linux-sg2042/drivers/dma/iop-adma.h

915 lines
21 KiB
C

/* SPDX-License-Identifier: GPL-2.0-only */
/*
* Copyright © 2006, Intel Corporation.
*/
#ifndef _ADMA_H
#define _ADMA_H
#include <linux/types.h>
#include <linux/io.h>
#include <linux/platform_data/dma-iop32x.h>
/* Memory copy units */
#define DMA_CCR(chan) (chan->mmr_base + 0x0)
#define DMA_CSR(chan) (chan->mmr_base + 0x4)
#define DMA_DAR(chan) (chan->mmr_base + 0xc)
#define DMA_NDAR(chan) (chan->mmr_base + 0x10)
#define DMA_PADR(chan) (chan->mmr_base + 0x14)
#define DMA_PUADR(chan) (chan->mmr_base + 0x18)
#define DMA_LADR(chan) (chan->mmr_base + 0x1c)
#define DMA_BCR(chan) (chan->mmr_base + 0x20)
#define DMA_DCR(chan) (chan->mmr_base + 0x24)
/* Application accelerator unit */
#define AAU_ACR(chan) (chan->mmr_base + 0x0)
#define AAU_ASR(chan) (chan->mmr_base + 0x4)
#define AAU_ADAR(chan) (chan->mmr_base + 0x8)
#define AAU_ANDAR(chan) (chan->mmr_base + 0xc)
#define AAU_SAR(src, chan) (chan->mmr_base + (0x10 + ((src) << 2)))
#define AAU_DAR(chan) (chan->mmr_base + 0x20)
#define AAU_ABCR(chan) (chan->mmr_base + 0x24)
#define AAU_ADCR(chan) (chan->mmr_base + 0x28)
#define AAU_SAR_EDCR(src_edc) (chan->mmr_base + (0x02c + ((src_edc-4) << 2)))
#define AAU_EDCR0_IDX 8
#define AAU_EDCR1_IDX 17
#define AAU_EDCR2_IDX 26
struct iop3xx_aau_desc_ctrl {
unsigned int int_en:1;
unsigned int blk1_cmd_ctrl:3;
unsigned int blk2_cmd_ctrl:3;
unsigned int blk3_cmd_ctrl:3;
unsigned int blk4_cmd_ctrl:3;
unsigned int blk5_cmd_ctrl:3;
unsigned int blk6_cmd_ctrl:3;
unsigned int blk7_cmd_ctrl:3;
unsigned int blk8_cmd_ctrl:3;
unsigned int blk_ctrl:2;
unsigned int dual_xor_en:1;
unsigned int tx_complete:1;
unsigned int zero_result_err:1;
unsigned int zero_result_en:1;
unsigned int dest_write_en:1;
};
struct iop3xx_aau_e_desc_ctrl {
unsigned int reserved:1;
unsigned int blk1_cmd_ctrl:3;
unsigned int blk2_cmd_ctrl:3;
unsigned int blk3_cmd_ctrl:3;
unsigned int blk4_cmd_ctrl:3;
unsigned int blk5_cmd_ctrl:3;
unsigned int blk6_cmd_ctrl:3;
unsigned int blk7_cmd_ctrl:3;
unsigned int blk8_cmd_ctrl:3;
unsigned int reserved2:7;
};
struct iop3xx_dma_desc_ctrl {
unsigned int pci_transaction:4;
unsigned int int_en:1;
unsigned int dac_cycle_en:1;
unsigned int mem_to_mem_en:1;
unsigned int crc_data_tx_en:1;
unsigned int crc_gen_en:1;
unsigned int crc_seed_dis:1;
unsigned int reserved:21;
unsigned int crc_tx_complete:1;
};
struct iop3xx_desc_dma {
u32 next_desc;
union {
u32 pci_src_addr;
u32 pci_dest_addr;
u32 src_addr;
};
union {
u32 upper_pci_src_addr;
u32 upper_pci_dest_addr;
};
union {
u32 local_pci_src_addr;
u32 local_pci_dest_addr;
u32 dest_addr;
};
u32 byte_count;
union {
u32 desc_ctrl;
struct iop3xx_dma_desc_ctrl desc_ctrl_field;
};
u32 crc_addr;
};
struct iop3xx_desc_aau {
u32 next_desc;
u32 src[4];
u32 dest_addr;
u32 byte_count;
union {
u32 desc_ctrl;
struct iop3xx_aau_desc_ctrl desc_ctrl_field;
};
union {
u32 src_addr;
u32 e_desc_ctrl;
struct iop3xx_aau_e_desc_ctrl e_desc_ctrl_field;
} src_edc[31];
};
struct iop3xx_aau_gfmr {
unsigned int gfmr1:8;
unsigned int gfmr2:8;
unsigned int gfmr3:8;
unsigned int gfmr4:8;
};
struct iop3xx_desc_pq_xor {
u32 next_desc;
u32 src[3];
union {
u32 data_mult1;
struct iop3xx_aau_gfmr data_mult1_field;
};
u32 dest_addr;
u32 byte_count;
union {
u32 desc_ctrl;
struct iop3xx_aau_desc_ctrl desc_ctrl_field;
};
union {
u32 src_addr;
u32 e_desc_ctrl;
struct iop3xx_aau_e_desc_ctrl e_desc_ctrl_field;
u32 data_multiplier;
struct iop3xx_aau_gfmr data_mult_field;
u32 reserved;
} src_edc_gfmr[19];
};
struct iop3xx_desc_dual_xor {
u32 next_desc;
u32 src0_addr;
u32 src1_addr;
u32 h_src_addr;
u32 d_src_addr;
u32 h_dest_addr;
u32 byte_count;
union {
u32 desc_ctrl;
struct iop3xx_aau_desc_ctrl desc_ctrl_field;
};
u32 d_dest_addr;
};
union iop3xx_desc {
struct iop3xx_desc_aau *aau;
struct iop3xx_desc_dma *dma;
struct iop3xx_desc_pq_xor *pq_xor;
struct iop3xx_desc_dual_xor *dual_xor;
void *ptr;
};
/* No support for p+q operations */
static inline int
iop_chan_pq_slot_count(size_t len, int src_cnt, int *slots_per_op)
{
BUG();
return 0;
}
static inline void
iop_desc_init_pq(struct iop_adma_desc_slot *desc, int src_cnt,
unsigned long flags)
{
BUG();
}
static inline void
iop_desc_set_pq_addr(struct iop_adma_desc_slot *desc, dma_addr_t *addr)
{
BUG();
}
static inline void
iop_desc_set_pq_src_addr(struct iop_adma_desc_slot *desc, int src_idx,
dma_addr_t addr, unsigned char coef)
{
BUG();
}
static inline int
iop_chan_pq_zero_sum_slot_count(size_t len, int src_cnt, int *slots_per_op)
{
BUG();
return 0;
}
static inline void
iop_desc_init_pq_zero_sum(struct iop_adma_desc_slot *desc, int src_cnt,
unsigned long flags)
{
BUG();
}
static inline void
iop_desc_set_pq_zero_sum_byte_count(struct iop_adma_desc_slot *desc, u32 len)
{
BUG();
}
#define iop_desc_set_pq_zero_sum_src_addr iop_desc_set_pq_src_addr
static inline void
iop_desc_set_pq_zero_sum_addr(struct iop_adma_desc_slot *desc, int pq_idx,
dma_addr_t *src)
{
BUG();
}
static inline int iop_adma_get_max_xor(void)
{
return 32;
}
static inline int iop_adma_get_max_pq(void)
{
BUG();
return 0;
}
static inline u32 iop_chan_get_current_descriptor(struct iop_adma_chan *chan)
{
int id = chan->device->id;
switch (id) {
case DMA0_ID:
case DMA1_ID:
return __raw_readl(DMA_DAR(chan));
case AAU_ID:
return __raw_readl(AAU_ADAR(chan));
default:
BUG();
}
return 0;
}
static inline void iop_chan_set_next_descriptor(struct iop_adma_chan *chan,
u32 next_desc_addr)
{
int id = chan->device->id;
switch (id) {
case DMA0_ID:
case DMA1_ID:
__raw_writel(next_desc_addr, DMA_NDAR(chan));
break;
case AAU_ID:
__raw_writel(next_desc_addr, AAU_ANDAR(chan));
break;
}
}
#define IOP_ADMA_STATUS_BUSY (1 << 10)
#define IOP_ADMA_ZERO_SUM_MAX_BYTE_COUNT (1024)
#define IOP_ADMA_XOR_MAX_BYTE_COUNT (16 * 1024 * 1024)
#define IOP_ADMA_MAX_BYTE_COUNT (16 * 1024 * 1024)
static inline int iop_chan_is_busy(struct iop_adma_chan *chan)
{
u32 status = __raw_readl(DMA_CSR(chan));
return (status & IOP_ADMA_STATUS_BUSY) ? 1 : 0;
}
static inline int iop_desc_is_aligned(struct iop_adma_desc_slot *desc,
int num_slots)
{
/* num_slots will only ever be 1, 2, 4, or 8 */
return (desc->idx & (num_slots - 1)) ? 0 : 1;
}
/* to do: support large (i.e. > hw max) buffer sizes */
static inline int iop_chan_memcpy_slot_count(size_t len, int *slots_per_op)
{
*slots_per_op = 1;
return 1;
}
/* to do: support large (i.e. > hw max) buffer sizes */
static inline int iop_chan_memset_slot_count(size_t len, int *slots_per_op)
{
*slots_per_op = 1;
return 1;
}
static inline int iop3xx_aau_xor_slot_count(size_t len, int src_cnt,
int *slots_per_op)
{
static const char slot_count_table[] = {
1, 1, 1, 1, /* 01 - 04 */
2, 2, 2, 2, /* 05 - 08 */
4, 4, 4, 4, /* 09 - 12 */
4, 4, 4, 4, /* 13 - 16 */
8, 8, 8, 8, /* 17 - 20 */
8, 8, 8, 8, /* 21 - 24 */
8, 8, 8, 8, /* 25 - 28 */
8, 8, 8, 8, /* 29 - 32 */
};
*slots_per_op = slot_count_table[src_cnt - 1];
return *slots_per_op;
}
static inline int
iop_chan_interrupt_slot_count(int *slots_per_op, struct iop_adma_chan *chan)
{
switch (chan->device->id) {
case DMA0_ID:
case DMA1_ID:
return iop_chan_memcpy_slot_count(0, slots_per_op);
case AAU_ID:
return iop3xx_aau_xor_slot_count(0, 2, slots_per_op);
default:
BUG();
}
return 0;
}
static inline int iop_chan_xor_slot_count(size_t len, int src_cnt,
int *slots_per_op)
{
int slot_cnt = iop3xx_aau_xor_slot_count(len, src_cnt, slots_per_op);
if (len <= IOP_ADMA_XOR_MAX_BYTE_COUNT)
return slot_cnt;
len -= IOP_ADMA_XOR_MAX_BYTE_COUNT;
while (len > IOP_ADMA_XOR_MAX_BYTE_COUNT) {
len -= IOP_ADMA_XOR_MAX_BYTE_COUNT;
slot_cnt += *slots_per_op;
}
slot_cnt += *slots_per_op;
return slot_cnt;
}
/* zero sum on iop3xx is limited to 1k at a time so it requires multiple
* descriptors
*/
static inline int iop_chan_zero_sum_slot_count(size_t len, int src_cnt,
int *slots_per_op)
{
int slot_cnt = iop3xx_aau_xor_slot_count(len, src_cnt, slots_per_op);
if (len <= IOP_ADMA_ZERO_SUM_MAX_BYTE_COUNT)
return slot_cnt;
len -= IOP_ADMA_ZERO_SUM_MAX_BYTE_COUNT;
while (len > IOP_ADMA_ZERO_SUM_MAX_BYTE_COUNT) {
len -= IOP_ADMA_ZERO_SUM_MAX_BYTE_COUNT;
slot_cnt += *slots_per_op;
}
slot_cnt += *slots_per_op;
return slot_cnt;
}
static inline u32 iop_desc_get_byte_count(struct iop_adma_desc_slot *desc,
struct iop_adma_chan *chan)
{
union iop3xx_desc hw_desc = { .ptr = desc->hw_desc, };
switch (chan->device->id) {
case DMA0_ID:
case DMA1_ID:
return hw_desc.dma->byte_count;
case AAU_ID:
return hw_desc.aau->byte_count;
default:
BUG();
}
return 0;
}
/* translate the src_idx to a descriptor word index */
static inline int __desc_idx(int src_idx)
{
static const int desc_idx_table[] = { 0, 0, 0, 0,
0, 1, 2, 3,
5, 6, 7, 8,
9, 10, 11, 12,
14, 15, 16, 17,
18, 19, 20, 21,
23, 24, 25, 26,
27, 28, 29, 30,
};
return desc_idx_table[src_idx];
}
static inline u32 iop_desc_get_src_addr(struct iop_adma_desc_slot *desc,
struct iop_adma_chan *chan,
int src_idx)
{
union iop3xx_desc hw_desc = { .ptr = desc->hw_desc, };
switch (chan->device->id) {
case DMA0_ID:
case DMA1_ID:
return hw_desc.dma->src_addr;
case AAU_ID:
break;
default:
BUG();
}
if (src_idx < 4)
return hw_desc.aau->src[src_idx];
else
return hw_desc.aau->src_edc[__desc_idx(src_idx)].src_addr;
}
static inline void iop3xx_aau_desc_set_src_addr(struct iop3xx_desc_aau *hw_desc,
int src_idx, dma_addr_t addr)
{
if (src_idx < 4)
hw_desc->src[src_idx] = addr;
else
hw_desc->src_edc[__desc_idx(src_idx)].src_addr = addr;
}
static inline void
iop_desc_init_memcpy(struct iop_adma_desc_slot *desc, unsigned long flags)
{
struct iop3xx_desc_dma *hw_desc = desc->hw_desc;
union {
u32 value;
struct iop3xx_dma_desc_ctrl field;
} u_desc_ctrl;
u_desc_ctrl.value = 0;
u_desc_ctrl.field.mem_to_mem_en = 1;
u_desc_ctrl.field.pci_transaction = 0xe; /* memory read block */
u_desc_ctrl.field.int_en = flags & DMA_PREP_INTERRUPT;
hw_desc->desc_ctrl = u_desc_ctrl.value;
hw_desc->upper_pci_src_addr = 0;
hw_desc->crc_addr = 0;
}
static inline void
iop_desc_init_memset(struct iop_adma_desc_slot *desc, unsigned long flags)
{
struct iop3xx_desc_aau *hw_desc = desc->hw_desc;
union {
u32 value;
struct iop3xx_aau_desc_ctrl field;
} u_desc_ctrl;
u_desc_ctrl.value = 0;
u_desc_ctrl.field.blk1_cmd_ctrl = 0x2; /* memory block fill */
u_desc_ctrl.field.dest_write_en = 1;
u_desc_ctrl.field.int_en = flags & DMA_PREP_INTERRUPT;
hw_desc->desc_ctrl = u_desc_ctrl.value;
}
static inline u32
iop3xx_desc_init_xor(struct iop3xx_desc_aau *hw_desc, int src_cnt,
unsigned long flags)
{
int i, shift;
u32 edcr;
union {
u32 value;
struct iop3xx_aau_desc_ctrl field;
} u_desc_ctrl;
u_desc_ctrl.value = 0;
switch (src_cnt) {
case 25 ... 32:
u_desc_ctrl.field.blk_ctrl = 0x3; /* use EDCR[2:0] */
edcr = 0;
shift = 1;
for (i = 24; i < src_cnt; i++) {
edcr |= (1 << shift);
shift += 3;
}
hw_desc->src_edc[AAU_EDCR2_IDX].e_desc_ctrl = edcr;
src_cnt = 24;
fallthrough;
case 17 ... 24:
if (!u_desc_ctrl.field.blk_ctrl) {
hw_desc->src_edc[AAU_EDCR2_IDX].e_desc_ctrl = 0;
u_desc_ctrl.field.blk_ctrl = 0x3; /* use EDCR[2:0] */
}
edcr = 0;
shift = 1;
for (i = 16; i < src_cnt; i++) {
edcr |= (1 << shift);
shift += 3;
}
hw_desc->src_edc[AAU_EDCR1_IDX].e_desc_ctrl = edcr;
src_cnt = 16;
fallthrough;
case 9 ... 16:
if (!u_desc_ctrl.field.blk_ctrl)
u_desc_ctrl.field.blk_ctrl = 0x2; /* use EDCR0 */
edcr = 0;
shift = 1;
for (i = 8; i < src_cnt; i++) {
edcr |= (1 << shift);
shift += 3;
}
hw_desc->src_edc[AAU_EDCR0_IDX].e_desc_ctrl = edcr;
src_cnt = 8;
fallthrough;
case 2 ... 8:
shift = 1;
for (i = 0; i < src_cnt; i++) {
u_desc_ctrl.value |= (1 << shift);
shift += 3;
}
if (!u_desc_ctrl.field.blk_ctrl && src_cnt > 4)
u_desc_ctrl.field.blk_ctrl = 0x1; /* use mini-desc */
}
u_desc_ctrl.field.dest_write_en = 1;
u_desc_ctrl.field.blk1_cmd_ctrl = 0x7; /* direct fill */
u_desc_ctrl.field.int_en = flags & DMA_PREP_INTERRUPT;
hw_desc->desc_ctrl = u_desc_ctrl.value;
return u_desc_ctrl.value;
}
static inline void
iop_desc_init_xor(struct iop_adma_desc_slot *desc, int src_cnt,
unsigned long flags)
{
iop3xx_desc_init_xor(desc->hw_desc, src_cnt, flags);
}
/* return the number of operations */
static inline int
iop_desc_init_zero_sum(struct iop_adma_desc_slot *desc, int src_cnt,
unsigned long flags)
{
int slot_cnt = desc->slot_cnt, slots_per_op = desc->slots_per_op;
struct iop3xx_desc_aau *hw_desc, *prev_hw_desc, *iter;
union {
u32 value;
struct iop3xx_aau_desc_ctrl field;
} u_desc_ctrl;
int i, j;
hw_desc = desc->hw_desc;
for (i = 0, j = 0; (slot_cnt -= slots_per_op) >= 0;
i += slots_per_op, j++) {
iter = iop_hw_desc_slot_idx(hw_desc, i);
u_desc_ctrl.value = iop3xx_desc_init_xor(iter, src_cnt, flags);
u_desc_ctrl.field.dest_write_en = 0;
u_desc_ctrl.field.zero_result_en = 1;
u_desc_ctrl.field.int_en = flags & DMA_PREP_INTERRUPT;
iter->desc_ctrl = u_desc_ctrl.value;
/* for the subsequent descriptors preserve the store queue
* and chain them together
*/
if (i) {
prev_hw_desc =
iop_hw_desc_slot_idx(hw_desc, i - slots_per_op);
prev_hw_desc->next_desc =
(u32) (desc->async_tx.phys + (i << 5));
}
}
return j;
}
static inline void
iop_desc_init_null_xor(struct iop_adma_desc_slot *desc, int src_cnt,
unsigned long flags)
{
struct iop3xx_desc_aau *hw_desc = desc->hw_desc;
union {
u32 value;
struct iop3xx_aau_desc_ctrl field;
} u_desc_ctrl;
u_desc_ctrl.value = 0;
switch (src_cnt) {
case 25 ... 32:
u_desc_ctrl.field.blk_ctrl = 0x3; /* use EDCR[2:0] */
hw_desc->src_edc[AAU_EDCR2_IDX].e_desc_ctrl = 0;
fallthrough;
case 17 ... 24:
if (!u_desc_ctrl.field.blk_ctrl) {
hw_desc->src_edc[AAU_EDCR2_IDX].e_desc_ctrl = 0;
u_desc_ctrl.field.blk_ctrl = 0x3; /* use EDCR[2:0] */
}
hw_desc->src_edc[AAU_EDCR1_IDX].e_desc_ctrl = 0;
fallthrough;
case 9 ... 16:
if (!u_desc_ctrl.field.blk_ctrl)
u_desc_ctrl.field.blk_ctrl = 0x2; /* use EDCR0 */
hw_desc->src_edc[AAU_EDCR0_IDX].e_desc_ctrl = 0;
fallthrough;
case 1 ... 8:
if (!u_desc_ctrl.field.blk_ctrl && src_cnt > 4)
u_desc_ctrl.field.blk_ctrl = 0x1; /* use mini-desc */
}
u_desc_ctrl.field.dest_write_en = 0;
u_desc_ctrl.field.int_en = flags & DMA_PREP_INTERRUPT;
hw_desc->desc_ctrl = u_desc_ctrl.value;
}
static inline void iop_desc_set_byte_count(struct iop_adma_desc_slot *desc,
struct iop_adma_chan *chan,
u32 byte_count)
{
union iop3xx_desc hw_desc = { .ptr = desc->hw_desc, };
switch (chan->device->id) {
case DMA0_ID:
case DMA1_ID:
hw_desc.dma->byte_count = byte_count;
break;
case AAU_ID:
hw_desc.aau->byte_count = byte_count;
break;
default:
BUG();
}
}
static inline void
iop_desc_init_interrupt(struct iop_adma_desc_slot *desc,
struct iop_adma_chan *chan)
{
union iop3xx_desc hw_desc = { .ptr = desc->hw_desc, };
switch (chan->device->id) {
case DMA0_ID:
case DMA1_ID:
iop_desc_init_memcpy(desc, 1);
hw_desc.dma->byte_count = 0;
hw_desc.dma->dest_addr = 0;
hw_desc.dma->src_addr = 0;
break;
case AAU_ID:
iop_desc_init_null_xor(desc, 2, 1);
hw_desc.aau->byte_count = 0;
hw_desc.aau->dest_addr = 0;
hw_desc.aau->src[0] = 0;
hw_desc.aau->src[1] = 0;
break;
default:
BUG();
}
}
static inline void
iop_desc_set_zero_sum_byte_count(struct iop_adma_desc_slot *desc, u32 len)
{
int slots_per_op = desc->slots_per_op;
struct iop3xx_desc_aau *hw_desc = desc->hw_desc, *iter;
int i = 0;
if (len <= IOP_ADMA_ZERO_SUM_MAX_BYTE_COUNT) {
hw_desc->byte_count = len;
} else {
do {
iter = iop_hw_desc_slot_idx(hw_desc, i);
iter->byte_count = IOP_ADMA_ZERO_SUM_MAX_BYTE_COUNT;
len -= IOP_ADMA_ZERO_SUM_MAX_BYTE_COUNT;
i += slots_per_op;
} while (len > IOP_ADMA_ZERO_SUM_MAX_BYTE_COUNT);
iter = iop_hw_desc_slot_idx(hw_desc, i);
iter->byte_count = len;
}
}
static inline void iop_desc_set_dest_addr(struct iop_adma_desc_slot *desc,
struct iop_adma_chan *chan,
dma_addr_t addr)
{
union iop3xx_desc hw_desc = { .ptr = desc->hw_desc, };
switch (chan->device->id) {
case DMA0_ID:
case DMA1_ID:
hw_desc.dma->dest_addr = addr;
break;
case AAU_ID:
hw_desc.aau->dest_addr = addr;
break;
default:
BUG();
}
}
static inline void iop_desc_set_memcpy_src_addr(struct iop_adma_desc_slot *desc,
dma_addr_t addr)
{
struct iop3xx_desc_dma *hw_desc = desc->hw_desc;
hw_desc->src_addr = addr;
}
static inline void
iop_desc_set_zero_sum_src_addr(struct iop_adma_desc_slot *desc, int src_idx,
dma_addr_t addr)
{
struct iop3xx_desc_aau *hw_desc = desc->hw_desc, *iter;
int slot_cnt = desc->slot_cnt, slots_per_op = desc->slots_per_op;
int i;
for (i = 0; (slot_cnt -= slots_per_op) >= 0;
i += slots_per_op, addr += IOP_ADMA_ZERO_SUM_MAX_BYTE_COUNT) {
iter = iop_hw_desc_slot_idx(hw_desc, i);
iop3xx_aau_desc_set_src_addr(iter, src_idx, addr);
}
}
static inline void iop_desc_set_xor_src_addr(struct iop_adma_desc_slot *desc,
int src_idx, dma_addr_t addr)
{
struct iop3xx_desc_aau *hw_desc = desc->hw_desc, *iter;
int slot_cnt = desc->slot_cnt, slots_per_op = desc->slots_per_op;
int i;
for (i = 0; (slot_cnt -= slots_per_op) >= 0;
i += slots_per_op, addr += IOP_ADMA_XOR_MAX_BYTE_COUNT) {
iter = iop_hw_desc_slot_idx(hw_desc, i);
iop3xx_aau_desc_set_src_addr(iter, src_idx, addr);
}
}
static inline void iop_desc_set_next_desc(struct iop_adma_desc_slot *desc,
u32 next_desc_addr)
{
/* hw_desc->next_desc is the same location for all channels */
union iop3xx_desc hw_desc = { .ptr = desc->hw_desc, };
iop_paranoia(hw_desc.dma->next_desc);
hw_desc.dma->next_desc = next_desc_addr;
}
static inline u32 iop_desc_get_next_desc(struct iop_adma_desc_slot *desc)
{
/* hw_desc->next_desc is the same location for all channels */
union iop3xx_desc hw_desc = { .ptr = desc->hw_desc, };
return hw_desc.dma->next_desc;
}
static inline void iop_desc_clear_next_desc(struct iop_adma_desc_slot *desc)
{
/* hw_desc->next_desc is the same location for all channels */
union iop3xx_desc hw_desc = { .ptr = desc->hw_desc, };
hw_desc.dma->next_desc = 0;
}
static inline void iop_desc_set_block_fill_val(struct iop_adma_desc_slot *desc,
u32 val)
{
struct iop3xx_desc_aau *hw_desc = desc->hw_desc;
hw_desc->src[0] = val;
}
static inline enum sum_check_flags
iop_desc_get_zero_result(struct iop_adma_desc_slot *desc)
{
struct iop3xx_desc_aau *hw_desc = desc->hw_desc;
struct iop3xx_aau_desc_ctrl desc_ctrl = hw_desc->desc_ctrl_field;
iop_paranoia(!(desc_ctrl.tx_complete && desc_ctrl.zero_result_en));
return desc_ctrl.zero_result_err << SUM_CHECK_P;
}
static inline void iop_chan_append(struct iop_adma_chan *chan)
{
u32 dma_chan_ctrl;
dma_chan_ctrl = __raw_readl(DMA_CCR(chan));
dma_chan_ctrl |= 0x2;
__raw_writel(dma_chan_ctrl, DMA_CCR(chan));
}
static inline u32 iop_chan_get_status(struct iop_adma_chan *chan)
{
return __raw_readl(DMA_CSR(chan));
}
static inline void iop_chan_disable(struct iop_adma_chan *chan)
{
u32 dma_chan_ctrl = __raw_readl(DMA_CCR(chan));
dma_chan_ctrl &= ~1;
__raw_writel(dma_chan_ctrl, DMA_CCR(chan));
}
static inline void iop_chan_enable(struct iop_adma_chan *chan)
{
u32 dma_chan_ctrl = __raw_readl(DMA_CCR(chan));
dma_chan_ctrl |= 1;
__raw_writel(dma_chan_ctrl, DMA_CCR(chan));
}
static inline void iop_adma_device_clear_eot_status(struct iop_adma_chan *chan)
{
u32 status = __raw_readl(DMA_CSR(chan));
status &= (1 << 9);
__raw_writel(status, DMA_CSR(chan));
}
static inline void iop_adma_device_clear_eoc_status(struct iop_adma_chan *chan)
{
u32 status = __raw_readl(DMA_CSR(chan));
status &= (1 << 8);
__raw_writel(status, DMA_CSR(chan));
}
static inline void iop_adma_device_clear_err_status(struct iop_adma_chan *chan)
{
u32 status = __raw_readl(DMA_CSR(chan));
switch (chan->device->id) {
case DMA0_ID:
case DMA1_ID:
status &= (1 << 5) | (1 << 3) | (1 << 2) | (1 << 1);
break;
case AAU_ID:
status &= (1 << 5);
break;
default:
BUG();
}
__raw_writel(status, DMA_CSR(chan));
}
static inline int
iop_is_err_int_parity(unsigned long status, struct iop_adma_chan *chan)
{
return 0;
}
static inline int
iop_is_err_mcu_abort(unsigned long status, struct iop_adma_chan *chan)
{
return 0;
}
static inline int
iop_is_err_int_tabort(unsigned long status, struct iop_adma_chan *chan)
{
return 0;
}
static inline int
iop_is_err_int_mabort(unsigned long status, struct iop_adma_chan *chan)
{
return test_bit(5, &status);
}
static inline int
iop_is_err_pci_tabort(unsigned long status, struct iop_adma_chan *chan)
{
switch (chan->device->id) {
case DMA0_ID:
case DMA1_ID:
return test_bit(2, &status);
default:
return 0;
}
}
static inline int
iop_is_err_pci_mabort(unsigned long status, struct iop_adma_chan *chan)
{
switch (chan->device->id) {
case DMA0_ID:
case DMA1_ID:
return test_bit(3, &status);
default:
return 0;
}
}
static inline int
iop_is_err_split_tx(unsigned long status, struct iop_adma_chan *chan)
{
switch (chan->device->id) {
case DMA0_ID:
case DMA1_ID:
return test_bit(1, &status);
default:
return 0;
}
}
#endif /* _ADMA_H */