774 lines
21 KiB
C
774 lines
21 KiB
C
#ifndef _ASM_GENERIC_PGTABLE_H
|
|
#define _ASM_GENERIC_PGTABLE_H
|
|
|
|
#ifndef __ASSEMBLY__
|
|
#ifdef CONFIG_MMU
|
|
|
|
#include <linux/mm_types.h>
|
|
#include <linux/bug.h>
|
|
#include <linux/errno.h>
|
|
|
|
#if 4 - defined(__PAGETABLE_PUD_FOLDED) - defined(__PAGETABLE_PMD_FOLDED) != \
|
|
CONFIG_PGTABLE_LEVELS
|
|
#error CONFIG_PGTABLE_LEVELS is not consistent with __PAGETABLE_{PUD,PMD}_FOLDED
|
|
#endif
|
|
|
|
/*
|
|
* On almost all architectures and configurations, 0 can be used as the
|
|
* upper ceiling to free_pgtables(): on many architectures it has the same
|
|
* effect as using TASK_SIZE. However, there is one configuration which
|
|
* must impose a more careful limit, to avoid freeing kernel pgtables.
|
|
*/
|
|
#ifndef USER_PGTABLES_CEILING
|
|
#define USER_PGTABLES_CEILING 0UL
|
|
#endif
|
|
|
|
#ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
|
|
extern int ptep_set_access_flags(struct vm_area_struct *vma,
|
|
unsigned long address, pte_t *ptep,
|
|
pte_t entry, int dirty);
|
|
#endif
|
|
|
|
#ifndef __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
|
|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
|
|
extern int pmdp_set_access_flags(struct vm_area_struct *vma,
|
|
unsigned long address, pmd_t *pmdp,
|
|
pmd_t entry, int dirty);
|
|
#else
|
|
static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
|
|
unsigned long address, pmd_t *pmdp,
|
|
pmd_t entry, int dirty)
|
|
{
|
|
BUILD_BUG();
|
|
return 0;
|
|
}
|
|
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
|
|
#endif
|
|
|
|
#ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
|
|
static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
|
|
unsigned long address,
|
|
pte_t *ptep)
|
|
{
|
|
pte_t pte = *ptep;
|
|
int r = 1;
|
|
if (!pte_young(pte))
|
|
r = 0;
|
|
else
|
|
set_pte_at(vma->vm_mm, address, ptep, pte_mkold(pte));
|
|
return r;
|
|
}
|
|
#endif
|
|
|
|
#ifndef __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
|
|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
|
|
static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
|
|
unsigned long address,
|
|
pmd_t *pmdp)
|
|
{
|
|
pmd_t pmd = *pmdp;
|
|
int r = 1;
|
|
if (!pmd_young(pmd))
|
|
r = 0;
|
|
else
|
|
set_pmd_at(vma->vm_mm, address, pmdp, pmd_mkold(pmd));
|
|
return r;
|
|
}
|
|
#else
|
|
static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
|
|
unsigned long address,
|
|
pmd_t *pmdp)
|
|
{
|
|
BUILD_BUG();
|
|
return 0;
|
|
}
|
|
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
|
|
#endif
|
|
|
|
#ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
|
|
int ptep_clear_flush_young(struct vm_area_struct *vma,
|
|
unsigned long address, pte_t *ptep);
|
|
#endif
|
|
|
|
#ifndef __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
|
|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
|
|
extern int pmdp_clear_flush_young(struct vm_area_struct *vma,
|
|
unsigned long address, pmd_t *pmdp);
|
|
#else
|
|
/*
|
|
* Despite relevant to THP only, this API is called from generic rmap code
|
|
* under PageTransHuge(), hence needs a dummy implementation for !THP
|
|
*/
|
|
static inline int pmdp_clear_flush_young(struct vm_area_struct *vma,
|
|
unsigned long address, pmd_t *pmdp)
|
|
{
|
|
BUILD_BUG();
|
|
return 0;
|
|
}
|
|
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
|
|
#endif
|
|
|
|
#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR
|
|
static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
|
|
unsigned long address,
|
|
pte_t *ptep)
|
|
{
|
|
pte_t pte = *ptep;
|
|
pte_clear(mm, address, ptep);
|
|
return pte;
|
|
}
|
|
#endif
|
|
|
|
#ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
|
|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
|
|
static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
|
|
unsigned long address,
|
|
pmd_t *pmdp)
|
|
{
|
|
pmd_t pmd = *pmdp;
|
|
pmd_clear(pmdp);
|
|
return pmd;
|
|
}
|
|
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
|
|
#endif
|
|
|
|
#ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
|
|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
|
|
static inline pmd_t pmdp_huge_get_and_clear_full(struct mm_struct *mm,
|
|
unsigned long address, pmd_t *pmdp,
|
|
int full)
|
|
{
|
|
return pmdp_huge_get_and_clear(mm, address, pmdp);
|
|
}
|
|
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
|
|
#endif
|
|
|
|
#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
|
|
static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
|
|
unsigned long address, pte_t *ptep,
|
|
int full)
|
|
{
|
|
pte_t pte;
|
|
pte = ptep_get_and_clear(mm, address, ptep);
|
|
return pte;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Some architectures may be able to avoid expensive synchronization
|
|
* primitives when modifications are made to PTE's which are already
|
|
* not present, or in the process of an address space destruction.
|
|
*/
|
|
#ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL
|
|
static inline void pte_clear_not_present_full(struct mm_struct *mm,
|
|
unsigned long address,
|
|
pte_t *ptep,
|
|
int full)
|
|
{
|
|
pte_clear(mm, address, ptep);
|
|
}
|
|
#endif
|
|
|
|
#ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH
|
|
extern pte_t ptep_clear_flush(struct vm_area_struct *vma,
|
|
unsigned long address,
|
|
pte_t *ptep);
|
|
#endif
|
|
|
|
#ifndef __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
|
|
extern pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma,
|
|
unsigned long address,
|
|
pmd_t *pmdp);
|
|
#endif
|
|
|
|
#ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT
|
|
struct mm_struct;
|
|
static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep)
|
|
{
|
|
pte_t old_pte = *ptep;
|
|
set_pte_at(mm, address, ptep, pte_wrprotect(old_pte));
|
|
}
|
|
#endif
|
|
|
|
#ifndef __HAVE_ARCH_PMDP_SET_WRPROTECT
|
|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
|
|
static inline void pmdp_set_wrprotect(struct mm_struct *mm,
|
|
unsigned long address, pmd_t *pmdp)
|
|
{
|
|
pmd_t old_pmd = *pmdp;
|
|
set_pmd_at(mm, address, pmdp, pmd_wrprotect(old_pmd));
|
|
}
|
|
#else
|
|
static inline void pmdp_set_wrprotect(struct mm_struct *mm,
|
|
unsigned long address, pmd_t *pmdp)
|
|
{
|
|
BUILD_BUG();
|
|
}
|
|
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
|
|
#endif
|
|
|
|
#ifndef __HAVE_ARCH_PMDP_SPLITTING_FLUSH
|
|
extern void pmdp_splitting_flush(struct vm_area_struct *vma,
|
|
unsigned long address, pmd_t *pmdp);
|
|
#endif
|
|
|
|
#ifndef pmdp_collapse_flush
|
|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
|
|
extern pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
|
|
unsigned long address, pmd_t *pmdp);
|
|
#else
|
|
static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
|
|
unsigned long address,
|
|
pmd_t *pmdp)
|
|
{
|
|
BUILD_BUG();
|
|
return *pmdp;
|
|
}
|
|
#define pmdp_collapse_flush pmdp_collapse_flush
|
|
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
|
|
#endif
|
|
|
|
#ifndef __HAVE_ARCH_PGTABLE_DEPOSIT
|
|
extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
|
|
pgtable_t pgtable);
|
|
#endif
|
|
|
|
#ifndef __HAVE_ARCH_PGTABLE_WITHDRAW
|
|
extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
|
|
#endif
|
|
|
|
#ifndef __HAVE_ARCH_PMDP_INVALIDATE
|
|
extern void pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
|
|
pmd_t *pmdp);
|
|
#endif
|
|
|
|
#ifndef __HAVE_ARCH_PTE_SAME
|
|
static inline int pte_same(pte_t pte_a, pte_t pte_b)
|
|
{
|
|
return pte_val(pte_a) == pte_val(pte_b);
|
|
}
|
|
#endif
|
|
|
|
#ifndef __HAVE_ARCH_PTE_UNUSED
|
|
/*
|
|
* Some architectures provide facilities to virtualization guests
|
|
* so that they can flag allocated pages as unused. This allows the
|
|
* host to transparently reclaim unused pages. This function returns
|
|
* whether the pte's page is unused.
|
|
*/
|
|
static inline int pte_unused(pte_t pte)
|
|
{
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
#ifndef __HAVE_ARCH_PMD_SAME
|
|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
|
|
static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
|
|
{
|
|
return pmd_val(pmd_a) == pmd_val(pmd_b);
|
|
}
|
|
#else /* CONFIG_TRANSPARENT_HUGEPAGE */
|
|
static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
|
|
{
|
|
BUILD_BUG();
|
|
return 0;
|
|
}
|
|
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
|
|
#endif
|
|
|
|
#ifndef __HAVE_ARCH_PGD_OFFSET_GATE
|
|
#define pgd_offset_gate(mm, addr) pgd_offset(mm, addr)
|
|
#endif
|
|
|
|
#ifndef __HAVE_ARCH_MOVE_PTE
|
|
#define move_pte(pte, prot, old_addr, new_addr) (pte)
|
|
#endif
|
|
|
|
#ifndef pte_accessible
|
|
# define pte_accessible(mm, pte) ((void)(pte), 1)
|
|
#endif
|
|
|
|
#ifndef flush_tlb_fix_spurious_fault
|
|
#define flush_tlb_fix_spurious_fault(vma, address) flush_tlb_page(vma, address)
|
|
#endif
|
|
|
|
#ifndef pgprot_noncached
|
|
#define pgprot_noncached(prot) (prot)
|
|
#endif
|
|
|
|
#ifndef pgprot_writecombine
|
|
#define pgprot_writecombine pgprot_noncached
|
|
#endif
|
|
|
|
#ifndef pgprot_writethrough
|
|
#define pgprot_writethrough pgprot_noncached
|
|
#endif
|
|
|
|
#ifndef pgprot_device
|
|
#define pgprot_device pgprot_noncached
|
|
#endif
|
|
|
|
#ifndef pgprot_modify
|
|
#define pgprot_modify pgprot_modify
|
|
static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot)
|
|
{
|
|
if (pgprot_val(oldprot) == pgprot_val(pgprot_noncached(oldprot)))
|
|
newprot = pgprot_noncached(newprot);
|
|
if (pgprot_val(oldprot) == pgprot_val(pgprot_writecombine(oldprot)))
|
|
newprot = pgprot_writecombine(newprot);
|
|
if (pgprot_val(oldprot) == pgprot_val(pgprot_device(oldprot)))
|
|
newprot = pgprot_device(newprot);
|
|
return newprot;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* When walking page tables, get the address of the next boundary,
|
|
* or the end address of the range if that comes earlier. Although no
|
|
* vma end wraps to 0, rounded up __boundary may wrap to 0 throughout.
|
|
*/
|
|
|
|
#define pgd_addr_end(addr, end) \
|
|
({ unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK; \
|
|
(__boundary - 1 < (end) - 1)? __boundary: (end); \
|
|
})
|
|
|
|
#ifndef pud_addr_end
|
|
#define pud_addr_end(addr, end) \
|
|
({ unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK; \
|
|
(__boundary - 1 < (end) - 1)? __boundary: (end); \
|
|
})
|
|
#endif
|
|
|
|
#ifndef pmd_addr_end
|
|
#define pmd_addr_end(addr, end) \
|
|
({ unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK; \
|
|
(__boundary - 1 < (end) - 1)? __boundary: (end); \
|
|
})
|
|
#endif
|
|
|
|
/*
|
|
* When walking page tables, we usually want to skip any p?d_none entries;
|
|
* and any p?d_bad entries - reporting the error before resetting to none.
|
|
* Do the tests inline, but report and clear the bad entry in mm/memory.c.
|
|
*/
|
|
void pgd_clear_bad(pgd_t *);
|
|
void pud_clear_bad(pud_t *);
|
|
void pmd_clear_bad(pmd_t *);
|
|
|
|
static inline int pgd_none_or_clear_bad(pgd_t *pgd)
|
|
{
|
|
if (pgd_none(*pgd))
|
|
return 1;
|
|
if (unlikely(pgd_bad(*pgd))) {
|
|
pgd_clear_bad(pgd);
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static inline int pud_none_or_clear_bad(pud_t *pud)
|
|
{
|
|
if (pud_none(*pud))
|
|
return 1;
|
|
if (unlikely(pud_bad(*pud))) {
|
|
pud_clear_bad(pud);
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static inline int pmd_none_or_clear_bad(pmd_t *pmd)
|
|
{
|
|
if (pmd_none(*pmd))
|
|
return 1;
|
|
if (unlikely(pmd_bad(*pmd))) {
|
|
pmd_clear_bad(pmd);
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static inline pte_t __ptep_modify_prot_start(struct mm_struct *mm,
|
|
unsigned long addr,
|
|
pte_t *ptep)
|
|
{
|
|
/*
|
|
* Get the current pte state, but zero it out to make it
|
|
* non-present, preventing the hardware from asynchronously
|
|
* updating it.
|
|
*/
|
|
return ptep_get_and_clear(mm, addr, ptep);
|
|
}
|
|
|
|
static inline void __ptep_modify_prot_commit(struct mm_struct *mm,
|
|
unsigned long addr,
|
|
pte_t *ptep, pte_t pte)
|
|
{
|
|
/*
|
|
* The pte is non-present, so there's no hardware state to
|
|
* preserve.
|
|
*/
|
|
set_pte_at(mm, addr, ptep, pte);
|
|
}
|
|
|
|
#ifndef __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
|
|
/*
|
|
* Start a pte protection read-modify-write transaction, which
|
|
* protects against asynchronous hardware modifications to the pte.
|
|
* The intention is not to prevent the hardware from making pte
|
|
* updates, but to prevent any updates it may make from being lost.
|
|
*
|
|
* This does not protect against other software modifications of the
|
|
* pte; the appropriate pte lock must be held over the transation.
|
|
*
|
|
* Note that this interface is intended to be batchable, meaning that
|
|
* ptep_modify_prot_commit may not actually update the pte, but merely
|
|
* queue the update to be done at some later time. The update must be
|
|
* actually committed before the pte lock is released, however.
|
|
*/
|
|
static inline pte_t ptep_modify_prot_start(struct mm_struct *mm,
|
|
unsigned long addr,
|
|
pte_t *ptep)
|
|
{
|
|
return __ptep_modify_prot_start(mm, addr, ptep);
|
|
}
|
|
|
|
/*
|
|
* Commit an update to a pte, leaving any hardware-controlled bits in
|
|
* the PTE unmodified.
|
|
*/
|
|
static inline void ptep_modify_prot_commit(struct mm_struct *mm,
|
|
unsigned long addr,
|
|
pte_t *ptep, pte_t pte)
|
|
{
|
|
__ptep_modify_prot_commit(mm, addr, ptep, pte);
|
|
}
|
|
#endif /* __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION */
|
|
#endif /* CONFIG_MMU */
|
|
|
|
/*
|
|
* A facility to provide lazy MMU batching. This allows PTE updates and
|
|
* page invalidations to be delayed until a call to leave lazy MMU mode
|
|
* is issued. Some architectures may benefit from doing this, and it is
|
|
* beneficial for both shadow and direct mode hypervisors, which may batch
|
|
* the PTE updates which happen during this window. Note that using this
|
|
* interface requires that read hazards be removed from the code. A read
|
|
* hazard could result in the direct mode hypervisor case, since the actual
|
|
* write to the page tables may not yet have taken place, so reads though
|
|
* a raw PTE pointer after it has been modified are not guaranteed to be
|
|
* up to date. This mode can only be entered and left under the protection of
|
|
* the page table locks for all page tables which may be modified. In the UP
|
|
* case, this is required so that preemption is disabled, and in the SMP case,
|
|
* it must synchronize the delayed page table writes properly on other CPUs.
|
|
*/
|
|
#ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE
|
|
#define arch_enter_lazy_mmu_mode() do {} while (0)
|
|
#define arch_leave_lazy_mmu_mode() do {} while (0)
|
|
#define arch_flush_lazy_mmu_mode() do {} while (0)
|
|
#endif
|
|
|
|
/*
|
|
* A facility to provide batching of the reload of page tables and
|
|
* other process state with the actual context switch code for
|
|
* paravirtualized guests. By convention, only one of the batched
|
|
* update (lazy) modes (CPU, MMU) should be active at any given time,
|
|
* entry should never be nested, and entry and exits should always be
|
|
* paired. This is for sanity of maintaining and reasoning about the
|
|
* kernel code. In this case, the exit (end of the context switch) is
|
|
* in architecture-specific code, and so doesn't need a generic
|
|
* definition.
|
|
*/
|
|
#ifndef __HAVE_ARCH_START_CONTEXT_SWITCH
|
|
#define arch_start_context_switch(prev) do {} while (0)
|
|
#endif
|
|
|
|
#ifndef CONFIG_HAVE_ARCH_SOFT_DIRTY
|
|
static inline int pte_soft_dirty(pte_t pte)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline int pmd_soft_dirty(pmd_t pmd)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline pte_t pte_mksoft_dirty(pte_t pte)
|
|
{
|
|
return pte;
|
|
}
|
|
|
|
static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
|
|
{
|
|
return pmd;
|
|
}
|
|
|
|
static inline pte_t pte_swp_mksoft_dirty(pte_t pte)
|
|
{
|
|
return pte;
|
|
}
|
|
|
|
static inline int pte_swp_soft_dirty(pte_t pte)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline pte_t pte_swp_clear_soft_dirty(pte_t pte)
|
|
{
|
|
return pte;
|
|
}
|
|
#endif
|
|
|
|
#ifndef __HAVE_PFNMAP_TRACKING
|
|
/*
|
|
* Interfaces that can be used by architecture code to keep track of
|
|
* memory type of pfn mappings specified by the remap_pfn_range,
|
|
* vm_insert_pfn.
|
|
*/
|
|
|
|
/*
|
|
* track_pfn_remap is called when a _new_ pfn mapping is being established
|
|
* by remap_pfn_range() for physical range indicated by pfn and size.
|
|
*/
|
|
static inline int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
|
|
unsigned long pfn, unsigned long addr,
|
|
unsigned long size)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* track_pfn_insert is called when a _new_ single pfn is established
|
|
* by vm_insert_pfn().
|
|
*/
|
|
static inline int track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
|
|
unsigned long pfn)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* track_pfn_copy is called when vma that is covering the pfnmap gets
|
|
* copied through copy_page_range().
|
|
*/
|
|
static inline int track_pfn_copy(struct vm_area_struct *vma)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* untrack_pfn_vma is called while unmapping a pfnmap for a region.
|
|
* untrack can be called for a specific region indicated by pfn and size or
|
|
* can be for the entire vma (in which case pfn, size are zero).
|
|
*/
|
|
static inline void untrack_pfn(struct vm_area_struct *vma,
|
|
unsigned long pfn, unsigned long size)
|
|
{
|
|
}
|
|
#else
|
|
extern int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
|
|
unsigned long pfn, unsigned long addr,
|
|
unsigned long size);
|
|
extern int track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
|
|
unsigned long pfn);
|
|
extern int track_pfn_copy(struct vm_area_struct *vma);
|
|
extern void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn,
|
|
unsigned long size);
|
|
#endif
|
|
|
|
#ifdef __HAVE_COLOR_ZERO_PAGE
|
|
static inline int is_zero_pfn(unsigned long pfn)
|
|
{
|
|
extern unsigned long zero_pfn;
|
|
unsigned long offset_from_zero_pfn = pfn - zero_pfn;
|
|
return offset_from_zero_pfn <= (zero_page_mask >> PAGE_SHIFT);
|
|
}
|
|
|
|
#define my_zero_pfn(addr) page_to_pfn(ZERO_PAGE(addr))
|
|
|
|
#else
|
|
static inline int is_zero_pfn(unsigned long pfn)
|
|
{
|
|
extern unsigned long zero_pfn;
|
|
return pfn == zero_pfn;
|
|
}
|
|
|
|
static inline unsigned long my_zero_pfn(unsigned long addr)
|
|
{
|
|
extern unsigned long zero_pfn;
|
|
return zero_pfn;
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_MMU
|
|
|
|
#ifndef CONFIG_TRANSPARENT_HUGEPAGE
|
|
static inline int pmd_trans_huge(pmd_t pmd)
|
|
{
|
|
return 0;
|
|
}
|
|
static inline int pmd_trans_splitting(pmd_t pmd)
|
|
{
|
|
return 0;
|
|
}
|
|
#ifndef __HAVE_ARCH_PMD_WRITE
|
|
static inline int pmd_write(pmd_t pmd)
|
|
{
|
|
BUG();
|
|
return 0;
|
|
}
|
|
#endif /* __HAVE_ARCH_PMD_WRITE */
|
|
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
|
|
|
|
#ifndef pmd_read_atomic
|
|
static inline pmd_t pmd_read_atomic(pmd_t *pmdp)
|
|
{
|
|
/*
|
|
* Depend on compiler for an atomic pmd read. NOTE: this is
|
|
* only going to work, if the pmdval_t isn't larger than
|
|
* an unsigned long.
|
|
*/
|
|
return *pmdp;
|
|
}
|
|
#endif
|
|
|
|
#ifndef pmd_move_must_withdraw
|
|
static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
|
|
spinlock_t *old_pmd_ptl)
|
|
{
|
|
/*
|
|
* With split pmd lock we also need to move preallocated
|
|
* PTE page table if new_pmd is on different PMD page table.
|
|
*/
|
|
return new_pmd_ptl != old_pmd_ptl;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* This function is meant to be used by sites walking pagetables with
|
|
* the mmap_sem hold in read mode to protect against MADV_DONTNEED and
|
|
* transhuge page faults. MADV_DONTNEED can convert a transhuge pmd
|
|
* into a null pmd and the transhuge page fault can convert a null pmd
|
|
* into an hugepmd or into a regular pmd (if the hugepage allocation
|
|
* fails). While holding the mmap_sem in read mode the pmd becomes
|
|
* stable and stops changing under us only if it's not null and not a
|
|
* transhuge pmd. When those races occurs and this function makes a
|
|
* difference vs the standard pmd_none_or_clear_bad, the result is
|
|
* undefined so behaving like if the pmd was none is safe (because it
|
|
* can return none anyway). The compiler level barrier() is critically
|
|
* important to compute the two checks atomically on the same pmdval.
|
|
*
|
|
* For 32bit kernels with a 64bit large pmd_t this automatically takes
|
|
* care of reading the pmd atomically to avoid SMP race conditions
|
|
* against pmd_populate() when the mmap_sem is hold for reading by the
|
|
* caller (a special atomic read not done by "gcc" as in the generic
|
|
* version above, is also needed when THP is disabled because the page
|
|
* fault can populate the pmd from under us).
|
|
*/
|
|
static inline int pmd_none_or_trans_huge_or_clear_bad(pmd_t *pmd)
|
|
{
|
|
pmd_t pmdval = pmd_read_atomic(pmd);
|
|
/*
|
|
* The barrier will stabilize the pmdval in a register or on
|
|
* the stack so that it will stop changing under the code.
|
|
*
|
|
* When CONFIG_TRANSPARENT_HUGEPAGE=y on x86 32bit PAE,
|
|
* pmd_read_atomic is allowed to return a not atomic pmdval
|
|
* (for example pointing to an hugepage that has never been
|
|
* mapped in the pmd). The below checks will only care about
|
|
* the low part of the pmd with 32bit PAE x86 anyway, with the
|
|
* exception of pmd_none(). So the important thing is that if
|
|
* the low part of the pmd is found null, the high part will
|
|
* be also null or the pmd_none() check below would be
|
|
* confused.
|
|
*/
|
|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
|
|
barrier();
|
|
#endif
|
|
if (pmd_none(pmdval) || pmd_trans_huge(pmdval))
|
|
return 1;
|
|
if (unlikely(pmd_bad(pmdval))) {
|
|
pmd_clear_bad(pmd);
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* This is a noop if Transparent Hugepage Support is not built into
|
|
* the kernel. Otherwise it is equivalent to
|
|
* pmd_none_or_trans_huge_or_clear_bad(), and shall only be called in
|
|
* places that already verified the pmd is not none and they want to
|
|
* walk ptes while holding the mmap sem in read mode (write mode don't
|
|
* need this). If THP is not enabled, the pmd can't go away under the
|
|
* code even if MADV_DONTNEED runs, but if THP is enabled we need to
|
|
* run a pmd_trans_unstable before walking the ptes after
|
|
* split_huge_page_pmd returns (because it may have run when the pmd
|
|
* become null, but then a page fault can map in a THP and not a
|
|
* regular page).
|
|
*/
|
|
static inline int pmd_trans_unstable(pmd_t *pmd)
|
|
{
|
|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
|
|
return pmd_none_or_trans_huge_or_clear_bad(pmd);
|
|
#else
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
#ifndef CONFIG_NUMA_BALANCING
|
|
/*
|
|
* Technically a PTE can be PROTNONE even when not doing NUMA balancing but
|
|
* the only case the kernel cares is for NUMA balancing and is only ever set
|
|
* when the VMA is accessible. For PROT_NONE VMAs, the PTEs are not marked
|
|
* _PAGE_PROTNONE so by by default, implement the helper as "always no". It
|
|
* is the responsibility of the caller to distinguish between PROT_NONE
|
|
* protections and NUMA hinting fault protections.
|
|
*/
|
|
static inline int pte_protnone(pte_t pte)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline int pmd_protnone(pmd_t pmd)
|
|
{
|
|
return 0;
|
|
}
|
|
#endif /* CONFIG_NUMA_BALANCING */
|
|
|
|
#endif /* CONFIG_MMU */
|
|
|
|
#ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
|
|
int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot);
|
|
int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot);
|
|
int pud_clear_huge(pud_t *pud);
|
|
int pmd_clear_huge(pmd_t *pmd);
|
|
#else /* !CONFIG_HAVE_ARCH_HUGE_VMAP */
|
|
static inline int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot)
|
|
{
|
|
return 0;
|
|
}
|
|
static inline int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot)
|
|
{
|
|
return 0;
|
|
}
|
|
static inline int pud_clear_huge(pud_t *pud)
|
|
{
|
|
return 0;
|
|
}
|
|
static inline int pmd_clear_huge(pmd_t *pmd)
|
|
{
|
|
return 0;
|
|
}
|
|
#endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */
|
|
|
|
#endif /* !__ASSEMBLY__ */
|
|
|
|
#ifndef io_remap_pfn_range
|
|
#define io_remap_pfn_range remap_pfn_range
|
|
#endif
|
|
|
|
#endif /* _ASM_GENERIC_PGTABLE_H */
|