *offp);
static int stli_memioctl(struct inode *ip, struct file *fp, unsigned int cmd, unsigned long arg);
static void stli_brdpoll(stlibrd_t *brdp, volatile cdkhdr_t *hdrp);
static void stli_poll(unsigned long arg);
static int stli_hostcmd(stlibrd_t *brdp, stliport_t *portp);
static int stli_initopen(stlibrd_t *brdp, stliport_t *portp);
static int stli_rawopen(stlibrd_t *brdp, stliport_t *portp, unsigned long arg, int wait);
static int stli_rawclose(stlibrd_t *brdp, stliport_t *portp, unsigned long arg, int wait);
static int stli_waitcarrier(stlibrd_t *brdp, stliport_t *portp, struct file *filp);
static void stli_dohangup(void *arg);
static int stli_setport(stliport_t *portp);
static int stli_cmdwait(stlibrd_t *brdp, stliport_t *portp, unsigned long cmd, void *arg, int size, int copyback);
static void stli_sendcmd(stlibrd_t *brdp, stliport_t *portp, unsigned long cmd, void *arg, int size, int copyback);
static void stli_dodelaycmd(stliport_t *portp, volatile cdkctrl_t *cp);
static void stli_mkasyport(stliport_t *portp, asyport_t *pp, struct termios *tiosp);
static void stli_mkasysigs(asysigs_t *sp, int dtr, int rts);
static long stli_mktiocm(unsigned long sigvalue);
static void stli_read(stlibrd_t *brdp, stliport_t *portp);
static int stli_getserial(stliport_t *portp, struct serial_struct __user *sp);
static int stli_setserial(stliport_t *portp, struct serial_struct __user *sp);
static int stli_getbrdstats(combrd_t __user *bp);
static int stli_getportstats(stliport_t *portp, comstats_t __user *cp);
static int stli_portcmdstats(stliport_t *portp);
static int stli_clrportstats(stliport_t *portp, comstats_t __user *cp);
static int stli_getportstruct(stliport_t __user *arg);
static int stli_getbrdstruct(stlibrd_t __user *arg);
static void *stli_memalloc(int len);
static stlibrd_t *stli_allocbrd(void);
static void stli_ecpinit(stlibrd_t *brdp);
static void stli_ecpenable(stlibrd_t *brdp);
static void stli_ecpdisable(stlibrd_t *brdp);
static char *stli_ecpgetmemptr(stlibrd_t *brdp, unsigned long offset, int line);
static void stli_ecpreset(stlibrd_t *brdp);
static void stli_ecpintr(stlibrd_t *brdp);
static void stli_ecpeiinit(stlibrd_t *brdp);
static void stli_ecpeienable(stlibrd_t *brdp);
static void stli_ecpeidisable(stlibrd_t *brdp);
static char *stli_ecpeigetmemptr(stlibrd_t *brdp, unsigned long offset, int line);
static void stli_ecpeireset(stlibrd_t *brdp);
static void stli_ecpmcenable(stlibrd_t *brdp);
static void stli_ecpmcdisable(stlibrd_t *brdp);
static char *stli_ecpmcgetmemptr(stlibrd_t *brdp, unsigned long offset, int line);
static void stli_ecpmcreset(stlibrd_t *brdp);
static void stli_ecppciinit(stlibrd_t *brdp);
static char *stli_ecppcigetmemptr(stlibrd_t *brdp, unsigned long offset, int line);
static void stli_ecppcireset(stlibrd_t *brdp);
static void stli_onbinit(stlibrd_t *brdp);
static void stli_onbenable(stlibrd_t *brdp);
static void stli_onbdisable(stlibrd_t *brdp);
static char *stli_onbgetmemptr(stlibrd_t *brdp, unsigned long offset, int line);
static void stli_onbreset(stlibrd_t *brdp);
static void stli_onbeinit(stlibrd_t *brdp);
static void stli_onbeenable(stlibrd_t *brdp);
static void stli_onbedisable(stlibrd_t *brdp);
static char *stli_onbegetmemptr(stlibrd_t *brdp, unsigned long offset, int line);
static void stli_onbereset(stlibrd_t *brdp);
static void stli_bbyinit(stlibrd_t *brdp);
static char *stli_bbygetmemptr(stlibrd_t *brdp, unsigned long offset, int line);
static void stli_bbyreset(stlibrd_t *brdp);
static void stli_stalinit(stlibrd_t *brdp);
static char *stli_stalgetmemptr(stlibrd_t *brdp, unsigned long offset, int line);
static void stli_stalreset(stlibrd_t *brdp);
static stliport_t *stli_getport(int brdnr, int panelnr, int portnr);
static int stli_initecp(stlibrd_t *brdp);
static int stli_initonb(stlibrd_t *brdp);
static int stli_eisamemprobe(stlibrd_t *brdp);
static int stli_initports(stlibrd_t *brdp);
#ifdef CONFIG_PCI
static int stli_initpcibrd(int brdtype, struct pci_dev *devp);
#endif
/*****************************************************************************/
/*
* Define the driver info for a user level shared memory device. This
* device will work sort of like the /dev/kmem device - except that it
* will give access to the shared memory on the Stallion intelligent
* board. This is also a very useful debugging tool.
*/
static struct file_operations stli_fsiomem = {
.owner = THIS_MODULE,
.read = stli_memread,
.write = stli_memwrite,
.ioctl = stli_memioctl,
};
/*****************************************************************************/
/*
* Define a timer_list entry for our poll routine. The slave board
* is polled every so often to see if anything needs doing. This is
* much cheaper on host cpu than using interrupts. It turns out to
* not increase character latency by much either...
*/
static DEFINE_TIMER(stli_timerlist, stli_poll, 0, 0);
static int stli_timeron;
/*
* Define the calculation for the timeout routine.
*/
#define STLI_TIMEOUT (jiffies + 1)
/*****************************************************************************/
static struct class *istallion_class;
#ifdef MODULE
/*
* Loadable module initialization stuff.
*/
static int __init istallion_module_init(void)
{
unsigned long flags;
#ifdef DEBUG
printk("init_module()\n");
#endif
save_flags(flags);
cli();
stli_init();
restore_flags(flags);
return(0);
}
/*****************************************************************************/
static void __exit istallion_module_exit(void)
{
stlibrd_t *brdp;
stliport_t *portp;
unsigned long flags;
int i, j;
#ifdef DEBUG
printk("cleanup_module()\n");
#endif
printk(KERN_INFO "Unloading %s: version %s\n", stli_drvtitle,
stli_drvversion);
save_flags(flags);
cli();
/*
* Free up all allocated resources used by the ports. This includes
* memory and interrupts.
*/
if (stli_timeron) {
stli_timeron = 0;
del_timer(&stli_timerlist);
}
i = tty_unregister_driver(stli_serial);
if (i) {
printk("STALLION: failed to un-register tty driver, "
"errno=%d\n", -i);
restore_flags(flags);
return;
}
put_tty_driver(stli_serial);
for (i = 0; i < 4; i++) {
devfs_remove("staliomem/%d", i);
class_device_destroy(istallion_class, MKDEV(STL_SIOMEMMAJOR, i));
}
devfs_remove("staliomem");
class_destroy(istallion_class);
if ((i = unregister_chrdev(STL_SIOMEMMAJOR, "staliomem")))
printk("STALLION: failed to un-register serial memory device, "
"errno=%d\n", -i);
kfree(stli_tmpwritebuf);
kfree(stli_txcookbuf);
for (i = 0; (i < stli_nrbrds); i++) {
if ((brdp = stli_brds[i]) == (stlibrd_t *) NULL)
continue;
for (j = 0; (j < STL_MAXPORTS); j++) {
portp = brdp->ports[j];
if (portp != (stliport_t *) NULL) {
if (portp->tty != (struct tty_struct *) NULL)
tty_hangup(portp->tty);
kfree(portp);
}
}
iounmap(brdp->membase);
if (brdp->iosize > 0)
release_region(brdp->iobase, brdp->iosize);
kfree(brdp);
stli_brds[i] = (stlibrd_t *) NULL;
}
restore_flags(flags);
}
module_init(istallion_module_init);
module_exit(istallion_module_exit);
/*****************************************************************************/
/*
* Check for any arguments passed in on the module load command line.
*/
static void stli_argbrds(void)
{
stlconf_t conf;
stlibrd_t *brdp;
int i;
#ifdef DEBUG
printk("stli_argbrds()\n");
#endif
for (i = stli_nrbrds; i < ARRAY_SIZE(stli_brdsp); i++) {
memset(&conf, 0, sizeof(conf));
if (stli_parsebrd(&conf, stli_brdsp[i]) == 0)
continue;
if ((brdp = stli_allocbrd()) == (stlibrd_t *) NULL)
continue;
stli_nrbrds = i + 1;
brdp->brdnr = i;
brdp->brdtype = conf.brdtype;
brdp->iobase = conf.ioaddr1;
brdp->memaddr = conf.memaddr;
stli_brdinit(brdp);
}
}
/*****************************************************************************/
/*
* Convert an ascii string number into an unsigned long.
*/
static unsigned long stli_atol(char *str)
{
unsigned long val;
int base, c;
char *sp;
val = 0;
sp = str;
if ((*sp == '0') && (*(sp+1) == 'x')) {
base = 16;
sp += 2;
} else if (*sp == '0') {
base = 8;
sp++;
} else {
base = 10;
}
for (; (*sp != 0); sp++) {
c = (*sp > '9') ? (TOLOWER(*sp) - 'a' + 10) : (*sp - '0');
if ((c < 0) || (c >= base)) {
printk("STALLION: invalid argument %s\n", str);
val = 0;
break;
}
val = (val * base) + c;
}
return(val);
}
/*****************************************************************************/
/*
* Parse the supplied argument string, into the board conf struct.
*/
static int stli_parsebrd(stlconf_t *confp, char **argp)
{
char *sp;
int i;
#ifdef DEBUG
printk("stli_parsebrd(confp=%x,argp=%x)\n", (int) confp, (int) argp);
#endif
if ((argp[0] == (char *) NULL) || (*argp[0] == 0))
return(0);
for (sp = argp[0], i = 0; ((*sp != 0) && (i < 25)); sp++, i++)
*sp = TOLOWER(*sp);
for (i = 0; i < ARRAY_SIZE(stli_brdstr); i++) {
if (strcmp(stli_brdstr[i].name, argp[0]) == 0)
break;
}
if (i == ARRAY_SIZE(stli_brdstr)) {
printk("STALLION: unknown board name, %s?\n", argp[0]);
return 0;
}
confp->brdtype = stli_brdstr[i].type;
if ((argp[1] != (char *) NULL) && (*argp[1] != 0))
confp->ioaddr1 = stli_atol(argp[1]);
if ((argp[2] != (char *) NULL) && (*argp[2] != 0))
confp->memaddr = stli_atol(argp[2]);
return(1);
}
#endif
/*****************************************************************************/
/*
* Local driver kernel malloc routine.
*/
static void *stli_memalloc(int len)
{
return((void *) kmalloc(len, GFP_KERNEL));
}
/*****************************************************************************/
static int stli_open(struct tty_struct *tty, struct file *filp)
{
stlibrd_t *brdp;
stliport_t *portp;
unsigned int minordev;
int brdnr, portnr, rc;
#ifdef DEBUG
printk("stli_open(tty=%x,filp=%x): device=%s\n", (int) tty,
(int) filp, tty->name);
#endif
minordev = tty->index;
brdnr = MINOR2BRD(minordev);
if (brdnr >= stli_nrbrds)
return(-ENODEV);
brdp = stli_brds[brdnr];
if (brdp == (stlibrd_t *) NULL)
return(-ENODEV);
if ((brdp->state & BST_STARTED) == 0)
return(-ENODEV);
portnr = MINOR2PORT(minordev);
if ((portnr < 0) || (portnr > brdp->nrports))
return(-ENODEV);
portp = brdp->ports[portnr];
if (portp == (stliport_t *) NULL)
return(-ENODEV);
if (portp->devnr < 1)
return(-ENODEV);
/*
* Check if this port is in the middle of closing. If so then wait
* until it is closed then return error status based on flag settings.
* The sleep here does not need interrupt protection since the wakeup
* for it is done with the same context.
*/
if (portp->flags & ASYNC_CLOSING) {
interruptible_sleep_on(&portp->close_wait);
if (portp->flags & ASYNC_HUP_NOTIFY)
return(-EAGAIN);
return(-ERESTARTSYS);
}
/*
* On the first open of the device setup the port hardware, and
* initialize the per port data structure. Since initializing the port
* requires several commands to the board we will need to wait for any
* other open that is already initializing the port.
*/
portp->tty = tty;
tty->driver_data = portp;
portp->refcount++;
wait_event_interruptible(portp->raw_wait,
!test_bit(ST_INITIALIZING, &portp->state));
if (signal_pending(current))
return(-ERESTARTSYS);
if ((portp->flags & ASYNC_INITIALIZED) == 0) {
set_bit(ST_INITIALIZING, &portp->state);
if ((rc = stli_initopen(brdp, portp)) >= 0) {
portp->flags |= ASYNC_INITIALIZED;
clear_bit(TTY_IO_ERROR, &tty->flags);
}
clear_bit(ST_INITIALIZING, &portp->state);
wake_up_interruptible(&portp->raw_wait);
if (rc < 0)
return(rc);
}
/*
* Check if this port is in the middle of closing. If so then wait
* until it is closed then return error status, based on flag settings.
* The sleep here does not need interrupt protection since the wakeup
* for it is done with the same context.
*/
if (portp->flags & ASYNC_CLOSING) {
interruptible_sleep_on(&portp->close_wait);
if (portp->flags & ASYNC_HUP_NOTIFY)
return(-EAGAIN);
return(-ERESTARTSYS);
}
/*
* Based on type of open being done check if it can overlap with any
* previous opens still in effect. If we are a normal serial device
* then also we might have to wait for carrier.
*/
if (!(filp->f_flags & O_NONBLOCK)) {
if ((rc = stli_waitcarrier(brdp, portp, filp)) != 0)
return(rc);
}
portp->flags |= ASYNC_NORMAL_ACTIVE;
return(0);
}
/*****************************************************************************/
static void stli_close(struct tty_struct *tty, struct file *filp)
{
stlibrd_t *brdp;
stliport_t *portp;
unsigned long flags;
#ifdef DEBUG
printk("stli_close(tty=%x,filp=%x)\n", (int) tty, (int) filp);
#endif
portp = tty->driver_data;
if (portp == (stliport_t *) NULL)
return;
save_flags(flags);
cli();
if (tty_hung_up_p(filp)) {
restore_flags(flags);
return;
}
if ((tty->count == 1) && (portp->refcount != 1))
portp->refcount = 1;
if (portp->refcount-- > 1) {
restore_flags(flags);
return;
}
portp->flags |= ASYNC_CLOSING;
/*
* May want to wait for data to drain before closing. The BUSY flag
* keeps track of whether we are still transmitting or not. It is
* updated by messages from the slave - indicating when all chars
* really have drained.
*/
if (tty == stli_txcooktty)
stli_flushchars(tty);
tty->closing = 1;
if (portp->closing_wait != ASYNC_CLOSING_WAIT_NONE)
tty_wait_until_sent(tty, portp->closing_wait);
portp->flags &= ~ASYNC_INITIALIZED;
brdp = stli_brds[portp->brdnr];
stli_rawclose(brdp, portp, 0, 0);
if (tty->termios->c_cflag & HUPCL) {
stli_mkasysigs(&portp->asig, 0, 0);
if (test_bit(ST_CMDING, &portp->state))
set_bit(ST_DOSIGS, &portp->state);
else
stli_sendcmd(brdp, portp, A_SETSIGNALS, &portp->asig,
sizeof(asysigs_t), 0);
}
clear_bit(ST_TXBUSY, &portp->state);
clear_bit(ST_RXSTOP, &portp->state);
set_bit(TTY_IO_ERROR, &tty->flags);
if (tty->ldisc.flush_buffer)
(tty->ldisc.flush_buffer)(tty);
set_bit(ST_DOFLUSHRX, &portp->state);
stli_flushbuffer(tty);
tty->closing = 0;
portp->tty = (struct tty_struct *) NULL;
if (portp->openwaitcnt) {
if (portp->close_delay)
msleep_interruptible(jiffies_to_msecs(portp->close_delay));
wake_up_interruptible(&portp->open_wait);
}
portp->flags &= ~(ASYNC_NORMAL_ACTIVE|ASYNC_CLOSING);
wake_up_interruptible(&portp->close_wait);
restore_flags(flags);
}
/*****************************************************************************/
/*
* Carry out first open operations on a port. This involves a number of
* commands to be sent to the slave. We need to open the port, set the
* notification events, set the initial port settings, get and set the
* initial signal values. We sleep and wait in between each one. But
* this still all happens pretty quickly.
*/
static int stli_initopen(stlibrd_t *brdp, stliport_t *portp)
{
struct tty_struct *tty;
asynotify_t nt;
asyport_t aport;
int rc;
#ifdef DEBUG
printk("stli_initopen(brdp=%x,portp=%x)\n", (int) brdp, (int) portp);
#endif
if ((rc = stli_rawopen(brdp, portp, 0, 1)) < 0)
return(rc);
memset(&nt, 0, sizeof(asynotify_t));
nt.data = (DT_TXLOW | DT_TXEMPTY | DT_RXBUSY | DT_RXBREAK);
nt.signal = SG_DCD;
if ((rc = stli_cmdwait(brdp, portp, A_SETNOTIFY, &nt,
sizeof(asynotify_t), 0)) < 0)
return(rc);
tty = portp->tty;
if (tty == (struct tty_struct *) NULL)
return(-ENODEV);
stli_mkasyport(portp, &aport, tty->termios);
if ((rc = stli_cmdwait(brdp, portp, A_SETPORT, &aport,
sizeof(asyport_t), 0)) < 0)
return(rc);
set_bit(ST_GETSIGS, &portp->state);
if ((rc = stli_cmdwait(brdp, portp, A_GETSIGNALS, &portp->asig,
sizeof(asysigs_t), 1)) < 0)
return(rc);
if (test_and_clear_bit(ST_GETSIGS, &portp->state))
portp->sigs = stli_mktiocm(portp->asig.sigvalue);
stli_mkasysigs(&portp->asig, 1, 1);
if ((rc = stli_cmdwait(brdp, portp, A_SETSIGNALS, &portp->asig,
sizeof(asysigs_t), 0)) < 0)
return(rc);
return(0);
}
/*****************************************************************************/
/*
* Send an open message to the slave. This will sleep waiting for the
* acknowledgement, so must have user context. We need to co-ordinate
* with close events here, since we don't want open and close events
* to overlap.
*/
static int stli_rawopen(stlibrd_t *brdp, stliport_t *portp, unsigned long arg, int wait)
{
volatile cdkhdr_t *hdrp;
volatile cdkctrl_t *cp;
volatile unsigned char *bits;
unsigned long flags;
int rc;
#ifdef DEBUG
printk("stli_rawopen(brdp=%x,portp=%x,arg=%x,wait=%d)\n",
(int) brdp, (int) portp, (int) arg, wait);
#endif
/*
* Send a message to the slave to open this port.
*/
save_flags(flags);
cli();
/*
* Slave is already closing this port. This can happen if a hangup
* occurs on this port. So we must wait until it is complete. The
* order of opens and closes may not be preserved across shared
* memory, so we must wait until it is complete.
*/
wait_event_interruptible(portp->raw_wait,
!test_bit(ST_CLOSING, &portp->state));
if (signal_pending(current)) {
restore_flags(flags);
return -ERESTARTSYS;
}
/*
* Everything is ready now, so write the open message into shared
* memory. Once the message is in set the service bits to say that
* this port wants service.
*/
EBRDENABLE(brdp);
cp = &((volatile cdkasy_t *) EBRDGETMEMPTR(brdp, portp->addr))->ctrl;
cp->openarg = arg;
cp->open = 1;
hdrp = (volatile cdkhdr_t *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
bits = ((volatile unsigned char *) hdrp) + brdp->slaveoffset +
portp->portidx;
*bits |= portp->portbit;
EBRDDISABLE(brdp);
if (wait == 0) {
restore_flags(flags);
return(0);
}
/*
* Slave is in action, so now we must wait for the open acknowledgment
* to come back.
*/
rc = 0;
set_bit(ST_OPENING, &portp->state);
wait_event_interruptible(portp->raw_wait,
!test_bit(ST_OPENING, &portp->state));
if (signal_pending(current))
rc = -ERESTARTSYS;
restore_flags(flags);
if ((rc == 0) && (portp->rc != 0))
rc = -EIO;
return(rc);
}
/*****************************************************************************/
/*
* Send a close message to the slave. Normally this will sleep waiting
* for the acknowledgement, but if wait parameter is 0 it will not. If
* wait is true then must have user context (to sleep).
*/
static int stli_rawclose(stlibrd_t *brdp, stliport_t *portp, unsigned long arg, int wait)
{
volatile cdkhdr_t *hdrp;
volatile cdkctrl_t *cp;
volatile unsigned char *bits;
unsigned long flags;
int rc;
#ifdef DEBUG
printk("stli_rawclose(brdp=%x,portp=%x,arg=%x,wait=%d)\n",
(int) brdp, (int) portp, (int) arg, wait);
#endif
save_flags(flags);
cli();
/*
* Slave is already closing this port. This can happen if a hangup
* occurs on this port.
*/
if (wait) {
wait_event_interruptible(portp->raw_wait,
!test_bit(ST_CLOSING, &portp->state));
if (signal_pending(current)) {
restore_flags(flags);
return -ERESTARTSYS;
}
}
/*
* Write the close command into shared memory.
*/
EBRDENABLE(brdp);
cp = &((volatile cdkasy_t *) EBRDGETMEMPTR(brdp, portp->addr))->ctrl;
cp->closearg = arg;
cp->close = 1;
hdrp = (volatile cdkhdr_t *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
bits = ((volatile unsigned char *) hdrp) + brdp->slaveoffset +
portp->portidx;
*bits |= portp->portbit;
EBRDDISABLE(brdp);
set_bit(ST_CLOSING, &portp->state);
if (wait == 0) {
restore_flags(flags);
return(0);
}
/*
* Slave is in action, so now we must wait for the open acknowledgment
* to come back.
*/
rc = 0;
wait_event_interruptible(portp->raw_wait,
!test_bit(ST_CLOSING, &portp->state));
if (signal_pending(current))
rc = -ERESTARTSYS;
restore_flags(flags);
if ((rc == 0) && (portp->rc != 0))
rc = -EIO;
return(rc);
}
/*****************************************************************************/
/*
* Send a command to the slave and wait for the response. This must
* have user context (it sleeps). This routine is generic in that it
* can send any type of command. Its purpose is to wait for that command
* to complete (as opposed to initiating the command then returning).
*/
static int stli_cmdwait(stlibrd_t *brdp, stliport_t *portp, unsigned long cmd, void *arg, int size, int copyback)
{
unsigned long flags;
#ifdef DEBUG
printk("stli_cmdwait(brdp=%x,portp=%x,cmd=%x,arg=%x,size=%d,"
"copyback=%d)\n", (int) brdp, (int) portp, (int) cmd,
(int) arg, size, copyback);
#endif
save_flags(flags);
cli();
wait_event_interruptible(portp->raw_wait,
!test_bit(ST_CMDING, &portp->state));
if (signal_pending(current)) {
restore_flags(flags);
return -ERESTARTSYS;
}
stli_sendcmd(brdp, portp, cmd, arg, size, copyback);
wait_event_interruptible(portp->raw_wait,
!test_bit(ST_CMDING, &portp->state));
if (signal_pending(current)) {
restore_flags(flags);
return -ERESTARTSYS;
}
restore_flags(flags);
if (portp->rc != 0)
return(-EIO);
return(0);
}
/*****************************************************************************/
/*
* Send the termios settings for this port to the slave. This sleeps
* waiting for the command to complete - so must have user context.
*/
static int stli_setport(stliport_t *portp)
{
stlibrd_t *brdp;
asyport_t aport;
#ifdef DEBUG
printk("stli_setport(portp=%x)\n", (int) portp);
#endif
if (portp == (stliport_t *) NULL)
return(-ENODEV);
if (portp->tty == (struct tty_struct *) NULL)
return(-ENODEV);
if ((portp->brdnr < 0) && (portp->brdnr >= stli_nrbrds))
return(-ENODEV);
brdp = stli_brds[portp->brdnr];
if (brdp == (stlibrd_t *) NULL)
return(-ENODEV);
stli_mkasyport(portp, &aport, portp->tty->termios);
return(stli_cmdwait(brdp, portp, A_SETPORT, &aport, sizeof(asyport_t), 0));
}
/*****************************************************************************/
/*
* Possibly need to wait for carrier (DCD signal) to come high. Say
* maybe because if we are clocal then we don't need to wait...
*/
static int stli_waitcarrier(stlibrd_t *brdp, stliport_t *portp, struct file *filp)
{
unsigned long flags;
int rc, doclocal;
#ifdef DEBUG
printk("stli_waitcarrier(brdp=%x,portp=%x,filp=%x)\n",
(int) brdp, (int) portp, (int) filp);
#endif
rc = 0;
doclocal = 0;
if (portp->tty->termios->c_cflag & CLOCAL)
doclocal++;
save_flags(flags);
cli();
portp->openwaitcnt++;
if (! tty_hung_up_p(filp))
portp->refcount--;
for (;;) {
stli_mkasysigs(&portp->asig, 1, 1);
if ((rc = stli_cmdwait(brdp, portp, A_SETSIGNALS,
&portp->asig, sizeof(asysigs_t), 0)) < 0)
break;
if (tty_hung_up_p(filp) ||
((portp->flags & ASYNC_INITIALIZED) == 0)) {
if (portp->flags & ASYNC_HUP_NOTIFY)
rc = -EBUSY;
else
rc = -ERESTARTSYS;
break;
}
if (((portp->flags & ASYNC_CLOSING) == 0) &&
(doclocal || (portp->sigs & TIOCM_CD))) {
break;
}
if (signal_pending(current)) {
rc = -ERESTARTSYS;
break;
}
interruptible_sleep_on(&portp->open_wait);
}
if (! tty_hung_up_p(filp))
portp->refcount++;
portp->openwaitcnt--;
restore_flags(flags);
return(rc);
}
/*****************************************************************************/
/*
* Write routine. Take the data and put it in the shared memory ring
* queue. If port is not already sending chars then need to mark the
* service bits for this port.
*/
static int stli_write(struct tty_struct *tty, const unsigned char *buf, int count)
{
volatile cdkasy_t *ap;
volatile cdkhdr_t *hdrp;
volatile unsigned char *bits;
unsigned char *shbuf, *chbuf;
stliport_t *portp;
stlibrd_t *brdp;
unsigned int len, stlen, head, tail, size;
unsigned long flags;
#ifdef DEBUG
printk("stli_write(tty=%x,buf=%x,count=%d)\n",
(int) tty, (int) buf, count);
#endif
if ((tty == (struct tty_struct *) NULL) ||
(stli_tmpwritebuf == (char *) NULL))
return(0);
if (tty == stli_txcooktty)
stli_flushchars(tty);
portp = tty->driver_data;
if (portp == (stliport_t *) NULL)
return(0);
if ((portp->brdnr < 0) || (portp->brdnr >= stli_nrbrds))
return(0);
brdp = stli_brds[portp->brdnr];
if (brdp == (stlibrd_t *) NULL)
return(0);
chbuf = (unsigned char *) buf;
/*
* All data is now local, shove as much as possible into shared memory.
*/
save_flags(flags);
cli();
EBRDENABLE(brdp);
ap = (volatile cdkasy_t *) EBRDGETMEMPTR(brdp, portp->addr);
head = (unsigned int) ap->txq.head;
tail = (unsigned int) ap->txq.tail;
if (tail != ((unsigned int) ap->txq.tail))
tail = (unsigned int) ap->txq.tail;
size = portp->txsize;
if (head >= tail) {
len = size - (head - tail) - 1;
stlen = size - head;
} else {
len = tail - head - 1;
stlen = len;
}
len = MIN(len, count);
count = 0;
shbuf = (char *) EBRDGETMEMPTR(brdp, portp->txoffset);
while (len > 0) {
stlen = MIN(len, stlen);
memcpy((shbuf + head), chbuf, stlen);
chbuf += stlen;
len -= stlen;
count += stlen;
head += stlen;
if (head >= size) {
head = 0;
stlen = tail;
}
}
ap = (volatile cdkasy_t *) EBRDGETMEMPTR(brdp, portp->addr);
ap->txq.head = head;
if (test_bit(ST_TXBUSY, &portp->state)) {
if (ap->changed.data & DT_TXEMPTY)
ap->changed.data &= ~DT_TXEMPTY;
}
hdrp = (volatile cdkhdr_t *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
bits = ((volatile unsigned char *) hdrp) + brdp->slaveoffset +
portp->portidx;
*bits |= portp->portbit;
set_bit(ST_TXBUSY, &portp->state);
EBRDDISABLE(brdp);
restore_flags(flags);
return(count);
}
/*****************************************************************************/
/*
* Output a single character. We put it into a temporary local buffer
* (for speed) then write out that buffer when the flushchars routine
* is called. There is a safety catch here so that if some other port
* writes chars before the current buffer has been, then we write them
* first them do the new ports.
*/
static void stli_putchar(struct tty_struct *tty, unsigned char ch)
{
#ifdef DEBUG
printk("stli_putchar(tty=%x,ch=%x)\n", (int) tty, (int) ch);
#endif
if (tty == (struct tty_struct *) NULL)
return;
if (tty != stli_txcooktty) {
if (stli_txcooktty != (struct tty_struct *) NULL)
stli_flushchars(stli_txcooktty);
stli_txcooktty = tty;
}
stli_txcookbuf[stli_txcooksize++] = ch;
}
/*****************************************************************************/
/*
* Transfer characters from the local TX cooking buffer to the board.
* We sort of ignore the tty that gets passed in here. We rely on the
* info stored with the TX cook buffer to tell us which port to flush
* the data on. In any case we clean out the TX cook buffer, for re-use
* by someone else.
*/
static void stli_flushchars(struct tty_struct *tty)
{
volatile cdkhdr_t *hdrp;
volatile unsigned char *bits;
volatile cdkasy_t *ap;
struct tty_struct *cooktty;
stliport_t *portp;
stlibrd_t *brdp;
unsigned int len, stlen, head, tail, size, count, cooksize;
unsigned char *buf, *shbuf;
unsigned long flags;
#ifdef DEBUG
printk("stli_flushchars(tty=%x)\n", (int) tty);
#endif
cooksize = stli_txcooksize;
cooktty = stli_txcooktty;
stli_txcooksize = 0;
stli_txcookrealsize = 0;
stli_txcooktty = (struct tty_struct *) NULL;
if (tty == (struct tty_struct *) NULL)
return;
if (cooktty == (struct tty_struct *) NULL)
return;
if (tty != cooktty)
tty = cooktty;
if (cooksize == 0)
return;
portp = tty->driver_data;
if (portp == (stliport_t *) NULL)
return;
if ((portp->brdnr < 0) || (portp->brdnr >= stli_nrbrds))
return;
brdp = stli_brds[portp->brdnr];
if (brdp == (stlibrd_t *) NULL)
return;
save_flags(flags);
cli();
EBRDENABLE(brdp);
ap = (volatile cdkasy_t *) EBRDGETMEMPTR(brdp, portp->addr);
head = (unsigned int) ap->txq.head;
tail = (unsigned int) ap->txq.tail;
if (tail != ((unsigned int) ap->txq.tail))
tail = (unsigned int) ap->txq.tail;
size = portp->txsize;
if (head >= tail) {
len = size - (head - tail) - 1;
stlen = size - head;
} else {
len = tail - head - 1;
stlen = len;
}
len = MIN(len, cooksize);
count = 0;
shbuf = (char *) EBRDGETMEMPTR(brdp, portp->txoffset);
buf = stli_txcookbuf;
while (len > 0) {
stlen = MIN(len, stlen);
memcpy((shbuf + head), buf, stlen);
buf += stlen;
len -= stlen;
count += stlen;
head += stlen;
if (head >= size) {
head = 0;
stlen = tail;
}
}
ap = (volatile cdkasy_t *) EBRDGETMEMPTR(brdp, portp->addr);
ap->txq.head = head;
if (test_bit(ST_TXBUSY, &portp->state)) {
if (ap->changed.data & DT_TXEMPTY)
ap->changed.data &= ~DT_TXEMPTY;
}
hdrp = (volatile cdkhdr_t *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
bits = ((volatile unsigned char *) hdrp) + brdp->slaveoffset +
portp->portidx;
*bits |= portp->portbit;
set_bit(ST_TXBUSY, &portp->state);
EBRDDISABLE(brdp);
restore_flags(flags);
}
/*****************************************************************************/
static int stli_writeroom(struct tty_struct *tty)
{
volatile cdkasyrq_t *rp;
stliport_t *portp;
stlibrd_t *brdp;
unsigned int head, tail, len;
unsigned long flags;
#ifdef DEBUG
printk("stli_writeroom(tty=%x)\n", (int) tty);
#endif
if (tty == (struct tty_struct *) NULL)
return(0);
if (tty == stli_txcooktty) {
if (stli_txcookrealsize != 0) {
len = stli_txcookrealsize - stli_txcooksize;
return(len);
}
}
portp = tty->driver_data;
if (portp == (stliport_t *) NULL)
return(0);
if ((portp->brdnr < 0) || (portp->brdnr >= stli_nrbrds))
return(0);
brdp = stli_brds[portp->brdnr];
if (brdp == (stlibrd_t *) NULL)
return(0);
save_flags(flags);
cli();
EBRDENABLE(brdp);
rp = &((volatile cdkasy_t *) EBRDGETMEMPTR(brdp, portp->addr))->txq;
head = (unsigned int) rp->head;
tail = (unsigned int) rp->tail;
if (tail != ((unsigned int) rp->tail))
tail = (unsigned int) rp->tail;
len = (head >= tail) ? (portp->txsize - (head - tail)) : (tail - head);
len--;
EBRDDISABLE(brdp);
restore_flags(flags);
if (tty == stli_txcooktty) {
stli_txcookrealsize = len;
len -= stli_txcooksize;
}
return(len);
}
/*****************************************************************************/
/*
* Return the number of characters in the transmit buffer. Normally we
* will return the number of chars in the shared memory ring queue.
* We need to kludge around the case where the shared memory buffer is
* empty but not all characters have drained yet, for this case just
* return that there is 1 character in the buffer!
*/
static int stli_charsinbuffer(struct tty_struct *tty)
{
volatile cdkasyrq_t *rp;
stliport_t *portp;
stlibrd_t *brdp;
unsigned int head, tail, len;
unsigned long flags;
#ifdef DEBUG
printk("stli_charsinbuffer(tty=%x)\n", (int) tty);
#endif
if (tty == (struct tty_struct *) NULL)
return(0);
if (tty == stli_txcooktty)
stli_flushchars(tty);
portp = tty->driver_data;
if (portp == (stliport_t *) NULL)
return(0);
if ((portp->brdnr < 0) || (portp->brdnr >= stli_nrbrds))
return(0);
brdp = stli_brds[portp->brdnr];
if (brdp == (stlibrd_t *) NULL)
return(0);
save_flags(flags);
cli();
EBRDENABLE(brdp);
rp = &((volatile cdkasy_t *) EBRDGETMEMPTR(brdp, portp->addr))->txq;
head = (unsigned int) rp->head;
tail = (unsigned int) rp->tail;
if (tail != ((unsigned int) rp->tail))
tail = (unsigned int) rp->tail;
len = (head >= tail) ? (head - tail) : (portp->txsize - (tail - head));
if ((len == 0) && test_bit(ST_TXBUSY, &portp->state))
len = 1;
EBRDDISABLE(brdp);
restore_flags(flags);
return(len);
}
/*****************************************************************************/
/*
* Generate the serial struct info.
*/
static int stli_getserial(stliport_t *portp, struct serial_struct __user *sp)
{
struct serial_struct sio;
stlibrd_t *brdp;
#ifdef DEBUG
printk("stli_getserial(portp=%x,sp=%x)\n", (int) portp, (int) sp);
#endif
memset(&sio, 0, sizeof(struct serial_struct));
sio.type = PORT_UNKNOWN;
sio.line = portp->portnr;
sio.irq = 0;
sio.flags = portp->flags;
sio.baud_base = portp->baud_base;
sio.close_delay = portp->close_delay;
sio.closing_wait = portp->closing_wait;
sio.custom_divisor = portp->custom_divisor;
sio.xmit_fifo_size = 0;
sio.hub6 = 0;
brdp = stli_brds[portp->brdnr];
if (brdp != (stlibrd_t *) NULL)
sio.port = brdp->iobase;
return copy_to_user(sp, &sio, sizeof(struct serial_struct)) ?
-EFAULT : 0;
}
/*****************************************************************************/
/*
* Set port according to the serial struct info.
* At this point we do not do any auto-configure stuff, so we will
* just quietly ignore any requests to change irq, etc.
*/
static int stli_setserial(stliport_t *portp, struct serial_struct __user *sp)
{
struct serial_struct sio;
int rc;
#ifdef DEBUG
printk("stli_setserial(portp=%p,sp=%p)\n", portp, sp);
#endif
if (copy_from_user(&sio, sp, sizeof(struct serial_struct)))
return -EFAULT;
if (!capable(CAP_SYS_ADMIN)) {
if ((sio.baud_base != portp->baud_base) ||
(sio.close_delay != portp->close_delay) ||
((sio.flags & ~ASYNC_USR_MASK) !=
(portp->flags & ~ASYNC_USR_MASK)))
return(-EPERM);
}
portp->flags = (portp->flags & ~ASYNC_USR_MASK) |
(sio.flags & ASYNC_USR_MASK);
portp->baud_base = sio.baud_base;
portp->close_delay = sio.close_delay;
portp->closing_wait = sio.closing_wait;
portp->custom_divisor = sio.custom_divisor;
if ((rc = stli_setport(portp)) < 0)
return(rc);
return(0);
}
/*****************************************************************************/
static int stli_tiocmget(struct tty_struct *tty, struct file *file)
{
stliport_t *portp = tty->driver_data;
stlibrd_t *brdp;
int rc;
if (portp == (stliport_t *) NULL)
return(-ENODEV);
if ((portp->brdnr < 0) || (portp->brdnr >= stli_nrbrds))
return(0);
brdp = stli_brds[portp->brdnr];
if (brdp == (stlibrd_t *) NULL)
return(0);
if (tty->flags & (1 << TTY_IO_ERROR))
return(-EIO);
if ((rc = stli_cmdwait(brdp, portp, A_GETSIGNALS,
&portp->asig, sizeof(asysigs_t), 1)) < 0)
return(rc);
return stli_mktiocm(portp->asig.sigvalue);
}
static int stli_tiocmset(struct tty_struct *tty, struct file *file,
unsigned int set, unsigned int clear)
{
stliport_t *portp = tty->driver_data;
stlibrd_t *brdp;
int rts = -1, dtr = -1;
if (portp == (stliport_t *) NULL)
return(-ENODEV);
if ((portp->brdnr < 0) || (portp->brdnr >= stli_nrbrds))
return(0);
brdp = stli_brds[portp->brdnr];
if (brdp == (stlibrd_t *) NULL)
return(0);
if (tty->flags & (1 << TTY_IO_ERROR))
return(-EIO);
if (set & TIOCM_RTS)
rts = 1;
if (set & TIOCM_DTR)
dtr = 1;
if (clear & TIOCM_RTS)
rts = 0;
if (clear & TIOCM_DTR)
dtr = 0;
stli_mkasysigs(&portp->asig, dtr, rts);
return stli_cmdwait(brdp, portp, A_SETSIGNALS, &portp->asig,
sizeof(asysigs_t), 0);
}
static int stli_ioctl(struct tty_struct *tty, struct file *file, unsigned int cmd, unsigned long arg)
{
stliport_t *portp;
stlibrd_t *brdp;
unsigned int ival;
int rc;
void __user *argp = (void __user *)arg;
#ifdef DEBUG
printk("stli_ioctl(tty=%x,file=%x,cmd=%x,arg=%x)\n",
(int) tty, (int) file, cmd, (int) arg);
#endif
if (tty == (struct tty_struct *) NULL)
return(-ENODEV);
portp = tty->driver_data;
if (portp == (stliport_t *) NULL)
return(-ENODEV);
if ((portp->brdnr < 0) || (portp->brdnr >= stli_nrbrds))
return(0);
brdp = stli_brds[portp->brdnr];
if (brdp == (stlibrd_t *) NULL)
return(0);
if ((cmd != TIOCGSERIAL) && (cmd != TIOCSSERIAL) &&
(cmd != COM_GETPORTSTATS) && (cmd != COM_CLRPORTSTATS)) {
if (tty->flags & (1 << TTY_IO_ERROR))
return(-EIO);
}
rc = 0;
switch (cmd) {
case TIOCGSOFTCAR:
rc = put_user(((tty->termios->c_cflag & CLOCAL) ? 1 : 0),
(unsigned __user *) arg);
break;
case TIOCSSOFTCAR:
if ((rc = get_user(ival, (unsigned __user *) arg)) == 0)
tty->termios->c_cflag =
(tty->termios->c_cflag & ~CLOCAL) |
(ival ? CLOCAL : 0);
break;
case TIOCGSERIAL:
rc = stli_getserial(portp, argp);
break;
case TIOCSSERIAL:
rc = stli_setserial(portp, argp);
break;
case STL_GETPFLAG:
rc = put_user(portp->pflag, (unsigned __user *)argp);
break;
case STL_SETPFLAG:
if ((rc = get_user(portp->pflag, (unsigned __user *)argp)) == 0)
stli_setport(portp);
break;
case COM_GETPORTSTATS:
rc = stli_getportstats(portp, argp);
break;
case COM_CLRPORTSTATS:
rc = stli_clrportstats(portp, argp);
break;
case TIOCSERCONFIG:
case TIOCSERGWILD:
case TIOCSERSWILD:
case TIOCSERGETLSR:
case TIOCSERGSTRUCT:
case TIOCSERGETMULTI:
case TIOCSERSETMULTI:
default:
rc = -ENOIOCTLCMD;
break;
}
return(rc);
}
/*****************************************************************************/
/*
* This routine assumes that we have user context and can sleep.
* Looks like it is true for the current ttys implementation..!!
*/
static void stli_settermios(struct tty_struct *tty, struct termios *old)
{
stliport_t *portp;
stlibrd_t *brdp;
struct termios *tiosp;
asyport_t aport;
#ifdef DEBUG
printk("stli_settermios(tty=%x,old=%x)\n", (int) tty, (int) old);
#endif
if (tty == (struct tty_struct *) NULL)
return;
portp = tty->driver_data;
if (portp == (stliport_t *) NULL)
return;
if ((portp->brdnr < 0) || (portp->brdnr >= stli_nrbrds))
return;
brdp = stli_brds[portp->brdnr];
if (brdp == (stlibrd_t *) NULL)
return;
tiosp = tty->termios;
if ((tiosp->c_cflag == old->c_cflag) &&
(tiosp->c_iflag == old->c_iflag))
return;
stli_mkasyport(portp, &aport, tiosp);
stli_cmdwait(brdp, portp, A_SETPORT, &aport, sizeof(asyport_t), 0);
stli_mkasysigs(&portp->asig, ((tiosp->c_cflag & CBAUD) ? 1 : 0), -1);
stli_cmdwait(brdp, portp, A_SETSIGNALS, &portp->asig,
sizeof(asysigs_t), 0);
if ((old->c_cflag & CRTSCTS) && ((tiosp->c_cflag & CRTSCTS) == 0))
tty->hw_stopped = 0;
if (((old->c_cflag & CLOCAL) == 0) && (tiosp->c_cflag & CLOCAL))
wake_up_interruptible(&portp->open_wait);
}
/*****************************************************************************/
/*
* Attempt to flow control who ever is sending us data. We won't really
* do any flow control action here. We can't directly, and even if we
* wanted to we would have to send a command to the slave. The slave
* knows how to flow control, and will do so when its buffers reach its
* internal high water marks. So what we will do is set a local state
* bit that will stop us sending any RX data up from the poll routine
* (which is the place where RX data from the slave is handled).
*/
static void stli_throttle(struct tty_struct *tty)
{
stliport_t *portp;
#ifdef DEBUG
printk("stli_throttle(tty=%x)\n", (int) tty);
#endif
if (tty == (struct tty_struct *) NULL)
return;
portp = tty->driver_data;
if (portp == (stliport_t *) NULL)
return;
set_bit(ST_RXSTOP, &portp->state);
}
/*****************************************************************************/
/*
* Unflow control the device sending us data... That means that all
* we have to do is clear the RXSTOP state bit. The next poll call
* will then be able to pass the RX data back up.
*/
static void stli_unthrottle(struct tty_struct *tty)
{
stliport_t *portp;
#ifdef DEBUG
printk("stli_unthrottle(tty=%x)\n", (int) tty);
#endif
if (tty == (struct tty_struct *) NULL)
return;
portp = tty->driver_data;
if (portp == (stliport_t *) NULL)
return;
clear_bit(ST_RXSTOP, &portp->state);
}
/*****************************************************************************/
/*
* Stop the transmitter. Basically to do this we will just turn TX
* interrupts off.
*/
static void stli_stop(struct tty_struct *tty)
{
stlibrd_t *brdp;
stliport_t *portp;
asyctrl_t actrl;
#ifdef DEBUG
printk("stli_stop(tty=%x)\n", (int) tty);
#endif
if (tty == (struct tty_struct *) NULL)
return;
portp = tty->driver_data;
if (portp == (stliport_t *) NULL)
return;
if ((portp->brdnr < 0) || (portp->brdnr >= stli_nrbrds))
return;
brdp = stli_brds[portp->brdnr];
if (brdp == (stlibrd_t *) NULL)
return;
memset(&actrl, 0, sizeof(asyctrl_t));
actrl.txctrl = CT_STOPFLOW;
#if 0
stli_cmdwait(brdp, portp, A_PORTCTRL, &actrl, sizeof(asyctrl_t), 0);
#endif
}
/*****************************************************************************/
/*
* Start the transmitter again. Just turn TX interrupts back on.
*/
static void stli_start(struct tty_struct *tty)
{
stliport_t *portp;
stlibrd_t *brdp;
asyctrl_t actrl;
#ifdef DEBUG
printk("stli_start(tty=%x)\n", (int) tty);
#endif
if (tty == (struct tty_struct *) NULL)
return;
portp = tty->driver_data;
if (portp == (stliport_t *) NULL)
return;
if ((portp->brdnr < 0) || (portp->brdnr >= stli_nrbrds))
return;
brdp = stli_brds[portp->brdnr];
if (brdp == (stlibrd_t *) NULL)
return;
memset(&actrl, 0, sizeof(asyctrl_t));
actrl.txctrl = CT_STARTFLOW;
#if 0
stli_cmdwait(brdp, portp, A_PORTCTRL, &actrl, sizeof(asyctrl_t), 0);
#endif
}
/*****************************************************************************/
/*
* Scheduler called hang up routine. This is called from the scheduler,
* not direct from the driver "poll" routine. We can't call it there
* since the real local hangup code will enable/disable the board and
* other things that we can't do while handling the poll. Much easier
* to deal with it some time later (don't really care when, hangups
* aren't that time critical).
*/
static void stli_dohangup(void *arg)
{
stliport_t *portp;
#ifdef DEBUG
printk(KERN_DEBUG "stli_dohangup(portp=%x)\n", (int) arg);
#endif
/*
* FIXME: There's a module removal race here: tty_hangup
* calls schedule_work which will call into this
* driver later.
*/
portp = (stliport_t *) arg;
if (portp != (stliport_t *) NULL) {
if (portp->tty != (struct tty_struct *) NULL) {
tty_hangup(portp->tty);
}
}
}
/*****************************************************************************/
/*
* Hangup this port. This is pretty much like closing the port, only
* a little more brutal. No waiting for data to drain. Shutdown the
* port and maybe drop signals. This is rather tricky really. We want
* to close the port as well.
*/
static void stli_hangup(struct tty_struct *tty)
{
stliport_t *portp;
stlibrd_t *brdp;
unsigned long flags;
#ifdef DEBUG
printk(KERN_DEBUG "stli_hangup(tty=%x)\n", (int) tty);
#endif
if (tty == (struct tty_struct *) NULL)
return;
portp = tty->driver_data;
if (portp == (stliport_t *) NULL)
return;
if ((portp->brdnr < 0) || (portp->brdnr >= stli_nrbrds))
return;
brdp = stli_brds[portp->brdnr];
if (brdp == (stlibrd_t *) NULL)
return;
portp->flags &= ~ASYNC_INITIALIZED;
save_flags(flags);
cli();
if (! test_bit(ST_CLOSING, &portp->state))
stli_rawclose(brdp, portp, 0, 0);
if (tty->termios->c_cflag & HUPCL) {
stli_mkasysigs(&portp->asig, 0, 0);
if (test_bit(ST_CMDING, &portp->state)) {
set_bit(ST_DOSIGS, &portp->state);
set_bit(ST_DOFLUSHTX, &portp->state);
set_bit(ST_DOFLUSHRX, &portp->state);
} else {
stli_sendcmd(brdp, portp, A_SETSIGNALSF,
&portp->asig, sizeof(asysigs_t), 0);
}
}
restore_flags(flags);
clear_bit(ST_TXBUSY, &portp->state);
clear_bit(ST_RXSTOP, &portp->state);
set_bit(TTY_IO_ERROR, &tty->flags);
portp->tty = (struct tty_struct *) NULL;
portp->flags &= ~ASYNC_NORMAL_ACTIVE;
portp->refcount = 0;
wake_up_interruptible(&portp->open_wait);
}
/*****************************************************************************/
/*
* Flush characters from the lower buffer. We may not have user context
* so we cannot sleep waiting for it to complete. Also we need to check
* if there is chars for this port in the TX cook buffer, and flush them
* as well.
*/
static void stli_flushbuffer(struct tty_struct *tty)
{
stliport_t *portp;
stlibrd_t *brdp;
unsigned long ftype, flags;
#ifdef DEBUG
printk(KERN_DEBUG "stli_flushbuffer(tty=%x)\n", (int) tty);
#endif
if (tty == (struct tty_struct *) NULL)
return;
portp = tty->driver_data;
if (portp == (stliport_t *) NULL)
return;
if ((portp->brdnr < 0) || (portp->brdnr >= stli_nrbrds))
return;
brdp = stli_brds[portp->brdnr];
if (brdp == (stlibrd_t *) NULL)
return;
save_flags(flags);
cli();
if (tty == stli_txcooktty) {
stli_txcooktty = (struct tty_struct *) NULL;
stli_txcooksize = 0;
stli_txcookrealsize = 0;
}
if (test_bit(ST_CMDING, &portp->state)) {
set_bit(ST_DOFLUSHTX, &portp->state);
} else {
ftype = FLUSHTX;
if (test_bit(ST_DOFLUSHRX, &portp->state)) {
ftype |= FLUSHRX;
clear_bit(ST_DOFLUSHRX, &portp->state);
}
stli_sendcmd(brdp, portp, A_FLUSH, &ftype,
sizeof(unsigned long), 0);
}
restore_flags(flags);
wake_up_interruptible(&tty->write_wait);
if ((tty->flags & (1 << TTY_DO_WRITE_WAKEUP)) &&
tty->ldisc.write_wakeup)
(tty->ldisc.write_wakeup)(tty);
}
/*****************************************************************************/
static void stli_breakctl(struct tty_struct *tty, int state)
{
stlibrd_t *brdp;
stliport_t *portp;
long arg;
/* long savestate, savetime; */
#ifdef DEBUG
printk(KERN_DEBUG "stli_breakctl(tty=%x,state=%d)\n", (int) tty, state);
#endif
if (tty == (struct tty_struct *) NULL)
return;
portp = tty->driver_data;
if (portp == (stliport_t *) NULL)
return;
if ((portp->brdnr < 0) || (portp->brdnr >= stli_nrbrds))
return;
brdp = stli_brds[portp->brdnr];
if (brdp == (stlibrd_t *) NULL)
return;
/*
* Due to a bug in the tty send_break() code we need to preserve
* the current process state and timeout...
savetime = current->timeout;
savestate = current->state;
*/
arg = (state == -1) ? BREAKON : BREAKOFF;
stli_cmdwait(brdp, portp, A_BREAK, &arg, sizeof(long), 0);
/*
*
current->timeout = savetime;
current->state = savestate;
*/
}
/*****************************************************************************/
static void stli_waituntilsent(struct tty_struct *tty, int timeout)
{
stliport_t *portp;
unsigned long tend;
#ifdef DEBUG
printk(KERN_DEBUG "stli_waituntilsent(tty=%x,timeout=%x)\n", (int) tty, timeout);
#endif
if (tty == (struct tty_struct *) NULL)
return;
portp = tty->driver_data;
if (portp == (stliport_t *) NULL)
return;
if (timeout == 0)
timeout = HZ;
tend = jiffies + timeout;
while (test_bit(ST_TXBUSY, &portp->state)) {
if (signal_pending(current))
break;
msleep_interruptible(20);
if (time_after_eq(jiffies, tend))
break;
}
}
/*****************************************************************************/
static void stli_sendxchar(struct tty_struct *tty, char ch)
{
stlibrd_t *brdp;
stliport_t *portp;
asyctrl_t actrl;
#ifdef DEBUG
printk(KERN_DEBUG "stli_sendxchar(tty=%x,ch=%x)\n", (int) tty, ch);
#endif
if (tty == (struct tty_struct *) NULL)
return;
portp = tty->driver_data;
if (portp == (stliport_t *) NULL)
return;
if ((portp->brdnr < 0) || (portp->brdnr >= stli_nrbrds))
return;
brdp = stli_brds[portp->brdnr];
if (brdp == (stlibrd_t *) NULL)
return;
memset(&actrl, 0, sizeof(asyctrl_t));
if (ch == STOP_CHAR(tty)) {
actrl.rxctrl = CT_STOPFLOW;
} else if (ch == START_CHAR(tty)) {
actrl.rxctrl = CT_STARTFLOW;
} else {
actrl.txctrl = CT_SENDCHR;
actrl.tximdch = ch;
}
stli_cmdwait(brdp, portp, A_PORTCTRL, &actrl, sizeof(asyctrl_t), 0);
}
/*****************************************************************************/
#define MAXLINE 80
/*
* Format info for a specified port. The line is deliberately limited
* to 80 characters. (If it is too long it will be truncated, if too
* short then padded with spaces).
*/
static int stli_portinfo(stlibrd_t *brdp, stliport_t *portp, int portnr, char *pos)
{
char *sp, *uart;
int rc, cnt;
rc = stli_portcmdstats(portp);
uart = "UNKNOWN";
if (brdp->state & BST_STARTED) {
switch (stli_comstats.hwid) {
case 0: uart = "2681"; break;
case 1: uart = "SC26198"; break;
default: uart = "CD1400"; break;
}
}
sp = pos;
sp += sprintf(sp, "%d: uart:%s ", portnr, uart);
if ((brdp->state & BST_STARTED) && (rc >= 0)) {
sp += sprintf(sp, "tx:%d rx:%d", (int) stli_comstats.txtotal,
(int) stli_comstats.rxtotal);
if (stli_comstats.rxframing)
sp += sprintf(sp, " fe:%d",
(int) stli_comstats.rxframing);
if (stli_comstats.rxparity)
sp += sprintf(sp, " pe:%d",
(int) stli_comstats.rxparity);
if (stli_comstats.rxbreaks)
sp += sprintf(sp, " brk:%d",
(int) stli_comstats.rxbreaks);
if (stli_comstats.rxoverrun)
sp += sprintf(sp, " oe:%d",
(int) stli_comstats.rxoverrun);
cnt = sprintf(sp, "%s%s%s%s%s ",
(stli_comstats.signals & TIOCM_RTS) ? "|RTS" : "",
(stli_comstats.signals & TIOCM_CTS) ? "|CTS" : "",
(stli_comstats.signals & TIOCM_DTR) ? "|DTR" : "",
(stli_comstats.signals & TIOCM_CD) ? "|DCD" : "",
(stli_comstats.signals & TIOCM_DSR) ? "|DSR" : "");
*sp = ' ';
sp += cnt;
}
for (cnt = (sp - pos); (cnt < (MAXLINE - 1)); cnt++)
*sp++ = ' ';
if (cnt >= MAXLINE)
pos[(MAXLINE - 2)] = '+';
pos[(MAXLINE - 1)] = '\n';
return(MAXLINE);
}
/*****************************************************************************/
/*
* Port info, read from the /proc file system.
*/
static int stli_readproc(char *page, char **start, off_t off, int count, int *eof, void *data)
{
stlibrd_t *brdp;
stliport_t *portp;
int brdnr, portnr, totalport;
int curoff, maxoff;
char *pos;
#ifdef DEBUG
printk(KERN_DEBUG "stli_readproc(page=%x,start=%x,off=%x,count=%d,eof=%x,"
"data=%x\n", (int) page, (int) start, (int) off, count,
(int) eof, (int) data);
#endif
pos = page;
totalport = 0;
curoff = 0;
if (off == 0) {
pos += sprintf(pos, "%s: version %s", stli_drvtitle,
stli_drvversion);
while (pos < (page + MAXLINE - 1))
*pos++ = ' ';
*pos++ = '\n';
}
curoff = MAXLINE;
/*
* We scan through for each board, panel and port. The offset is
* calculated on the fly, and irrelevant ports are skipped.
*/
for (brdnr = 0; (brdnr < stli_nrbrds); brdnr++) {
brdp = stli_brds[brdnr];
if (brdp == (stlibrd_t *) NULL)
continue;
if (brdp->state == 0)
continue;
maxoff = curoff + (brdp->nrports * MAXLINE);
if (off >= maxoff) {
curoff = maxoff;
continue;
}
totalport = brdnr * STL_MAXPORTS;
for (portnr = 0; (portnr < brdp->nrports); portnr++,
totalport++) {
portp = brdp->ports[portnr];
if (portp == (stliport_t *) NULL)
continue;
if (off >= (curoff += MAXLINE))
continue;
if ((pos - page + MAXLINE) > count)
goto stli_readdone;
pos += stli_portinfo(brdp, portp, totalport, pos);
}
}
*eof = 1;
stli_readdone:
*start = page;
return(pos - page);
}
/*****************************************************************************/
/*
* Generic send command routine. This will send a message to the slave,
* of the specified type with the specified argument. Must be very
* careful of data that will be copied out from shared memory -
* containing command results. The command completion is all done from
* a poll routine that does not have user context. Therefore you cannot
* copy back directly into user space, or to the kernel stack of a
* process. This routine does not sleep, so can be called from anywhere.
*/
static void stli_sendcmd(stlibrd_t *brdp, stliport_t *portp, unsigned long cmd, void *arg, int size, int copyback)
{
volatile cdkhdr_t *hdrp;
volatile cdkctrl_t *cp;
volatile unsigned char *bits;
unsigned long flags;
#ifdef DEBUG
printk(KERN_DEBUG "stli_sendcmd(brdp=%x,portp=%x,cmd=%x,arg=%x,size=%d,"
"copyback=%d)\n", (int) brdp, (int) portp, (int) cmd,
(int) arg, size, copyback);
#endif
save_flags(flags);
cli();
if (test_bit(ST_CMDING, &portp->state)) {
printk(KERN_ERR "STALLION: command already busy, cmd=%x!\n",
(int) cmd);
restore_flags(flags);
return;
}
EBRDENABLE(brdp);
cp = &((volatile cdkasy_t *) EBRDGETMEMPTR(brdp, portp->addr))->ctrl;
if (size > 0) {
memcpy((void *) &(cp->args[0]), arg, size);
if (copyback) {
portp->argp = arg;
portp->argsize = size;
}
}
cp->status = 0;
cp->cmd = cmd;
hdrp = (volatile cdkhdr_t *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
bits = ((volatile unsigned char *) hdrp) + brdp->slaveoffset +
portp->portidx;
*bits |= portp->portbit;
set_bit(ST_CMDING, &portp->state);
EBRDDISABLE(brdp);
restore_flags(flags);
}
/*****************************************************************************/
/*
* Read data from shared memory. This assumes that the shared memory
* is enabled and that interrupts are off. Basically we just empty out
* the shared memory buffer into the tty buffer. Must be careful to
* handle the case where we fill up the tty buffer, but still have
* more chars to unload.
*/
static void stli_read(stlibrd_t *brdp, stliport_t *portp)
{
volatile cdkasyrq_t *rp;
volatile char *shbuf;
struct tty_struct *tty;
unsigned int head, tail, size;
unsigned int len, stlen;
#ifdef DEBUG
printk(KERN_DEBUG "stli_read(brdp=%x,portp=%d)\n",
(int) brdp, (int) portp);
#endif
if (test_bit(ST_RXSTOP, &portp->state))
return;
tty = portp->tty;
if (tty == (struct tty_struct *) NULL)
return;
rp = &((volatile cdkasy_t *) EBRDGETMEMPTR(brdp, portp->addr))->rxq;
head = (unsigned int) rp->head;
if (head != ((unsigned int) rp->head))
head = (unsigned int) rp->head;
tail = (unsigned int) rp->tail;
size = portp->rxsize;
if (head >= tail) {
len = head - tail;
stlen = len;
} else {
len = size - (tail - head);
stlen = size - tail;
}
len = tty_buffer_request_room(tty, len);
/* FIXME : iomap ? */
shbuf = (volatile char *) EBRDGETMEMPTR(brdp, portp->rxoffset);
while (len > 0) {
stlen = MIN(len, stlen);
tty_insert_flip_string(tty, (char *)(shbuf + tail), stlen);
len -= stlen;
tail += stlen;
if (tail >= size) {
tail = 0;
stlen = head;
}
}
rp = &((volatile cdkasy_t *) EBRDGETMEMPTR(brdp, portp->addr))->rxq;
rp->tail = tail;
if (head != tail)
set_bit(ST_RXING, &portp->state);
tty_schedule_flip(tty);
}
/*****************************************************************************/
/*
* Set up and carry out any delayed commands. There is only a small set
* of slave commands that can be done "off-level". So it is not too
* difficult to deal with them here.
*/
static void stli_dodelaycmd(stliport_t *portp, volatile cdkctrl_t *cp)
{
int cmd;
if (test_bit(ST_DOSIGS, &portp->state)) {
if (test_bit(ST_DOFLUSHTX, &portp->state) &&
test_bit(ST_DOFLUSHRX, &portp->state))
cmd = A_SETSIGNALSF;
else if (test_bit(ST_DOFLUSHTX, &portp->state))
cmd = A_SETSIGNALSFTX;
else if (test_bit(ST_DOFLUSHRX, &portp->state))
cmd = A_SETSIGNALSFRX;
else
cmd = A_SETSIGNALS;
clear_bit(ST_DOFLUSHTX, &portp->state);
clear_bit(ST_DOFLUSHRX, &portp->state);
clear_bit(ST_DOSIGS, &portp->state);
memcpy((void *) &(cp->args[0]), (void *) &portp->asig,
sizeof(asysigs_t));
cp->status = 0;
cp->cmd = cmd;
set_bit(ST_CMDING, &portp->state);
} else if (test_bit(ST_DOFLUSHTX, &portp->state) ||
test_bit(ST_DOFLUSHRX, &portp->state)) {
cmd = ((test_bit(ST_DOFLUSHTX, &portp->state)) ? FLUSHTX : 0);
cmd |= ((test_bit(ST_DOFLUSHRX, &portp->state)) ? FLUSHRX : 0);
clear_bit(ST_DOFLUSHTX, &portp->state);
clear_bit(ST_DOFLUSHRX, &portp->state);
memcpy((void *) &(cp->args[0]), (void *) &cmd, sizeof(int));
cp->status = 0;
cp->cmd = A_FLUSH;
set_bit(ST_CMDING, &portp->state);
}
}
/*****************************************************************************/
/*
* Host command service checking. This handles commands or messages
* coming from the slave to the host. Must have board shared memory
* enabled and interrupts off when called. Notice that by servicing the
* read data last we don't need to change the shared memory pointer
* during processing (which is a slow IO operation).
* Return value indicates if this port is still awaiting actions from
* the slave (like open, command, or even TX data being sent). If 0
* then port is still busy, otherwise no longer busy.
*/
static int stli_hostcmd(stlibrd_t *brdp, stliport_t *portp)
{
volatile cdkasy_t *ap;
volatile cdkctrl_t *cp;
struct tty_struct *tty;
asynotify_t nt;
unsigned long oldsigs;
int rc, donerx;
#ifdef DEBUG
printk(KERN_DEBUG "stli_hostcmd(brdp=%x,channr=%d)\n",
(int) brdp, channr);
#endif
ap = (volatile cdkasy_t *) EBRDGETMEMPTR(brdp, portp->addr);
cp = &ap->ctrl;
/*
* Check if we are waiting for an open completion message.
*/
if (test_bit(ST_OPENING, &portp->state)) {
rc = (int) cp->openarg;
if ((cp->open == 0) && (rc != 0)) {
if (rc > 0)
rc--;
cp->openarg = 0;
portp->rc = rc;
clear_bit(ST_OPENING, &portp->state);
wake_up_interruptible(&portp->raw_wait);
}
}
/*
* Check if we are waiting for a close completion message.
*/
if (test_bit(ST_CLOSING, &portp->state)) {
rc = (int) cp->closearg;
if ((cp->close == 0) && (rc != 0)) {
if (rc > 0)
rc--;
cp->closearg = 0;
portp->rc = rc;
clear_bit(ST_CLOSING, &portp->state);
wake_up_interruptible(&portp->raw_wait);
}
}
/*
* Check if we are waiting for a command completion message. We may
* need to copy out the command results associated with this command.
*/
if (test_bit(ST_CMDING, &portp->state)) {
rc = cp->status;
if ((cp->cmd == 0) && (rc != 0)) {
if (rc > 0)
rc--;
if (portp->argp != (void *) NULL) {
memcpy(portp->argp, (void *) &(cp->args[0]),
portp->argsize);
portp->argp = (void *) NULL;
}
cp->status = 0;
portp->rc = rc;
clear_bit(ST_CMDING, &portp->state);
stli_dodelaycmd(portp, cp);
wake_up_interruptible(&portp->raw_wait);
}
}
/*
* Check for any notification messages ready. This includes lots of
* different types of events - RX chars ready, RX break received,
* TX data low or empty in the slave, modem signals changed state.
*/
donerx = 0;
if (ap->notify) {
nt = ap->changed;
ap->notify = 0;
tty = portp->tty;
if (nt.signal & SG_DCD) {
oldsigs = portp->sigs;
portp->sigs = stli_mktiocm(nt.sigvalue);
clear_bit(ST_GETSIGS, &portp->state);
if ((portp->sigs & TIOCM_CD) &&
((oldsigs & TIOCM_CD) == 0))
wake_up_interruptible(&portp->open_wait);
if ((oldsigs & TIOCM_CD) &&
((portp->sigs & TIOCM_CD) == 0)) {
if (portp->flags & ASYNC_CHECK_CD) {
if (tty)
schedule_work(&portp->tqhangup);
}
}
}
if (nt.data & DT_TXEMPTY)
clear_bit(ST_TXBUSY, &portp->state);
if (nt.data & (DT_TXEMPTY | DT_TXLOW)) {
if (tty != (struct tty_struct *) NULL) {
if ((tty->flags & (1 << TTY_DO_WRITE_WAKEUP)) &&
tty->ldisc.write_wakeup) {
(tty->ldisc.write_wakeup)(tty);
EBRDENABLE(brdp);
}
wake_up_interruptible(&tty->write_wait);
}
}
if ((nt.data & DT_RXBREAK) && (portp->rxmarkmsk & BRKINT)) {
if (tty != (struct tty_struct *) NULL) {
tty_insert_flip_char(tty, 0, TTY_BREAK);
if (portp->flags & ASYNC_SAK) {
do_SAK(tty);
EBRDENABLE(brdp);
}
tty_schedule_flip(tty);
}
}
if (nt.data & DT_RXBUSY) {
donerx++;
stli_read(brdp, portp);
}
}
/*
* It might seem odd that we are checking for more RX chars here.
* But, we need to handle the case where the tty buffer was previously
* filled, but we had more characters to pass up. The slave will not
* send any more RX notify messages until the RX buffer has been emptied.
* But it will leave the service bits on (since the buffer is not empty).
* So from here we can try to process more RX chars.
*/
if ((!donerx) && test_bit(ST_RXING, &portp->state)) {
clear_bit(ST_RXING, &portp->state);
stli_read(brdp, portp);
}
return((test_bit(ST_OPENING, &portp->state) ||
test_bit(ST_CLOSING, &portp->state) ||
test_bit(ST_CMDING, &portp->state) ||
test_bit(ST_TXBUSY, &portp->state) ||
test_bit(ST_RXING, &portp->state)) ? 0 : 1);
}
/*****************************************************************************/
/*
* Service all ports on a particular board. Assumes that the boards
* shared memory is enabled, and that the page pointer is pointed
* at the cdk header structure.
*/
static void stli_brdpoll(stlibrd_t *brdp, volatile cdkhdr_t *hdrp)
{
stliport_t *portp;
unsigned char hostbits[(STL_MAXCHANS / 8) + 1];
unsigned char slavebits[(STL_MAXCHANS / 8) + 1];
unsigned char *slavep;
int bitpos, bitat, bitsize;
int channr, nrdevs, slavebitchange;
bitsize = brdp->bitsize;
nrdevs = brdp->nrdevs;
/*
* Check if slave wants any service. Basically we try to do as
* little work as possible here. There are 2 levels of service
* bits. So if there is nothing to do we bail early. We check
* 8 service bits at a time in the inner loop, so we can bypass
* the lot if none of them want service.
*/
memcpy(&hostbits[0], (((unsigned char *) hdrp) + brdp->hostoffset),
bitsize);
memset(&slavebits[0], 0, bitsize);
slavebitchange = 0;
for (bitpos = 0; (bitpos < bitsize); bitpos++) {
if (hostbits[bitpos] == 0)
continue;
channr = bitpos * 8;
for (bitat = 0x1; (channr < nrdevs); channr++, bitat <<= 1) {
if (hostbits[bitpos] & bitat) {
portp = brdp->ports[(channr - 1)];
if (stli_hostcmd(brdp, portp)) {
slavebitchange++;
slavebits[bitpos] |= bitat;
}
}
}
}
/*
* If any of the ports are no longer busy then update them in the
* slave request bits. We need to do this after, since a host port
* service may initiate more slave requests.
*/
if (slavebitchange) {
hdrp = (volatile cdkhdr_t *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
slavep = ((unsigned char *) hdrp) + brdp->slaveoffset;
for (bitpos = 0; (bitpos < bitsize); bitpos++) {
if (slavebits[bitpos])
slavep[bitpos] &= ~slavebits[bitpos];
}
}
}
/*****************************************************************************/
/*
* Driver poll routine. This routine polls the boards in use and passes
* messages back up to host when necessary. This is actually very
* CPU efficient, since we will always have the kernel poll clock, it
* adds only a few cycles when idle (since board service can be
* determined very easily), but when loaded generates no interrupts
* (with their expensive associated context change).
*/
static void stli_poll(unsigned long arg)
{
volatile cdkhdr_t *hdrp;
stlibrd_t *brdp;
int brdnr;
stli_timerlist.expires = STLI_TIMEOUT;
add_timer(&stli_timerlist);
/*
* Check each board and do any servicing required.
*/
for (brdnr = 0; (brdnr < stli_nrbrds); brdnr++) {
brdp = stli_brds[brdnr];
if (brdp == (stlibrd_t *) NULL)
continue;
if ((brdp->state & BST_STARTED) == 0)
continue;
EBRDENABLE(brdp);
hdrp = (volatile cdkhdr_t *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
if (hdrp->hostreq)
stli_brdpoll(brdp, hdrp);
EBRDDISABLE(brdp);
}
}
/*****************************************************************************/
/*
* Translate the termios settings into the port setting structure of
* the slave.
*/
static void stli_mkasyport(stliport_t *portp, asyport_t *pp, struct termios *tiosp)
{
#ifdef DEBUG
printk(KERN_DEBUG "stli_mkasyport(portp=%x,pp=%x,tiosp=%d)\n",
(int) portp, (int) pp, (int) tiosp);
#endif
memset(pp, 0, sizeof(asyport_t));
/*
* Start of by setting the baud, char size, parity and stop bit info.
*/
pp->baudout = tiosp->c_cflag & CBAUD;
if (pp->baudout & CBAUDEX) {
pp->baudout &= ~CBAUDEX;
if ((pp->baudout < 1) || (pp->baudout > 4))
tiosp->c_cflag &= ~CBAUDEX;
else
pp->baudout += 15;
}
pp->baudout = stli_baudrates[pp->baudout];
if ((tiosp->c_cflag & CBAUD) == B38400) {
if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_HI)
pp->baudout = 57600;
else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_VHI)
pp->baudout = 115200;
else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_SHI)
pp->baudout = 230400;
else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_WARP)
pp->baudout = 460800;
else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_CUST)
pp->baudout = (portp->baud_base / portp->custom_divisor);
}
if (pp->baudout > STL_MAXBAUD)
pp->baudout = STL_MAXBAUD;
pp->baudin = pp->baudout;
switch (tiosp->c_cflag & CSIZE) {
case CS5:
pp->csize = 5;
break;
case CS6:
pp->csize = 6;
break;
case CS7:
pp->csize = 7;
break;
default:
pp->csize = 8;
break;
}
if (tiosp->c_cflag & CSTOPB)
pp->stopbs = PT_STOP2;
else
pp->stopbs = PT_STOP1;
if (tiosp->c_cflag & PARENB) {
if (tiosp->c_cflag & PARODD)
pp->parity = PT_ODDPARITY;
else
pp->parity = PT_EVENPARITY;
} else {
pp->parity = PT_NOPARITY;
}
/*
* Set up any flow control options enabled.
*/
if (tiosp->c_iflag & IXON) {
pp->flow |= F_IXON;
if (tiosp->c_iflag & IXANY)
pp->flow |= F_IXANY;
}
if (tiosp->c_cflag & CRTSCTS)
pp->flow |= (F_RTSFLOW | F_CTSFLOW);
pp->startin = tiosp->c_cc[VSTART];
pp->stopin = tiosp->c_cc[VSTOP];
pp->startout = tiosp->c_cc[VSTART];
pp->stopout = tiosp->c_cc[VSTOP];
/*
* Set up the RX char marking mask with those RX error types we must
* catch. We can get the slave to help us out a little here, it will
* ignore parity errors and breaks for us, and mark parity errors in
* the data stream.
*/
if (tiosp->c_iflag & IGNPAR)
pp->iflag |= FI_IGNRXERRS;
if (tiosp->c_iflag & IGNBRK)
pp->iflag |= FI_IGNBREAK;
portp->rxmarkmsk = 0;
if (tiosp->c_iflag & (INPCK | PARMRK))
pp->iflag |= FI_1MARKRXERRS;
if (tiosp->c_iflag & BRKINT)
portp->rxmarkmsk |= BRKINT;
/*
* Set up clocal processing as required.
*/
if (tiosp->c_cflag & CLOCAL)
portp->flags &= ~ASYNC_CHECK_CD;
else
portp->flags |= ASYNC_CHECK_CD;
/*
* Transfer any persistent flags into the asyport structure.
*/
pp->pflag = (portp->pflag & 0xffff);
pp->vmin = (portp->pflag & P_RXIMIN) ? 1 : 0;
pp->vtime = (portp->pflag & P_RXITIME) ? 1 : 0;
pp->cc[1] = (portp->pflag & P_RXTHOLD) ? 1 : 0;
}
/*****************************************************************************/
/*
* Construct a slave signals structure for setting the DTR and RTS
* signals as specified.
*/
static void stli_mkasysigs(asysigs_t *sp, int dtr, int rts)
{
#ifdef DEBUG
printk(KERN_DEBUG "stli_mkasysigs(sp=%x,dtr=%d,rts=%d)\n",
(int) sp, dtr, rts);
#endif
memset(sp, 0, sizeof(asysigs_t));
if (dtr >= 0) {
sp->signal |= SG_DTR;
sp->sigvalue |= ((dtr > 0) ? SG_DTR : 0);
}
if (rts >= 0) {
sp->signal |= SG_RTS;
sp->sigvalue |= ((rts > 0) ? SG_RTS : 0);
}
}
/*****************************************************************************/
/*
* Convert the signals returned from the slave into a local TIOCM type
* signals value. We keep them locally in TIOCM format.
*/
static long stli_mktiocm(unsigned long sigvalue)
{
long tiocm;
#ifdef DEBUG
printk(KERN_DEBUG "stli_mktiocm(sigvalue=%x)\n", (int) sigvalue);
#endif
tiocm = 0;
tiocm |= ((sigvalue & SG_DCD) ? TIOCM_CD : 0);
tiocm |= ((sigvalue & SG_CTS) ? TIOCM_CTS : 0);
tiocm |= ((sigvalue & SG_RI) ? TIOCM_RI : 0);
tiocm |= ((sigvalue & SG_DSR) ? TIOCM_DSR : 0);
tiocm |= ((sigvalue & SG_DTR) ? TIOCM_DTR : 0);
tiocm |= ((sigvalue & SG_RTS) ? TIOCM_RTS : 0);
return(tiocm);
}
/*****************************************************************************/
/*
* All panels and ports actually attached have been worked out. All
* we need to do here is set up the appropriate per port data structures.
*/
static int stli_initports(stlibrd_t *brdp)
{
stliport_t *portp;
int i, panelnr, panelport;
#ifdef DEBUG
printk(KERN_DEBUG "stli_initports(brdp=%x)\n", (int) brdp);
#endif
for (i = 0, panelnr = 0, panelport = 0; (i < brdp->nrports); i++) {
portp = (stliport_t *) stli_memalloc(sizeof(stliport_t));
if (portp == (stliport_t *) NULL) {
printk("STALLION: failed to allocate port structure\n");
continue;
}
memset(portp, 0, sizeof(stliport_t));
portp->magic = STLI_PORTMAGIC;
portp->portnr = i;
portp->brdnr = brdp->brdnr;
portp->panelnr = panelnr;
portp->baud_base = STL_BAUDBASE;
portp->close_delay = STL_CLOSEDELAY;
portp->closing_wait = 30 * HZ;
INIT_WORK(&portp->tqhangup, stli_dohangup, portp);
init_waitqueue_head(&portp->open_wait);
init_waitqueue_head(&portp->close_wait);
init_waitqueue_head(&portp->raw_wait);
panelport++;
if (panelport >= brdp->panels[panelnr]) {
panelport = 0;
panelnr++;
}
brdp->ports[i] = portp;
}
return(0);
}
/*****************************************************************************/
/*
* All the following routines are board specific hardware operations.
*/
static void stli_ecpinit(stlibrd_t *brdp)
{
unsigned long memconf;
#ifdef DEBUG
printk(KERN_DEBUG "stli_ecpinit(brdp=%d)\n", (int) brdp);
#endif
outb(ECP_ATSTOP, (brdp->iobase + ECP_ATCONFR));
udelay(10);
outb(ECP_ATDISABLE, (brdp->iobase + ECP_ATCONFR));
udelay(100);
memconf = (brdp->memaddr & ECP_ATADDRMASK) >> ECP_ATADDRSHFT;
outb(memconf, (brdp->iobase + ECP_ATMEMAR));
}
/*****************************************************************************/
static void stli_ecpenable(stlibrd_t *brdp)
{
#ifdef DEBUG
printk(KERN_DEBUG "stli_ecpenable(brdp=%x)\n", (int) brdp);
#endif
outb(ECP_ATENABLE, (brdp->iobase + ECP_ATCONFR));
}
/*****************************************************************************/
static void stli_ecpdisable(stlibrd_t *brdp)
{
#ifdef DEBUG
printk(KERN_DEBUG "stli_ecpdisable(brdp=%x)\n", (int) brdp);
#endif
outb(ECP_ATDISABLE, (brdp->iobase + ECP_ATCONFR));
}
/*****************************************************************************/
static char *stli_ecpgetmemptr(stlibrd_t *brdp, unsigned long offset, int line)
{
void *ptr;
unsigned char val;
#ifdef DEBUG
printk(KERN_DEBUG "stli_ecpgetmemptr(brdp=%x,offset=%x)\n", (int) brdp,
(int) offset);
#endif
if (offset > brdp->memsize) {
printk(KERN_ERR "STALLION: shared memory pointer=%x out of "
"range at line=%d(%d), brd=%d\n",
(int) offset, line, __LINE__, brdp->brdnr);
ptr = NULL;
val = 0;
} else {
ptr = brdp->membase + (offset % ECP_ATPAGESIZE);
val = (unsigned char) (offset / ECP_ATPAGESIZE);
}
outb(val, (brdp->iobase + ECP_ATMEMPR));
return(ptr);
}
/*****************************************************************************/
static void stli_ecpreset(stlibrd_t *brdp)
{
#ifdef DEBUG
printk(KERN_DEBUG "stli_ecpreset(brdp=%x)\n", (int) brdp);
#endif
outb(ECP_ATSTOP, (brdp->iobase + ECP_ATCONFR));
udelay(10);
outb(ECP_ATDISABLE, (brdp->iobase + ECP_ATCONFR));
udelay(500);
}
/*****************************************************************************/
static void stli_ecpintr(stlibrd_t *brdp)
{
#ifdef DEBUG
printk(KERN_DEBUG "stli_ecpintr(brdp=%x)\n", (int) brdp);
#endif
outb(0x1, brdp->iobase);
}
/*****************************************************************************/
/*
* The following set of functions act on ECP EISA boards.
*/
static void stli_ecpeiinit(stlibrd_t *brdp)
{
unsigned long memconf;
#ifdef DEBUG
printk(KERN_DEBUG "stli_ecpeiinit(brdp=%x)\n", (int) brdp);
#endif
outb(0x1, (brdp->iobase + ECP_EIBRDENAB));
outb(ECP_EISTOP, (brdp->iobase + ECP_EICONFR));
udelay(10);
outb(ECP_EIDISABLE, (brdp->iobase + ECP_EICONFR));
udelay(500);
memconf = (brdp->memaddr & ECP_EIADDRMASKL) >> ECP_EIADDRSHFTL;
outb(memconf, (brdp->iobase + ECP_EIMEMARL));
memconf = (brdp->memaddr & ECP_EIADDRMASKH) >> ECP_EIADDRSHFTH;
outb(memconf, (brdp->iobase + ECP_EIMEMARH));
}
/*****************************************************************************/
static void stli_ecpeienable(stlibrd_t *brdp)
{
outb(ECP_EIENABLE, (brdp->iobase + ECP_EICONFR));
}
/*****************************************************************************/
static void stli_ecpeidisable(stlibrd_t *brdp)
{
outb(ECP_EIDISABLE, (brdp->iobase + ECP_EICONFR));
}
/*****************************************************************************/
static char *stli_ecpeigetmemptr(stlibrd_t *brdp, unsigned long offset, int line)
{
void *ptr;
unsigned char val;
#ifdef DEBUG
printk(KERN_DEBUG "stli_ecpeigetmemptr(brdp=%x,offset=%x,line=%d)\n",
(int) brdp, (int) offset, line);
#endif
if (offset > brdp->memsize) {
printk(KERN_ERR "STALLION: shared memory pointer=%x out of "
"range at line=%d(%d), brd=%d\n",
(int) offset, line, __LINE__, brdp->brdnr);
ptr = NULL;
val = 0;
} else {
ptr = brdp->membase + (offset % ECP_EIPAGESIZE);
if (offset < ECP_EIPAGESIZE)
val = ECP_EIENABLE;
else
val = ECP_EIENABLE | 0x40;
}
outb(val, (brdp->iobase + ECP_EICONFR));
return(ptr);
}
/*****************************************************************************/
static void stli_ecpeireset(stlibrd_t *brdp)
{
outb(ECP_EISTOP, (brdp->iobase + ECP_EICONFR));
udelay(10);
outb(ECP_EIDISABLE, (brdp->iobase + ECP_EICONFR));
udelay(500);
}
/*****************************************************************************/
/*
* The following set of functions act on ECP MCA boards.
*/
static void stli_ecpmcenable(stlibrd_t *brdp)
{
outb(ECP_MCENABLE, (brdp->iobase + ECP_MCCONFR));
}
/*****************************************************************************/
static void stli_ecpmcdisable(stlibrd_t *brdp)
{
outb(ECP_MCDISABLE, (brdp->iobase + ECP_MCCONFR));
}
/*****************************************************************************/
static char *stli_ecpmcgetmemptr(stlibrd_t *brdp, unsigned long offset, int line)
{
void *ptr;
unsigned char val;
if (offset > brdp->memsize) {
printk(KERN_ERR "STALLION: shared memory pointer=%x out of "
"range at line=%d(%d), brd=%d\n",
(int) offset, line, __LINE__, brdp->brdnr);
ptr = NULL;
val = 0;
} else {
ptr = brdp->membase + (offset % ECP_MCPAGESIZE);
val = ((unsigned char) (offset / ECP_MCPAGESIZE)) | ECP_MCENABLE;
}
outb(val, (brdp->iobase + ECP_MCCONFR));
return(ptr);
}
/*****************************************************************************/
static void stli_ecpmcreset(stlibrd_t *brdp)
{
outb(ECP_MCSTOP, (brdp->iobase + ECP_MCCONFR));
udelay(10);
outb(ECP_MCDISABLE, (brdp->iobase + ECP_MCCONFR));
udelay(500);
}
/*****************************************************************************/
/*
* The following set of functions act on ECP PCI boards.
*/
static void stli_ecppciinit(stlibrd_t *brdp)
{
#ifdef DEBUG
printk(KERN_DEBUG "stli_ecppciinit(brdp=%x)\n", (int) brdp);
#endif
outb(ECP_PCISTOP, (brdp->iobase + ECP_PCICONFR));
udelay(10);
outb(0, (brdp->iobase + ECP_PCICONFR));
udelay(500);
}
/*****************************************************************************/
static char *stli_ecppcigetmemptr(stlibrd_t *brdp, unsigned long offset, int line)
{
void *ptr;
unsigned char val;
#ifdef DEBUG
printk(KERN_DEBUG "stli_ecppcigetmemptr(brdp=%x,offset=%x,line=%d)\n",
(int) brdp, (int) offset, line);
#endif
if (offset > brdp->memsize) {
printk(KERN_ERR "STALLION: shared memory pointer=%x out of "
"range at line=%d(%d), board=%d\n",
(int) offset, line, __LINE__, brdp->brdnr);
ptr = NULL;
val = 0;
} else {
ptr = brdp->membase + (offset % ECP_PCIPAGESIZE);
val = (offset / ECP_PCIPAGESIZE) << 1;
}
outb(val, (brdp->iobase + ECP_PCICONFR));
return(ptr);
}
/*****************************************************************************/
static void stli_ecppcireset(stlibrd_t *brdp)
{
outb(ECP_PCISTOP, (brdp->iobase + ECP_PCICONFR));
udelay(10);
outb(0, (brdp->iobase + ECP_PCICONFR));
udelay(500);
}
/*****************************************************************************/
/*
* The following routines act on ONboards.
*/
static void stli_onbinit(stlibrd_t *brdp)
{
unsigned long memconf;
#ifdef DEBUG
printk(KERN_DEBUG "stli_onbinit(brdp=%d)\n", (int) brdp);
#endif
outb(ONB_ATSTOP, (brdp->iobase + ONB_ATCONFR));
udelay(10);
outb(ONB_ATDISABLE, (brdp->iobase + ONB_ATCONFR));
mdelay(1000);
memconf = (brdp->memaddr & ONB_ATADDRMASK) >> ONB_ATADDRSHFT;
outb(memconf, (brdp->iobase + ONB_ATMEMAR));
outb(0x1, brdp->iobase);
mdelay(1);
}
/*****************************************************************************/
static void stli_onbenable(stlibrd_t *brdp)
{
#ifdef DEBUG
printk(KERN_DEBUG "stli_onbenable(brdp=%x)\n", (int) brdp);
#endif
outb((brdp->enabval | ONB_ATENABLE), (brdp->iobase + ONB_ATCONFR));
}
/*****************************************************************************/
static void stli_onbdisable(stlibrd_t *brdp)
{
#ifdef DEBUG
printk(KERN_DEBUG "stli_onbdisable(brdp=%x)\n", (int) brdp);
#endif
outb((brdp->enabval | ONB_ATDISABLE), (brdp->iobase + ONB_ATCONFR));
}
/*****************************************************************************/
static char *stli_onbgetmemptr(stlibrd_t *brdp, unsigned long offset, int line)
{
void *ptr;
#ifdef DEBUG
printk(KERN_DEBUG "stli_onbgetmemptr(brdp=%x,offset=%x)\n", (int) brdp,
(int) offset);
#endif
if (offset > brdp->memsize) {
printk(KERN_ERR "STALLION: shared memory pointer=%x out of "
"range at line=%d(%d), brd=%d\n",
(int) offset, line, __LINE__, brdp->brdnr);
ptr = NULL;
} else {
ptr = brdp->membase + (offset % ONB_ATPAGESIZE);
}
return(ptr);
}
/*****************************************************************************/
static void stli_onbreset(stlibrd_t *brdp)
{
#ifdef DEBUG
printk(KERN_DEBUG "stli_onbreset(brdp=%x)\n", (int) brdp);
#endif
outb(ONB_ATSTOP, (brdp->iobase + ONB_ATCONFR));
udelay(10);
outb(ONB_ATDISABLE, (brdp->iobase + ONB_ATCONFR));
mdelay(1000);
}
/*****************************************************************************/
/*
* The following routines act on ONboard EISA.
*/
static void stli_onbeinit(stlibrd_t *brdp)
{
unsigned long memconf;
#ifdef DEBUG
printk(KERN_DEBUG "stli_onbeinit(brdp=%d)\n", (int) brdp);
#endif
outb(0x1, (brdp->iobase + ONB_EIBRDENAB));
outb(ONB_EISTOP, (brdp->iobase + ONB_EICONFR));
udelay(10);
outb(ONB_EIDISABLE, (brdp->iobase + ONB_EICONFR));
mdelay(1000);
memconf = (brdp->memaddr & ONB_EIADDRMASKL) >> ONB_EIADDRSHFTL;
outb(memconf, (brdp->iobase + ONB_EIMEMARL));
memconf = (brdp->memaddr & ONB_EIADDRMASKH) >> ONB_EIADDRSHFTH;
outb(memconf, (brdp->iobase + ONB_EIMEMARH));
outb(0x1, brdp->iobase);
mdelay(1);
}
/*****************************************************************************/
static void stli_onbeenable(stlibrd_t *brdp)
{
#ifdef DEBUG
printk(KERN_DEBUG "stli_onbeenable(brdp=%x)\n", (int) brdp);
#endif
outb(ONB_EIENABLE, (brdp->iobase + ONB_EICONFR));
}
/*****************************************************************************/
static void stli_onbedisable(stlibrd_t *brdp)
{
#ifdef DEBUG
printk(KERN_DEBUG "stli_onbedisable(brdp=%x)\n", (int) brdp);
#endif
outb(ONB_EIDISABLE, (brdp->iobase + ONB_EICONFR));
}
/*****************************************************************************/
static char *stli_onbegetmemptr(stlibrd_t *brdp, unsigned long offset, int line)
{
void *ptr;
unsigned char val;
#ifdef DEBUG
printk(KERN_DEBUG "stli_onbegetmemptr(brdp=%x,offset=%x,line=%d)\n",
(int) brdp, (int) offset, line);
#endif
if (offset > brdp->memsize) {
printk(KERN_ERR "STALLION: shared memory pointer=%x out of "
"range at line=%d(%d), brd=%d\n",
(int) offset, line, __LINE__, brdp->brdnr);
ptr = NULL;
val = 0;
} else {
ptr = brdp->membase + (offset % ONB_EIPAGESIZE);
if (offset < ONB_EIPAGESIZE)
val = ONB_EIENABLE;
else
val = ONB_EIENABLE | 0x40;
}
outb(val, (brdp->iobase + ONB_EICONFR));
return(ptr);
}
/*****************************************************************************/
static void stli_onbereset(stlibrd_t *brdp)
{
#ifdef DEBUG
printk(KERN_ERR "stli_onbereset(brdp=%x)\n", (int) brdp);
#endif
outb(ONB_EISTOP, (brdp->iobase + ONB_EICONFR));
udelay(10);
outb(ONB_EIDISABLE, (brdp->iobase + ONB_EICONFR));
mdelay(1000);
}
/*****************************************************************************/
/*
* The following routines act on Brumby boards.
*/
static void stli_bbyinit(stlibrd_t *brdp)
{
#ifdef DEBUG
printk(KERN_ERR "stli_bbyinit(brdp=%d)\n", (int) brdp);
#endif
outb(BBY_ATSTOP, (brdp->iobase + BBY_ATCONFR));
udelay(10);
outb(0, (brdp->iobase + BBY_ATCONFR));
mdelay(1000);
outb(0x1, brdp->iobase);
mdelay(1);
}
/*****************************************************************************/
static char *stli_bbygetmemptr(stlibrd_t *brdp, unsigned long offset, int line)
{
void *ptr;
unsigned char val;
#ifdef DEBUG
printk(KERN_ERR "stli_bbygetmemptr(brdp=%x,offset=%x)\n", (int) brdp,
(int) offset);
#endif
if (offset > brdp->memsize) {
printk(KERN_ERR "STALLION: shared memory pointer=%x out of "
"range at line=%d(%d), brd=%d\n",
(int) offset, line, __LINE__, brdp->brdnr);
ptr = NULL;
val = 0;
} else {
ptr = brdp->membase + (offset % BBY_PAGESIZE);
val = (unsigned char) (offset / BBY_PAGESIZE);
}
outb(val, (brdp->iobase + BBY_ATCONFR));
return(ptr);
}
/*****************************************************************************/
static void stli_bbyreset(stlibrd_t *brdp)
{
#ifdef DEBUG
printk(KERN_DEBUG "stli_bbyreset(brdp=%x)\n", (int) brdp);
#endif
outb(BBY_ATSTOP, (brdp->iobase + BBY_ATCONFR));
udelay(10);
outb(0, (brdp->iobase + BBY_ATCONFR));
mdelay(1000);
}
/*****************************************************************************/
/*
* The following routines act on original old Stallion boards.
*/
static void stli_stalinit(stlibrd_t *brdp)
{
#ifdef DEBUG
printk(KERN_DEBUG "stli_stalinit(brdp=%d)\n", (int) brdp);
#endif
outb(0x1, brdp->iobase);
mdelay(1000);
}
/*****************************************************************************/
static char *stli_stalgetmemptr(stlibrd_t *brdp, unsigned long offset, int line)
{
void *ptr;
#ifdef DEBUG
printk(KERN_DEBUG "stli_stalgetmemptr(brdp=%x,offset=%x)\n", (int) brdp,
(int) offset);
#endif
if (offset > brdp->memsize) {
printk(KERN_ERR "STALLION: shared memory pointer=%x out of "
"range at line=%d(%d), brd=%d\n",
(int) offset, line, __LINE__, brdp->brdnr);
ptr = NULL;
} else {
ptr = brdp->membase + (offset % STAL_PAGESIZE);
}
return(ptr);
}
/*****************************************************************************/
static void stli_stalreset(stlibrd_t *brdp)
{
volatile unsigned long *vecp;
#ifdef DEBUG
printk(KERN_DEBUG "stli_stalreset(brdp=%x)\n", (int) brdp);
#endif
vecp = (volatile unsigned long *) (brdp->membase + 0x30);
*vecp = 0xffff0000;
outb(0, brdp->iobase);
mdelay(1000);
}
/*****************************************************************************/
/*
* Try to find an ECP board and initialize it. This handles only ECP
* board types.
*/
static int stli_initecp(stlibrd_t *brdp)
{
cdkecpsig_t sig;
cdkecpsig_t *sigsp;
unsigned int status, nxtid;
char *name;
int panelnr, nrports;
#ifdef DEBUG
printk(KERN_DEBUG "stli_initecp(brdp=%x)\n", (int) brdp);
#endif
if (!request_region(brdp->iobase, brdp->iosize, "istallion"))
return -EIO;
if ((brdp->iobase == 0) || (brdp->memaddr == 0))
{
release_region(brdp->iobase, brdp->iosize);
return(-ENODEV);
}
brdp->iosize = ECP_IOSIZE;
/*
* Based on the specific board type setup the common vars to access
* and enable shared memory. Set all board specific information now
* as well.
*/
switch (brdp->brdtype) {
case BRD_ECP:
brdp->membase = (void *) brdp->memaddr;
brdp->memsize = ECP_MEMSIZE;
brdp->pagesize = ECP_ATPAGESIZE;
brdp->init = stli_ecpinit;
brdp->enable = stli_ecpenable;
brdp->reenable = stli_ecpenable;
brdp->disable = stli_ecpdisable;
brdp->getmemptr = stli_ecpgetmemptr;
brdp->intr = stli_ecpintr;
brdp->reset = stli_ecpreset;
name = "serial(EC8/64)";
break;
case BRD_ECPE:
brdp->membase = (void *) brdp->memaddr;
brdp->memsize = ECP_MEMSIZE;
brdp->pagesize = ECP_EIPAGESIZE;
brdp->init = stli_ecpeiinit;
brdp->enable = stli_ecpeienable;
brdp->reenable = stli_ecpeienable;
brdp->disable = stli_ecpeidisable;
brdp->getmemptr = stli_ecpeigetmemptr;
brdp->intr = stli_ecpintr;
brdp->reset = stli_ecpeireset;
name = "serial(EC8/64-EI)";
break;
case BRD_ECPMC:
brdp->membase = (void *) brdp->memaddr;
brdp->memsize = ECP_MEMSIZE;
brdp->pagesize = ECP_MCPAGESIZE;
brdp->init = NULL;
brdp->enable = stli_ecpmcenable;
brdp->reenable = stli_ecpmcenable;
brdp->disable = stli_ecpmcdisable;
brdp->getmemptr = stli_ecpmcgetmemptr;
brdp->intr = stli_ecpintr;
brdp->reset = stli_ecpmcreset;
name = "serial(EC8/64-MCA)";
break;
case BRD_ECPPCI:
brdp->membase = (void *) brdp->memaddr;
brdp->memsize = ECP_PCIMEMSIZE;
brdp->pagesize = ECP_PCIPAGESIZE;
brdp->init = stli_ecppciinit;
brdp->enable = NULL;
brdp->reenable = NULL;
brdp->disable = NULL;
brdp->getmemptr = stli_ecppcigetmemptr;
brdp->intr = stli_ecpintr;
brdp->reset = stli_ecppcireset;
name = "serial(EC/RA-PCI)";
break;
default:
release_region(brdp->iobase, brdp->iosize);
return(-EINVAL);
}
/*
* The per-board operations structure is all set up, so now let's go
* and get the board operational. Firstly initialize board configuration
* registers. Set the memory mapping info so we can get at the boards
* shared memory.
*/
EBRDINIT(brdp);
brdp->membase = ioremap(brdp->memaddr, brdp->memsize);
if (brdp->membase == (void *) NULL)
{
release_region(brdp->iobase, brdp->iosize);
return(-ENOMEM);
}
/*
* Now that all specific code is set up, enable the shared memory and
* look for the a signature area that will tell us exactly what board
* this is, and what it is connected to it.
*/
EBRDENABLE(brdp);
sigsp = (cdkecpsig_t *) EBRDGETMEMPTR(brdp, CDK_SIGADDR);
memcpy(&sig, sigsp, sizeof(cdkecpsig_t));
EBRDDISABLE(brdp);
#if 0
printk("%s(%d): sig-> magic=%x rom=%x panel=%x,%x,%x,%x,%x,%x,%x,%x\n",
__FILE__, __LINE__, (int) sig.magic, sig.romver, sig.panelid[0],
(int) sig.panelid[1], (int) sig.panelid[2],
(int) sig.panelid[3], (int) sig.panelid[4],
(int) sig.panelid[5], (int) sig.panelid[6],
(int) sig.panelid[7]);
#endif
if (sig.magic != ECP_MAGIC)
{
release_region(brdp->iobase, brdp->iosize);
return(-ENODEV);
}
/*
* Scan through the signature looking at the panels connected to the
* board. Calculate the total number of ports as we go.
*/
for (panelnr = 0, nxtid = 0; (panelnr < STL_MAXPANELS); panelnr++) {
status = sig.panelid[nxtid];
if ((status & ECH_PNLIDMASK) != nxtid)
break;
brdp->panelids[panelnr] = status;
nrports = (status & ECH_PNL16PORT) ? 16 : 8;
if ((nrports == 16) && ((status & ECH_PNLXPID) == 0))
nxtid++;
brdp->panels[panelnr] = nrports;
brdp->nrports += nrports;
nxtid++;
brdp->nrpanels++;
}
brdp->state |= BST_FOUND;
return(0);
}
/*****************************************************************************/
/*
* Try to find an ONboard, Brumby or Stallion board and initialize it.
* This handles only these board types.
*/
static int stli_initonb(stlibrd_t *brdp)
{
cdkonbsig_t sig;
cdkonbsig_t *sigsp;
char *name;
int i;
#ifdef DEBUG
printk(KERN_DEBUG "stli_initonb(brdp=%x)\n", (int) brdp);
#endif
/*
* Do a basic sanity check on the IO and memory addresses.
*/
if ((brdp->iobase == 0) || (brdp->memaddr == 0))
return(-ENODEV);
brdp->iosize = ONB_IOSIZE;
if (!request_region(brdp->iobase, brdp->iosize, "istallion"))
return -EIO;
/*
* Based on the specific board type setup the common vars to access
* and enable shared memory. Set all board specific information now
* as well.
*/
switch (brdp->brdtype) {
case BRD_ONBOARD:
case BRD_ONBOARD32:
case BRD_ONBOARD2:
case BRD_ONBOARD2_32:
case BRD_ONBOARDRS:
brdp->membase = (void *) brdp->memaddr;
brdp->memsize = ONB_MEMSIZE;
brdp->pagesize = ONB_ATPAGESIZE;
brdp->init = stli_onbinit;
brdp->enable = stli_onbenable;
brdp->reenable = stli_onbenable;
brdp->disable = stli_onbdisable;
brdp->getmemptr = stli_onbgetmemptr;
brdp->intr = stli_ecpintr;
brdp->reset = stli_onbreset;
if (brdp->memaddr > 0x100000)
brdp->enabval = ONB_MEMENABHI;
else
brdp->enabval = ONB_MEMENABLO;
name = "serial(ONBoard)";
break;
case BRD_ONBOARDE:
brdp->membase = (void *) brdp->memaddr;
brdp->memsize = ONB_EIMEMSIZE;
brdp->pagesize = ONB_EIPAGESIZE;
brdp->init = stli_onbeinit;
brdp->enable = stli_onbeenable;
brdp->reenable = stli_onbeenable;
brdp->disable = stli_onbedisable;
brdp->getmemptr = stli_onbegetmemptr;
brdp->intr = stli_ecpintr;
brdp->reset = stli_onbereset;
name = "serial(ONBoard/E)";
break;
case BRD_BRUMBY4:
case BRD_BRUMBY8:
case BRD_BRUMBY16:
brdp->membase = (void *) brdp->memaddr;
brdp->memsize = BBY_MEMSIZE;
brdp->pagesize = BBY_PAGESIZE;
brdp->init = stli_bbyinit;
brdp->enable = NULL;
brdp->reenable = NULL;
brdp->disable = NULL;
brdp->getmemptr = stli_bbygetmemptr;
brdp->intr = stli_ecpintr;
brdp->reset = stli_bbyreset;
name = "serial(Brumby)";
break;
case BRD_STALLION:
brdp->membase = (void *) brdp->memaddr;
brdp->memsize = STAL_MEMSIZE;
brdp->pagesize = STAL_PAGESIZE;
brdp->init = stli_stalinit;
brdp->enable = NULL;
brdp->reenable = NULL;
brdp->disable = NULL;
brdp->getmemptr = stli_stalgetmemptr;
brdp->intr = stli_ecpintr;
brdp->reset = stli_stalreset;
name = "serial(Stallion)";
break;
default:
release_region(brdp->iobase, brdp->iosize);
return(-EINVAL);
}
/*
* The per-board operations structure is all set up, so now let's go
* and get the board operational. Firstly initialize board configuration
* registers. Set the memory mapping info so we can get at the boards
* shared memory.
*/
EBRDINIT(brdp);
brdp->membase = ioremap(brdp->memaddr, brdp->memsize);
if (brdp->membase == (void *) NULL)
{
release_region(brdp->iobase, brdp->iosize);
return(-ENOMEM);
}
/*
* Now that all specific code is set up, enable the shared memory and
* look for the a signature area that will tell us exactly what board
* this is, and how many ports.
*/
EBRDENABLE(brdp);
sigsp = (cdkonbsig_t *) EBRDGETMEMPTR(brdp, CDK_SIGADDR);
memcpy(&sig, sigsp, sizeof(cdkonbsig_t));
EBRDDISABLE(brdp);
#if 0
printk("%s(%d): sig-> magic=%x:%x:%x:%x romver=%x amask=%x:%x:%x\n",
__FILE__, __LINE__, sig.magic0, sig.magic1, sig.magic2,
sig.magic3, sig.romver, sig.amask0, sig.amask1, sig.amask2);
#endif
if ((sig.magic0 != ONB_MAGIC0) || (sig.magic1 != ONB_MAGIC1) ||
(sig.magic2 != ONB_MAGIC2) || (sig.magic3 != ONB_MAGIC3))
{
release_region(brdp->iobase, brdp->iosize);
return(-ENODEV);
}
/*
* Scan through the signature alive mask and calculate how many ports
* there are on this board.
*/
brdp->nrpanels = 1;
if (sig.amask1) {
brdp->nrports = 32;
} else {
for (i = 0; (i < 16); i++) {
if (((sig.amask0 << i) & 0x8000) == 0)
break;
}
brdp->nrports = i;
}
brdp->panels[0] = brdp->nrports;
brdp->state |= BST_FOUND;
return(0);
}
/*****************************************************************************/
/*
* Start up a running board. This routine is only called after the
* code has been down loaded to the board and is operational. It will
* read in the memory map, and get the show on the road...
*/
static int stli_startbrd(stlibrd_t *brdp)
{
volatile cdkhdr_t *hdrp;
volatile cdkmem_t *memp;
volatile cdkasy_t *ap;
unsigned long flags;
stliport_t *portp;
int portnr, nrdevs, i, rc;
#ifdef DEBUG
printk(KERN_DEBUG "stli_startbrd(brdp=%x)\n", (int) brdp);
#endif
rc = 0;
save_flags(flags);
cli();
EBRDENABLE(brdp);
hdrp = (volatile cdkhdr_t *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
nrdevs = hdrp->nrdevs;
#if 0
printk("%s(%d): CDK version %d.%d.%d --> "
"nrdevs=%d memp=%x hostp=%x slavep=%x\n",
__FILE__, __LINE__, hdrp->ver_release, hdrp->ver_modification,
hdrp->ver_fix, nrdevs, (int) hdrp->memp, (int) hdrp->hostp,
(int) hdrp->slavep);
#endif
if (nrdevs < (brdp->nrports + 1)) {
printk(KERN_ERR "STALLION: slave failed to allocate memory for "
"all devices, devices=%d\n", nrdevs);
brdp->nrports = nrdevs - 1;
}
brdp->nrdevs = nrdevs;
brdp->hostoffset = hdrp->hostp - CDK_CDKADDR;
brdp->slaveoffset = hdrp->slavep - CDK_CDKADDR;
brdp->bitsize = (nrdevs + 7) / 8;
memp = (volatile cdkmem_t *) hdrp->memp;
if (((unsigned long) memp) > brdp->memsize) {
printk(KERN_ERR "STALLION: corrupted shared memory region?\n");
rc = -EIO;
goto stli_donestartup;
}
memp = (volatile cdkmem_t *) EBRDGETMEMPTR(brdp, (unsigned long) memp);
if (memp->dtype != TYP_ASYNCTRL) {
printk(KERN_ERR "STALLION: no slave control device found\n");
goto stli_donestartup;
}
memp++;
/*
* Cycle through memory allocation of each port. We are guaranteed to
* have all ports inside the first page of slave window, so no need to
* change pages while reading memory map.
*/
for (i = 1, portnr = 0; (i < nrdevs); i++, portnr++, memp++) {
if (memp->dtype != TYP_ASYNC)
break;
portp = brdp->ports[portnr];
if (portp == (stliport_t *) NULL)
break;
portp->devnr = i;
portp->addr = memp->offset;
portp->reqbit = (unsigned char) (0x1 << (i * 8 / nrdevs));
portp->portidx = (unsigned char) (i / 8);
portp->portbit = (unsigned char) (0x1 << (i % 8));
}
hdrp->slavereq = 0xff;
/*
* For each port setup a local copy of the RX and TX buffer offsets
* and sizes. We do this separate from the above, because we need to
* move the shared memory page...
*/
for (i = 1, portnr = 0; (i < nrdevs); i++, portnr++) {
portp = brdp->ports[portnr];
if (portp == (stliport_t *) NULL)
break;
if (portp->addr == 0)
break;
ap = (volatile cdkasy_t *) EBRDGETMEMPTR(brdp, portp->addr);
if (ap != (volatile cdkasy_t *) NULL) {
portp->rxsize = ap->rxq.size;
portp->txsize = ap->txq.size;
portp->rxoffset = ap->rxq.offset;
portp->txoffset = ap->txq.offset;
}
}
stli_donestartup:
EBRDDISABLE(brdp);
restore_flags(flags);
if (rc == 0)
brdp->state |= BST_STARTED;
if (! stli_timeron) {
stli_timeron++;
stli_timerlist.expires = STLI_TIMEOUT;
add_timer(&stli_timerlist);
}
return(rc);
}
/*****************************************************************************/
/*
* Probe and initialize the specified board.
*/
static int __init stli_brdinit(stlibrd_t *brdp)
{
#ifdef DEBUG
printk(KERN_DEBUG "stli_brdinit(brdp=%x)\n", (int) brdp);
#endif
stli_brds[brdp->brdnr] = brdp;
switch (brdp->brdtype) {
case BRD_ECP:
case BRD_ECPE:
case BRD_ECPMC:
case BRD_ECPPCI:
stli_initecp(brdp);
break;
case BRD_ONBOARD:
case BRD_ONBOARDE:
case BRD_ONBOARD2:
case BRD_ONBOARD32:
case BRD_ONBOARD2_32:
case BRD_ONBOARDRS:
case BRD_BRUMBY4:
case BRD_BRUMBY8:
case BRD_BRUMBY16:
case BRD_STALLION:
stli_initonb(brdp);
break;
case BRD_EASYIO:
case BRD_ECH:
case BRD_ECHMC:
case BRD_ECHPCI:
printk(KERN_ERR "STALLION: %s board type not supported in "
"this driver\n", stli_brdnames[brdp->brdtype]);
return(ENODEV);
default:
printk(KERN_ERR "STALLION: board=%d is unknown board "
"type=%d\n", brdp->brdnr, brdp->brdtype);
return(ENODEV);
}
if ((brdp->state & BST_FOUND) == 0) {
printk(KERN_ERR "STALLION: %s board not found, board=%d "
"io=%x mem=%x\n",
stli_brdnames[brdp->brdtype], brdp->brdnr,
brdp->iobase, (int) brdp->memaddr);
return(ENODEV);
}
stli_initports(brdp);
printk(KERN_INFO "STALLION: %s found, board=%d io=%x mem=%x "
"nrpanels=%d nrports=%d\n", stli_brdnames[brdp->brdtype],
brdp->brdnr, brdp->iobase, (int) brdp->memaddr,
brdp->nrpanels, brdp->nrports);
return(0);
}
/*****************************************************************************/
/*
* Probe around trying to find where the EISA boards shared memory
* might be. This is a bit if hack, but it is the best we can do.
*/
static int stli_eisamemprobe(stlibrd_t *brdp)
{
cdkecpsig_t ecpsig, *ecpsigp;
cdkonbsig_t onbsig, *onbsigp;
int i, foundit;
#ifdef DEBUG
printk(KERN_DEBUG "stli_eisamemprobe(brdp=%x)\n", (int) brdp);
#endif
/*
* First up we reset the board, to get it into a known state. There
* is only 2 board types here we need to worry about. Don;t use the
* standard board init routine here, it programs up the shared
* memory address, and we don't know it yet...
*/
if (brdp->brdtype == BRD_ECPE) {
outb(0x1, (brdp->iobase + ECP_EIBRDENAB));
outb(ECP_EISTOP, (brdp->iobase + ECP_EICONFR));
udelay(10);
outb(ECP_EIDISABLE, (brdp->iobase + ECP_EICONFR));
udelay(500);
stli_ecpeienable(brdp);
} else if (brdp->brdtype == BRD_ONBOARDE) {
outb(0x1, (brdp->iobase + ONB_EIBRDENAB));
outb(ONB_EISTOP, (brdp->iobase + ONB_EICONFR));
udelay(10);
outb(ONB_EIDISABLE, (brdp->iobase + ONB_EICONFR));
mdelay(100);
outb(0x1, brdp->iobase);
mdelay(1);
stli_onbeenable(brdp);
} else {
return(-ENODEV);
}
foundit = 0;
brdp->memsize = ECP_MEMSIZE;
/*
* Board shared memory is enabled, so now we have a poke around and
* see if we can find it.
*/
for (i = 0; (i < stli_eisamempsize); i++) {
brdp->memaddr = stli_eisamemprobeaddrs[i];
brdp->membase = (void *) brdp->memaddr;
brdp->membase = ioremap(brdp->memaddr, brdp->memsize);
if (brdp->membase == (void *) NULL)
continue;
if (brdp->brdtype == BRD_ECPE) {
ecpsigp = (cdkecpsig_t *) stli_ecpeigetmemptr(brdp,
CDK_SIGADDR, __LINE__);
memcpy(&ecpsig, ecpsigp, sizeof(cdkecpsig_t));
if (ecpsig.magic == ECP_MAGIC)
foundit = 1;
} else {
onbsigp = (cdkonbsig_t *) stli_onbegetmemptr(brdp,
CDK_SIGADDR, __LINE__);
memcpy(&onbsig, onbsigp, sizeof(cdkonbsig_t));
if ((onbsig.magic0 == ONB_MAGIC0) &&
(onbsig.magic1 == ONB_MAGIC1) &&
(onbsig.magic2 == ONB_MAGIC2) &&
(onbsig.magic3 == ONB_MAGIC3))
foundit = 1;
}
iounmap(brdp->membase);
if (foundit)
break;
}
/*
* Regardless of whether we found the shared memory or not we must
* disable the region. After that return success or failure.
*/
if (brdp->brdtype == BRD_ECPE)
stli_ecpeidisable(brdp);
else
stli_onbedisable(brdp);
if (! foundit) {
brdp->memaddr = 0;
brdp->membase = NULL;
printk(KERN_ERR "STALLION: failed to probe shared memory "
"region for %s in EISA slot=%d\n",
stli_brdnames[brdp->brdtype], (brdp->iobase >> 12));
return(-ENODEV);
}
return(0);
}
static int stli_getbrdnr(void)
{
int i;
for (i = 0; i < STL_MAXBRDS; i++) {
if (!stli_brds[i]) {
if (i >= stli_nrbrds)
stli_nrbrds = i + 1;
return i;
}
}
return -1;
}
/*****************************************************************************/
/*
* Probe around and try to find any EISA boards in system. The biggest
* problem here is finding out what memory address is associated with
* an EISA board after it is found. The registers of the ECPE and
* ONboardE are not readable - so we can't read them from there. We
* don't have access to the EISA CMOS (or EISA BIOS) so we don't
* actually have any way to find out the real value. The best we can
* do is go probing around in the usual places hoping we can find it.
*/
static int stli_findeisabrds(void)
{
stlibrd_t *brdp;
unsigned int iobase, eid;
int i;
#ifdef DEBUG
printk(KERN_DEBUG "stli_findeisabrds()\n");
#endif
/*
* Firstly check if this is an EISA system. Do this by probing for
* the system board EISA ID. If this is not an EISA system then
* don't bother going any further!
*/
outb(0xff, 0xc80);
if (inb(0xc80) == 0xff)
return(0);
/*
* Looks like an EISA system, so go searching for EISA boards.
*/
for (iobase = 0x1000; (iobase <= 0xc000); iobase += 0x1000) {
outb(0xff, (iobase + 0xc80));
eid = inb(iobase + 0xc80);
eid |= inb(iobase + 0xc81) << 8;
if (eid != STL_EISAID)
continue;
/*
* We have found a board. Need to check if this board was
* statically configured already (just in case!).
*/
for (i = 0; (i < STL_MAXBRDS); i++) {
brdp = stli_brds[i];
if (brdp == (stlibrd_t *) NULL)
continue;
if (brdp->iobase == iobase)
break;
}
if (i < STL_MAXBRDS)
continue;
/*
* We have found a Stallion board and it is not configured already.
* Allocate a board structure and initialize it.
*/
if ((brdp = stli_allocbrd()) == (stlibrd_t *) NULL)
return(-ENOMEM);
if ((brdp->brdnr = stli_getbrdnr()) < 0)
return(-ENOMEM);
eid = inb(iobase + 0xc82);
if (eid == ECP_EISAID)
brdp->brdtype = BRD_ECPE;
else if (eid == ONB_EISAID)
brdp->brdtype = BRD_ONBOARDE;
else
brdp->brdtype = BRD_UNKNOWN;
brdp->iobase = iobase;
outb(0x1, (iobase + 0xc84));
if (stli_eisamemprobe(brdp))
outb(0, (iobase + 0xc84));
stli_brdinit(brdp);
}
return(0);
}
/*****************************************************************************/
/*
* Find the next available board number that is free.
*/
/*****************************************************************************/
#ifdef CONFIG_PCI
/*
* We have a Stallion board. Allocate a board structure and
* initialize it. Read its IO and MEMORY resources from PCI
* configuration space.
*/
static int stli_initpcibrd(int brdtype, struct pci_dev *devp)
{
stlibrd_t *brdp;
#ifdef DEBUG
printk(KERN_DEBUG "stli_initpcibrd(brdtype=%d,busnr=%x,devnr=%x)\n",
brdtype, dev->bus->number, dev->devfn);
#endif
if (pci_enable_device(devp))
return(-EIO);
if ((brdp = stli_allocbrd()) == (stlibrd_t *) NULL)
return(-ENOMEM);
if ((brdp->brdnr = stli_getbrdnr()) < 0) {
printk(KERN_INFO "STALLION: too many boards found, "
"maximum supported %d\n", STL_MAXBRDS);
return(0);
}
brdp->brdtype = brdtype;
#ifdef DEBUG
printk(KERN_DEBUG "%s(%d): BAR[]=%lx,%lx,%lx,%lx\n", __FILE__, __LINE__,
pci_resource_start(devp, 0),
pci_resource_start(devp, 1),
pci_resource_start(devp, 2),
pci_resource_start(devp, 3));
#endif
/*
* We have all resources from the board, so lets setup the actual
* board structure now.
*/
brdp->iobase = pci_resource_start(devp, 3);
brdp->memaddr = pci_resource_start(devp, 2);
stli_brdinit(brdp);
return(0);
}
/*****************************************************************************/
/*
* Find all Stallion PCI boards that might be installed. Initialize each
* one as it is found.
*/
static int stli_findpcibrds(void)
{
struct pci_dev *dev = NULL;
int rc;
#ifdef DEBUG
printk("stli_findpcibrds()\n");
#endif
while ((dev = pci_find_device(PCI_VENDOR_ID_STALLION,
PCI_DEVICE_ID_ECRA, dev))) {
if ((rc = stli_initpcibrd(BRD_ECPPCI, dev)))
return(rc);
}
return(0);
}
#endif
/*****************************************************************************/
/*
* Allocate a new board structure. Fill out the basic info in it.
*/
static stlibrd_t *stli_allocbrd(void)
{
stlibrd_t *brdp;
brdp = (stlibrd_t *) stli_memalloc(sizeof(stlibrd_t));
if (brdp == (stlibrd_t *) NULL) {
printk(KERN_ERR "STALLION: failed to allocate memory "
"(size=%d)\n", sizeof(stlibrd_t));
return((stlibrd_t *) NULL);
}
memset(brdp, 0, sizeof(stlibrd_t));
brdp->magic = STLI_BOARDMAGIC;
return(brdp);
}
/*****************************************************************************/
/*
* Scan through all the boards in the configuration and see what we
* can find.
*/
static int stli_initbrds(void)
{
stlibrd_t *brdp, *nxtbrdp;
stlconf_t *confp;
int i, j;
#ifdef DEBUG
printk(KERN_DEBUG "stli_initbrds()\n");
#endif
if (stli_nrbrds > STL_MAXBRDS) {
printk(KERN_INFO "STALLION: too many boards in configuration "
"table, truncating to %d\n", STL_MAXBRDS);
stli_nrbrds = STL_MAXBRDS;
}
/*
* Firstly scan the list of static boards configured. Allocate
* resources and initialize the boards as found. If this is a
* module then let the module args override static configuration.
*/
for (i = 0; (i < stli_nrbrds); i++) {
confp = &stli_brdconf[i];
#ifdef MODULE
stli_parsebrd(confp, stli_brdsp[i]);
#endif
if ((brdp = stli_allocbrd()) == (stlibrd_t *) NULL)
return(-ENOMEM);
brdp->brdnr = i;
brdp->brdtype = confp->brdtype;
brdp->iobase = confp->ioaddr1;
brdp->memaddr = confp->memaddr;
stli_brdinit(brdp);
}
/*
* Static configuration table done, so now use dynamic methods to
* see if any more boards should be configured.
*/
#ifdef MODULE
stli_argbrds();
#endif
if (STLI_EISAPROBE)
stli_findeisabrds();
#ifdef CONFIG_PCI
stli_findpcibrds();
#endif
/*
* All found boards are initialized. Now for a little optimization, if
* no boards are sharing the "shared memory" regions then we can just
* leave them all enabled. This is in fact the usual case.
*/
stli_shared = 0;
if (stli_nrbrds > 1) {
for (i = 0; (i < stli_nrbrds); i++) {
brdp = stli_brds[i];
if (brdp == (stlibrd_t *) NULL)
continue;
for (j = i + 1; (j < stli_nrbrds); j++) {
nxtbrdp = stli_brds[j];
if (nxtbrdp == (stlibrd_t *) NULL)
continue;
if ((brdp->membase >= nxtbrdp->membase) &&
(brdp->membase <= (nxtbrdp->membase +
nxtbrdp->memsize - 1))) {
stli_shared++;
break;
}
}
}
}
if (stli_shared == 0) {
for (i = 0; (i < stli_nrbrds); i++) {
brdp = stli_brds[i];
if (brdp == (stlibrd_t *) NULL)
continue;
if (brdp->state & BST_FOUND) {
EBRDENABLE(brdp);
brdp->enable = NULL;
brdp->disable = NULL;
}
}
}
return(0);
}
/*****************************************************************************/
/*
* Code to handle an "staliomem" read operation. This device is the
* contents of the board shared memory. It is used for down loading
* the slave image (and debugging :-)
*/
static ssize_t stli_memread(struct file *fp, char __user *buf, size_t count, loff_t *offp)
{
unsigned long flags;
void *memptr;
stlibrd_t *brdp;
int brdnr, size, n;
#ifdef DEBUG
printk(KERN_DEBUG "stli_memread(fp=%x,buf=%x,count=%x,offp=%x)\n",
(int) fp, (int) buf, count, (int) offp);
#endif
brdnr = iminor(fp->f_dentry->d_inode);
if (brdnr >= stli_nrbrds)
return(-ENODEV);
brdp = stli_brds[brdnr];
if (brdp == (stlibrd_t *) NULL)
return(-ENODEV);
if (brdp->state == 0)
return(-ENODEV);
if (fp->f_pos >= brdp->memsize)
return(0);
size = MIN(count, (brdp->memsize - fp->f_pos));
save_flags(flags);
cli();
EBRDENABLE(brdp);
while (size > 0) {
memptr = (void *) EBRDGETMEMPTR(brdp, fp->f_pos);
n = MIN(size, (brdp->pagesize - (((unsigned long) fp->f_pos) % brdp->pagesize)));
if (copy_to_user(buf, memptr, n)) {
count = -EFAULT;
goto out;
}
fp->f_pos += n;
buf += n;
size -= n;
}
out:
EBRDDISABLE(brdp);
restore_flags(flags);
return(count);
}
/*****************************************************************************/
/*
* Code to handle an "staliomem" write operation. This device is the
* contents of the board shared memory. It is used for down loading
* the slave image (and debugging :-)
*/
static ssize_t stli_memwrite(struct file *fp, const char __user *buf, size_t count, loff_t *offp)
{
unsigned long flags;
void *memptr;
stlibrd_t *brdp;
char __user *chbuf;
int brdnr, size, n;
#ifdef DEBUG
printk(KERN_DEBUG "stli_memwrite(fp=%x,buf=%x,count=%x,offp=%x)\n",
(int) fp, (int) buf, count, (int) offp);
#endif
brdnr = iminor(fp->f_dentry->d_inode);
if (brdnr >= stli_nrbrds)
return(-ENODEV);
brdp = stli_brds[brdnr];
if (brdp == (stlibrd_t *) NULL)
return(-ENODEV);
if (brdp->state == 0)
return(-ENODEV);
if (fp->f_pos >= brdp->memsize)
return(0);
chbuf = (char __user *) buf;
size = MIN(count, (brdp->memsize - fp->f_pos));
save_flags(flags);
cli();
EBRDENABLE(brdp);
while (size > 0) {
memptr = (void *) EBRDGETMEMPTR(brdp, fp->f_pos);
n = MIN(size, (brdp->pagesize - (((unsigned long) fp->f_pos) % brdp->pagesize)));
if (copy_from_user(memptr, chbuf, n)) {
count = -EFAULT;
goto out;
}
fp->f_pos += n;
chbuf += n;
size -= n;
}
out:
EBRDDISABLE(brdp);
restore_flags(flags);
return(count);
}
/*****************************************************************************/
/*
* Return the board stats structure to user app.
*/
static int stli_getbrdstats(combrd_t __user *bp)
{
stlibrd_t *brdp;
int i;
if (copy_from_user(&stli_brdstats, bp, sizeof(combrd_t)))
return -EFAULT;
if (stli_brdstats.brd >= STL_MAXBRDS)
return(-ENODEV);
brdp = stli_brds[stli_brdstats.brd];
if (brdp == (stlibrd_t *) NULL)
return(-ENODEV);
memset(&stli_brdstats, 0, sizeof(combrd_t));
stli_brdstats.brd = brdp->brdnr;
stli_brdstats.type = brdp->brdtype;
stli_brdstats.hwid = 0;
stli_brdstats.state = brdp->state;
stli_brdstats.ioaddr = brdp->iobase;
stli_brdstats.memaddr = brdp->memaddr;
stli_brdstats.nrpanels = brdp->nrpanels;
stli_brdstats.nrports = brdp->nrports;
for (i = 0; (i < brdp->nrpanels); i++) {
stli_brdstats.panels[i].panel = i;
stli_brdstats.panels[i].hwid = brdp->panelids[i];
stli_brdstats.panels[i].nrports = brdp->panels[i];
}
if (copy_to_user(bp, &stli_brdstats, sizeof(combrd_t)))
return -EFAULT;
return(0);
}
/*****************************************************************************/
/*
* Resolve the referenced port number into a port struct pointer.
*/
static stliport_t *stli_getport(int brdnr, int panelnr, int portnr)
{
stlibrd_t *brdp;
int i;
if ((brdnr < 0) || (brdnr >= STL_MAXBRDS))
return((stliport_t *) NULL);
brdp = stli_brds[brdnr];
if (brdp == (stlibrd_t *) NULL)
return((stliport_t *) NULL);
for (i = 0; (i < panelnr); i++)
portnr += brdp->panels[i];
if ((portnr < 0) || (portnr >= brdp->nrports))
return((stliport_t *) NULL);
return(brdp->ports[portnr]);
}
/*****************************************************************************/
/*
* Return the port stats structure to user app. A NULL port struct
* pointer passed in means that we need to find out from the app
* what port to get stats for (used through board control device).
*/
static int stli_portcmdstats(stliport_t *portp)
{
unsigned long flags;
stlibrd_t *brdp;
int rc;
memset(&stli_comstats, 0, sizeof(comstats_t));
if (portp == (stliport_t *) NULL)
return(-ENODEV);
brdp = stli_brds[portp->brdnr];
if (brdp == (stlibrd_t *) NULL)
return(-ENODEV);
if (brdp->state & BST_STARTED) {
if ((rc = stli_cmdwait(brdp, portp, A_GETSTATS,
&stli_cdkstats, sizeof(asystats_t), 1)) < 0)
return(rc);
} else {
memset(&stli_cdkstats, 0, sizeof(asystats_t));
}
stli_comstats.brd = portp->brdnr;
stli_comstats.panel = portp->panelnr;
stli_comstats.port = portp->portnr;
stli_comstats.state = portp->state;
stli_comstats.flags = portp->flags;
save_flags(flags);
cli();
if (portp->tty != (struct tty_struct *) NULL) {
if (portp->tty->driver_data == portp) {
stli_comstats.ttystate = portp->tty->flags;
stli_comstats.rxbuffered = -1 /*portp->tty->flip.count*/;
if (portp->tty->termios != (struct termios *) NULL) {
stli_comstats.cflags = portp->tty->termios->c_cflag;
stli_comstats.iflags = portp->tty->termios->c_iflag;
stli_comstats.oflags = portp->tty->termios->c_oflag;
stli_comstats.lflags = portp->tty->termios->c_lflag;
}
}
}
restore_flags(flags);
stli_comstats.txtotal = stli_cdkstats.txchars;
stli_comstats.rxtotal = stli_cdkstats.rxchars + stli_cdkstats.ringover;
stli_comstats.txbuffered = stli_cdkstats.txringq;
stli_comstats.rxbuffered += stli_cdkstats.rxringq;
stli_comstats.rxoverrun = stli_cdkstats.overruns;
stli_comstats.rxparity = stli_cdkstats.parity;
stli_comstats.rxframing = stli_cdkstats.framing;
stli_comstats.rxlost = stli_cdkstats.ringover;
stli_comstats.rxbreaks = stli_cdkstats.rxbreaks;
stli_comstats.txbreaks = stli_cdkstats.txbreaks;
stli_comstats.txxon = stli_cdkstats.txstart;
stli_comstats.txxoff = stli_cdkstats.txstop;
stli_comstats.rxxon = stli_cdkstats.rxstart;
stli_comstats.rxxoff = stli_cdkstats.rxstop;
stli_comstats.rxrtsoff = stli_cdkstats.rtscnt / 2;
stli_comstats.rxrtson = stli_cdkstats.rtscnt - stli_comstats.rxrtsoff;
stli_comstats.modem = stli_cdkstats.dcdcnt;
stli_comstats.hwid = stli_cdkstats.hwid;
stli_comstats.signals = stli_mktiocm(stli_cdkstats.signals);
return(0);
}
/*****************************************************************************/
/*
* Return the port stats structure to user app. A NULL port struct
* pointer passed in means that we need to find out from the app
* what port to get stats for (used through board control device).
*/
static int stli_getportstats(stliport_t *portp, comstats_t __user *cp)
{
stlibrd_t *brdp;
int rc;
if (!portp) {
if (copy_from_user(&stli_comstats, cp, sizeof(comstats_t)))
return -EFAULT;
portp = stli_getport(stli_comstats.brd, stli_comstats.panel,
stli_comstats.port);
if (!portp)
return -ENODEV;
}
brdp = stli_brds[portp->brdnr];
if (!brdp)
return -ENODEV;
if ((rc = stli_portcmdstats(portp)) < 0)
return rc;
return copy_to_user(cp, &stli_comstats, sizeof(comstats_t)) ?
-EFAULT : 0;
}
/*****************************************************************************/
/*
* Clear the port stats structure. We also return it zeroed out...
*/
static int stli_clrportstats(stliport_t *portp, comstats_t __user *cp)
{
stlibrd_t *brdp;
int rc;
if (!portp) {
if (copy_from_user(&stli_comstats, cp, sizeof(comstats_t)))
return -EFAULT;
portp = stli_getport(stli_comstats.brd, stli_comstats.panel,
stli_comstats.port);
if (!portp)
return -ENODEV;
}
brdp = stli_brds[portp->brdnr];
if (!brdp)
return -ENODEV;
if (brdp->state & BST_STARTED) {
if ((rc = stli_cmdwait(brdp, portp, A_CLEARSTATS, NULL, 0, 0)) < 0)
return rc;
}
memset(&stli_comstats, 0, sizeof(comstats_t));
stli_comstats.brd = portp->brdnr;
stli_comstats.panel = portp->panelnr;
stli_comstats.port = portp->portnr;
if (copy_to_user(cp, &stli_comstats, sizeof(comstats_t)))
return -EFAULT;
return 0;
}
/*****************************************************************************/
/*
* Return the entire driver ports structure to a user app.
*/
static int stli_getportstruct(stliport_t __user *arg)
{
stliport_t *portp;
if (copy_from_user(&stli_dummyport, arg, sizeof(stliport_t)))
return -EFAULT;
portp = stli_getport(stli_dummyport.brdnr, stli_dummyport.panelnr,
stli_dummyport.portnr);
if (!portp)
return -ENODEV;
if (copy_to_user(arg, portp, sizeof(stliport_t)))
return -EFAULT;
return 0;
}
/*****************************************************************************/
/*
* Return the entire driver board structure to a user app.
*/
static int stli_getbrdstruct(stlibrd_t __user *arg)
{
stlibrd_t *brdp;
if (copy_from_user(&stli_dummybrd, arg, sizeof(stlibrd_t)))
return -EFAULT;
if ((stli_dummybrd.brdnr < 0) || (stli_dummybrd.brdnr >= STL_MAXBRDS))
return -ENODEV;
brdp = stli_brds[stli_dummybrd.brdnr];
if (!brdp)
return -ENODEV;
if (copy_to_user(arg, brdp, sizeof(stlibrd_t)))
return -EFAULT;
return 0;
}
/*****************************************************************************/
/*
* The "staliomem" device is also required to do some special operations on
* the board. We need to be able to send an interrupt to the board,
* reset it, and start/stop it.
*/
static int stli_memioctl(struct inode *ip, struct file *fp, unsigned int cmd, unsigned long arg)
{
stlibrd_t *brdp;
int brdnr, rc, done;
void __user *argp = (void __user *)arg;
#ifdef DEBUG
printk(KERN_DEBUG "stli_memioctl(ip=%x,fp=%x,cmd=%x,arg=%x)\n",
(int) ip, (int) fp, cmd, (int) arg);
#endif
/*
* First up handle the board independent ioctls.
*/
done = 0;
rc = 0;
switch (cmd) {
case COM_GETPORTSTATS:
rc = stli_getportstats(NULL, argp);
done++;
break;
case COM_CLRPORTSTATS:
rc = stli_clrportstats(NULL, argp);
done++;
break;
case COM_GETBRDSTATS:
rc = stli_getbrdstats(argp);
done++;
break;
case COM_READPORT:
rc = stli_getportstruct(argp);
done++;
break;
case COM_READBOARD:
rc = stli_getbrdstruct(argp);
done++;
break;
}
if (done)
return(rc);
/*
* Now handle the board specific ioctls. These all depend on the
* minor number of the device they were called from.
*/
brdnr = iminor(ip);
if (brdnr >= STL_MAXBRDS)
return(-ENODEV);
brdp = stli_brds[brdnr];
if (!brdp)
return(-ENODEV);
if (brdp->state == 0)
return(-ENODEV);
switch (cmd) {
case STL_BINTR:
EBRDINTR(brdp);
break;
case STL_BSTART:
rc = stli_startbrd(brdp);
break;
case STL_BSTOP:
brdp->state &= ~BST_STARTED;
break;
case STL_BRESET:
brdp->state &= ~BST_STARTED;
EBRDRESET(brdp);
if (stli_shared == 0) {
if (brdp->reenable != NULL)
(* brdp->reenable)(brdp);
}
break;
default:
rc = -ENOIOCTLCMD;
break;
}
return(rc);
}
static struct tty_operations stli_ops = {
.open = stli_open,
.close = stli_close,
.write = stli_write,
.put_char = stli_putchar,
.flush_chars = stli_flushchars,
.write_room = stli_writeroom,
.chars_in_buffer = stli_charsinbuffer,
.ioctl = stli_ioctl,
.set_termios = stli_settermios,
.throttle = stli_throttle,
.unthrottle = stli_unthrottle,
.stop = stli_stop,
.start = stli_start,
.hangup = stli_hangup,
.flush_buffer = stli_flushbuffer,
.break_ctl = stli_breakctl,
.wait_until_sent = stli_waituntilsent,
.send_xchar = stli_sendxchar,
.read_proc = stli_readproc,
.tiocmget = stli_tiocmget,
.tiocmset = stli_tiocmset,
};
/*****************************************************************************/
int __init stli_init(void)
{
int i;
printk(KERN_INFO "%s: version %s\n", stli_drvtitle, stli_drvversion);
stli_initbrds();
stli_serial = alloc_tty_driver(STL_MAXBRDS * STL_MAXPORTS);
if (!stli_serial)
return -ENOMEM;
/*
* Allocate a temporary write buffer.
*/
stli_tmpwritebuf = (char *) stli_memalloc(STLI_TXBUFSIZE);
if (stli_tmpwritebuf == (char *) NULL)
printk(KERN_ERR "STALLION: failed to allocate memory "
"(size=%d)\n", STLI_TXBUFSIZE);
stli_txcookbuf = stli_memalloc(STLI_TXBUFSIZE);
if (stli_txcookbuf == (char *) NULL)
printk(KERN_ERR "STALLION: failed to allocate memory "
"(size=%d)\n", STLI_TXBUFSIZE);
/*
* Set up a character driver for the shared memory region. We need this
* to down load the slave code image. Also it is a useful debugging tool.
*/
if (register_chrdev(STL_SIOMEMMAJOR, "staliomem", &stli_fsiomem))
printk(KERN_ERR "STALLION: failed to register serial memory "
"device\n");
devfs_mk_dir("staliomem");
istallion_class = class_create(THIS_MODULE, "staliomem");
for (i = 0; i < 4; i++) {
devfs_mk_cdev(MKDEV(STL_SIOMEMMAJOR, i),
S_IFCHR | S_IRUSR | S_IWUSR,
"staliomem/%d", i);
class_device_create(istallion_class, NULL,
MKDEV(STL_SIOMEMMAJOR, i),
NULL, "staliomem%d", i);
}
/*
* Set up the tty driver structure and register us as a driver.
*/
stli_serial->owner = THIS_MODULE;
stli_serial->driver_name = stli_drvname;
stli_serial->name = stli_serialname;
stli_serial->major = STL_SERIALMAJOR;
stli_serial->minor_start = 0;
stli_serial->type = TTY_DRIVER_TYPE_SERIAL;
stli_serial->subtype = SERIAL_TYPE_NORMAL;
stli_serial->init_termios = stli_deftermios;
stli_serial->flags = TTY_DRIVER_REAL_RAW;
tty_set_operations(stli_serial, &stli_ops);
if (tty_register_driver(stli_serial)) {
put_tty_driver(stli_serial);
printk(KERN_ERR "STALLION: failed to register serial driver\n");
return -EBUSY;
}
return(0);
}
/*****************************************************************************/