linux-sg2042/ipc/sem.c

1420 lines
35 KiB
C

/*
* linux/ipc/sem.c
* Copyright (C) 1992 Krishna Balasubramanian
* Copyright (C) 1995 Eric Schenk, Bruno Haible
*
* IMPLEMENTATION NOTES ON CODE REWRITE (Eric Schenk, January 1995):
* This code underwent a massive rewrite in order to solve some problems
* with the original code. In particular the original code failed to
* wake up processes that were waiting for semval to go to 0 if the
* value went to 0 and was then incremented rapidly enough. In solving
* this problem I have also modified the implementation so that it
* processes pending operations in a FIFO manner, thus give a guarantee
* that processes waiting for a lock on the semaphore won't starve
* unless another locking process fails to unlock.
* In addition the following two changes in behavior have been introduced:
* - The original implementation of semop returned the value
* last semaphore element examined on success. This does not
* match the manual page specifications, and effectively
* allows the user to read the semaphore even if they do not
* have read permissions. The implementation now returns 0
* on success as stated in the manual page.
* - There is some confusion over whether the set of undo adjustments
* to be performed at exit should be done in an atomic manner.
* That is, if we are attempting to decrement the semval should we queue
* up and wait until we can do so legally?
* The original implementation attempted to do this.
* The current implementation does not do so. This is because I don't
* think it is the right thing (TM) to do, and because I couldn't
* see a clean way to get the old behavior with the new design.
* The POSIX standard and SVID should be consulted to determine
* what behavior is mandated.
*
* Further notes on refinement (Christoph Rohland, December 1998):
* - The POSIX standard says, that the undo adjustments simply should
* redo. So the current implementation is o.K.
* - The previous code had two flaws:
* 1) It actively gave the semaphore to the next waiting process
* sleeping on the semaphore. Since this process did not have the
* cpu this led to many unnecessary context switches and bad
* performance. Now we only check which process should be able to
* get the semaphore and if this process wants to reduce some
* semaphore value we simply wake it up without doing the
* operation. So it has to try to get it later. Thus e.g. the
* running process may reacquire the semaphore during the current
* time slice. If it only waits for zero or increases the semaphore,
* we do the operation in advance and wake it up.
* 2) It did not wake up all zero waiting processes. We try to do
* better but only get the semops right which only wait for zero or
* increase. If there are decrement operations in the operations
* array we do the same as before.
*
* With the incarnation of O(1) scheduler, it becomes unnecessary to perform
* check/retry algorithm for waking up blocked processes as the new scheduler
* is better at handling thread switch than the old one.
*
* /proc/sysvipc/sem support (c) 1999 Dragos Acostachioaie <dragos@iname.com>
*
* SMP-threaded, sysctl's added
* (c) 1999 Manfred Spraul <manfred@colorfullife.com>
* Enforced range limit on SEM_UNDO
* (c) 2001 Red Hat Inc <alan@redhat.com>
* Lockless wakeup
* (c) 2003 Manfred Spraul <manfred@colorfullife.com>
*
* support for audit of ipc object properties and permission changes
* Dustin Kirkland <dustin.kirkland@us.ibm.com>
*
* namespaces support
* OpenVZ, SWsoft Inc.
* Pavel Emelianov <xemul@openvz.org>
*/
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/init.h>
#include <linux/proc_fs.h>
#include <linux/time.h>
#include <linux/smp_lock.h>
#include <linux/security.h>
#include <linux/syscalls.h>
#include <linux/audit.h>
#include <linux/capability.h>
#include <linux/seq_file.h>
#include <linux/mutex.h>
#include <linux/nsproxy.h>
#include <asm/uaccess.h>
#include "util.h"
#define sem_ids(ns) (*((ns)->ids[IPC_SEM_IDS]))
#define sem_lock(ns, id) ((struct sem_array*)ipc_lock(&sem_ids(ns), id))
#define sem_unlock(sma) ipc_unlock(&(sma)->sem_perm)
#define sem_rmid(ns, id) ((struct sem_array*)ipc_rmid(&sem_ids(ns), id))
#define sem_checkid(ns, sma, semid) \
ipc_checkid(&sem_ids(ns),&sma->sem_perm,semid)
#define sem_buildid(ns, id, seq) \
ipc_buildid(&sem_ids(ns), id, seq)
static struct ipc_ids init_sem_ids;
static int newary(struct ipc_namespace *, key_t, int, int);
static void freeary(struct ipc_namespace *ns, struct sem_array *sma, int id);
#ifdef CONFIG_PROC_FS
static int sysvipc_sem_proc_show(struct seq_file *s, void *it);
#endif
#define SEMMSL_FAST 256 /* 512 bytes on stack */
#define SEMOPM_FAST 64 /* ~ 372 bytes on stack */
/*
* linked list protection:
* sem_undo.id_next,
* sem_array.sem_pending{,last},
* sem_array.sem_undo: sem_lock() for read/write
* sem_undo.proc_next: only "current" is allowed to read/write that field.
*
*/
#define sc_semmsl sem_ctls[0]
#define sc_semmns sem_ctls[1]
#define sc_semopm sem_ctls[2]
#define sc_semmni sem_ctls[3]
static void __ipc_init __sem_init_ns(struct ipc_namespace *ns, struct ipc_ids *ids)
{
ns->ids[IPC_SEM_IDS] = ids;
ns->sc_semmsl = SEMMSL;
ns->sc_semmns = SEMMNS;
ns->sc_semopm = SEMOPM;
ns->sc_semmni = SEMMNI;
ns->used_sems = 0;
ipc_init_ids(ids, ns->sc_semmni);
}
#ifdef CONFIG_IPC_NS
int sem_init_ns(struct ipc_namespace *ns)
{
struct ipc_ids *ids;
ids = kmalloc(sizeof(struct ipc_ids), GFP_KERNEL);
if (ids == NULL)
return -ENOMEM;
__sem_init_ns(ns, ids);
return 0;
}
void sem_exit_ns(struct ipc_namespace *ns)
{
int i;
struct sem_array *sma;
mutex_lock(&sem_ids(ns).mutex);
for (i = 0; i <= sem_ids(ns).max_id; i++) {
sma = sem_lock(ns, i);
if (sma == NULL)
continue;
freeary(ns, sma, i);
}
mutex_unlock(&sem_ids(ns).mutex);
ipc_fini_ids(ns->ids[IPC_SEM_IDS]);
kfree(ns->ids[IPC_SEM_IDS]);
ns->ids[IPC_SEM_IDS] = NULL;
}
#endif
void __init sem_init (void)
{
__sem_init_ns(&init_ipc_ns, &init_sem_ids);
ipc_init_proc_interface("sysvipc/sem",
" key semid perms nsems uid gid cuid cgid otime ctime\n",
IPC_SEM_IDS, sysvipc_sem_proc_show);
}
/*
* Lockless wakeup algorithm:
* Without the check/retry algorithm a lockless wakeup is possible:
* - queue.status is initialized to -EINTR before blocking.
* - wakeup is performed by
* * unlinking the queue entry from sma->sem_pending
* * setting queue.status to IN_WAKEUP
* This is the notification for the blocked thread that a
* result value is imminent.
* * call wake_up_process
* * set queue.status to the final value.
* - the previously blocked thread checks queue.status:
* * if it's IN_WAKEUP, then it must wait until the value changes
* * if it's not -EINTR, then the operation was completed by
* update_queue. semtimedop can return queue.status without
* performing any operation on the sem array.
* * otherwise it must acquire the spinlock and check what's up.
*
* The two-stage algorithm is necessary to protect against the following
* races:
* - if queue.status is set after wake_up_process, then the woken up idle
* thread could race forward and try (and fail) to acquire sma->lock
* before update_queue had a chance to set queue.status
* - if queue.status is written before wake_up_process and if the
* blocked process is woken up by a signal between writing
* queue.status and the wake_up_process, then the woken up
* process could return from semtimedop and die by calling
* sys_exit before wake_up_process is called. Then wake_up_process
* will oops, because the task structure is already invalid.
* (yes, this happened on s390 with sysv msg).
*
*/
#define IN_WAKEUP 1
static int newary (struct ipc_namespace *ns, key_t key, int nsems, int semflg)
{
int id;
int retval;
struct sem_array *sma;
int size;
if (!nsems)
return -EINVAL;
if (ns->used_sems + nsems > ns->sc_semmns)
return -ENOSPC;
size = sizeof (*sma) + nsems * sizeof (struct sem);
sma = ipc_rcu_alloc(size);
if (!sma) {
return -ENOMEM;
}
memset (sma, 0, size);
sma->sem_perm.mode = (semflg & S_IRWXUGO);
sma->sem_perm.key = key;
sma->sem_perm.security = NULL;
retval = security_sem_alloc(sma);
if (retval) {
ipc_rcu_putref(sma);
return retval;
}
id = ipc_addid(&sem_ids(ns), &sma->sem_perm, ns->sc_semmni);
if(id == -1) {
security_sem_free(sma);
ipc_rcu_putref(sma);
return -ENOSPC;
}
ns->used_sems += nsems;
sma->sem_id = sem_buildid(ns, id, sma->sem_perm.seq);
sma->sem_base = (struct sem *) &sma[1];
/* sma->sem_pending = NULL; */
sma->sem_pending_last = &sma->sem_pending;
/* sma->undo = NULL; */
sma->sem_nsems = nsems;
sma->sem_ctime = get_seconds();
sem_unlock(sma);
return sma->sem_id;
}
asmlinkage long sys_semget (key_t key, int nsems, int semflg)
{
int id, err = -EINVAL;
struct sem_array *sma;
struct ipc_namespace *ns;
ns = current->nsproxy->ipc_ns;
if (nsems < 0 || nsems > ns->sc_semmsl)
return -EINVAL;
mutex_lock(&sem_ids(ns).mutex);
if (key == IPC_PRIVATE) {
err = newary(ns, key, nsems, semflg);
} else if ((id = ipc_findkey(&sem_ids(ns), key)) == -1) { /* key not used */
if (!(semflg & IPC_CREAT))
err = -ENOENT;
else
err = newary(ns, key, nsems, semflg);
} else if (semflg & IPC_CREAT && semflg & IPC_EXCL) {
err = -EEXIST;
} else {
sma = sem_lock(ns, id);
BUG_ON(sma==NULL);
if (nsems > sma->sem_nsems)
err = -EINVAL;
else if (ipcperms(&sma->sem_perm, semflg))
err = -EACCES;
else {
int semid = sem_buildid(ns, id, sma->sem_perm.seq);
err = security_sem_associate(sma, semflg);
if (!err)
err = semid;
}
sem_unlock(sma);
}
mutex_unlock(&sem_ids(ns).mutex);
return err;
}
/* Manage the doubly linked list sma->sem_pending as a FIFO:
* insert new queue elements at the tail sma->sem_pending_last.
*/
static inline void append_to_queue (struct sem_array * sma,
struct sem_queue * q)
{
*(q->prev = sma->sem_pending_last) = q;
*(sma->sem_pending_last = &q->next) = NULL;
}
static inline void prepend_to_queue (struct sem_array * sma,
struct sem_queue * q)
{
q->next = sma->sem_pending;
*(q->prev = &sma->sem_pending) = q;
if (q->next)
q->next->prev = &q->next;
else /* sma->sem_pending_last == &sma->sem_pending */
sma->sem_pending_last = &q->next;
}
static inline void remove_from_queue (struct sem_array * sma,
struct sem_queue * q)
{
*(q->prev) = q->next;
if (q->next)
q->next->prev = q->prev;
else /* sma->sem_pending_last == &q->next */
sma->sem_pending_last = q->prev;
q->prev = NULL; /* mark as removed */
}
/*
* Determine whether a sequence of semaphore operations would succeed
* all at once. Return 0 if yes, 1 if need to sleep, else return error code.
*/
static int try_atomic_semop (struct sem_array * sma, struct sembuf * sops,
int nsops, struct sem_undo *un, int pid)
{
int result, sem_op;
struct sembuf *sop;
struct sem * curr;
for (sop = sops; sop < sops + nsops; sop++) {
curr = sma->sem_base + sop->sem_num;
sem_op = sop->sem_op;
result = curr->semval;
if (!sem_op && result)
goto would_block;
result += sem_op;
if (result < 0)
goto would_block;
if (result > SEMVMX)
goto out_of_range;
if (sop->sem_flg & SEM_UNDO) {
int undo = un->semadj[sop->sem_num] - sem_op;
/*
* Exceeding the undo range is an error.
*/
if (undo < (-SEMAEM - 1) || undo > SEMAEM)
goto out_of_range;
}
curr->semval = result;
}
sop--;
while (sop >= sops) {
sma->sem_base[sop->sem_num].sempid = pid;
if (sop->sem_flg & SEM_UNDO)
un->semadj[sop->sem_num] -= sop->sem_op;
sop--;
}
sma->sem_otime = get_seconds();
return 0;
out_of_range:
result = -ERANGE;
goto undo;
would_block:
if (sop->sem_flg & IPC_NOWAIT)
result = -EAGAIN;
else
result = 1;
undo:
sop--;
while (sop >= sops) {
sma->sem_base[sop->sem_num].semval -= sop->sem_op;
sop--;
}
return result;
}
/* Go through the pending queue for the indicated semaphore
* looking for tasks that can be completed.
*/
static void update_queue (struct sem_array * sma)
{
int error;
struct sem_queue * q;
q = sma->sem_pending;
while(q) {
error = try_atomic_semop(sma, q->sops, q->nsops,
q->undo, q->pid);
/* Does q->sleeper still need to sleep? */
if (error <= 0) {
struct sem_queue *n;
remove_from_queue(sma,q);
q->status = IN_WAKEUP;
/*
* Continue scanning. The next operation
* that must be checked depends on the type of the
* completed operation:
* - if the operation modified the array, then
* restart from the head of the queue and
* check for threads that might be waiting
* for semaphore values to become 0.
* - if the operation didn't modify the array,
* then just continue.
*/
if (q->alter)
n = sma->sem_pending;
else
n = q->next;
wake_up_process(q->sleeper);
/* hands-off: q will disappear immediately after
* writing q->status.
*/
smp_wmb();
q->status = error;
q = n;
} else {
q = q->next;
}
}
}
/* The following counts are associated to each semaphore:
* semncnt number of tasks waiting on semval being nonzero
* semzcnt number of tasks waiting on semval being zero
* This model assumes that a task waits on exactly one semaphore.
* Since semaphore operations are to be performed atomically, tasks actually
* wait on a whole sequence of semaphores simultaneously.
* The counts we return here are a rough approximation, but still
* warrant that semncnt+semzcnt>0 if the task is on the pending queue.
*/
static int count_semncnt (struct sem_array * sma, ushort semnum)
{
int semncnt;
struct sem_queue * q;
semncnt = 0;
for (q = sma->sem_pending; q; q = q->next) {
struct sembuf * sops = q->sops;
int nsops = q->nsops;
int i;
for (i = 0; i < nsops; i++)
if (sops[i].sem_num == semnum
&& (sops[i].sem_op < 0)
&& !(sops[i].sem_flg & IPC_NOWAIT))
semncnt++;
}
return semncnt;
}
static int count_semzcnt (struct sem_array * sma, ushort semnum)
{
int semzcnt;
struct sem_queue * q;
semzcnt = 0;
for (q = sma->sem_pending; q; q = q->next) {
struct sembuf * sops = q->sops;
int nsops = q->nsops;
int i;
for (i = 0; i < nsops; i++)
if (sops[i].sem_num == semnum
&& (sops[i].sem_op == 0)
&& !(sops[i].sem_flg & IPC_NOWAIT))
semzcnt++;
}
return semzcnt;
}
/* Free a semaphore set. freeary() is called with sem_ids.mutex locked and
* the spinlock for this semaphore set hold. sem_ids.mutex remains locked
* on exit.
*/
static void freeary (struct ipc_namespace *ns, struct sem_array *sma, int id)
{
struct sem_undo *un;
struct sem_queue *q;
int size;
/* Invalidate the existing undo structures for this semaphore set.
* (They will be freed without any further action in exit_sem()
* or during the next semop.)
*/
for (un = sma->undo; un; un = un->id_next)
un->semid = -1;
/* Wake up all pending processes and let them fail with EIDRM. */
q = sma->sem_pending;
while(q) {
struct sem_queue *n;
/* lazy remove_from_queue: we are killing the whole queue */
q->prev = NULL;
n = q->next;
q->status = IN_WAKEUP;
wake_up_process(q->sleeper); /* doesn't sleep */
smp_wmb();
q->status = -EIDRM; /* hands-off q */
q = n;
}
/* Remove the semaphore set from the ID array*/
sma = sem_rmid(ns, id);
sem_unlock(sma);
ns->used_sems -= sma->sem_nsems;
size = sizeof (*sma) + sma->sem_nsems * sizeof (struct sem);
security_sem_free(sma);
ipc_rcu_putref(sma);
}
static unsigned long copy_semid_to_user(void __user *buf, struct semid64_ds *in, int version)
{
switch(version) {
case IPC_64:
return copy_to_user(buf, in, sizeof(*in));
case IPC_OLD:
{
struct semid_ds out;
ipc64_perm_to_ipc_perm(&in->sem_perm, &out.sem_perm);
out.sem_otime = in->sem_otime;
out.sem_ctime = in->sem_ctime;
out.sem_nsems = in->sem_nsems;
return copy_to_user(buf, &out, sizeof(out));
}
default:
return -EINVAL;
}
}
static int semctl_nolock(struct ipc_namespace *ns, int semid, int semnum,
int cmd, int version, union semun arg)
{
int err = -EINVAL;
struct sem_array *sma;
switch(cmd) {
case IPC_INFO:
case SEM_INFO:
{
struct seminfo seminfo;
int max_id;
err = security_sem_semctl(NULL, cmd);
if (err)
return err;
memset(&seminfo,0,sizeof(seminfo));
seminfo.semmni = ns->sc_semmni;
seminfo.semmns = ns->sc_semmns;
seminfo.semmsl = ns->sc_semmsl;
seminfo.semopm = ns->sc_semopm;
seminfo.semvmx = SEMVMX;
seminfo.semmnu = SEMMNU;
seminfo.semmap = SEMMAP;
seminfo.semume = SEMUME;
mutex_lock(&sem_ids(ns).mutex);
if (cmd == SEM_INFO) {
seminfo.semusz = sem_ids(ns).in_use;
seminfo.semaem = ns->used_sems;
} else {
seminfo.semusz = SEMUSZ;
seminfo.semaem = SEMAEM;
}
max_id = sem_ids(ns).max_id;
mutex_unlock(&sem_ids(ns).mutex);
if (copy_to_user (arg.__buf, &seminfo, sizeof(struct seminfo)))
return -EFAULT;
return (max_id < 0) ? 0: max_id;
}
case SEM_STAT:
{
struct semid64_ds tbuf;
int id;
if(semid >= sem_ids(ns).entries->size)
return -EINVAL;
memset(&tbuf,0,sizeof(tbuf));
sma = sem_lock(ns, semid);
if(sma == NULL)
return -EINVAL;
err = -EACCES;
if (ipcperms (&sma->sem_perm, S_IRUGO))
goto out_unlock;
err = security_sem_semctl(sma, cmd);
if (err)
goto out_unlock;
id = sem_buildid(ns, semid, sma->sem_perm.seq);
kernel_to_ipc64_perm(&sma->sem_perm, &tbuf.sem_perm);
tbuf.sem_otime = sma->sem_otime;
tbuf.sem_ctime = sma->sem_ctime;
tbuf.sem_nsems = sma->sem_nsems;
sem_unlock(sma);
if (copy_semid_to_user (arg.buf, &tbuf, version))
return -EFAULT;
return id;
}
default:
return -EINVAL;
}
return err;
out_unlock:
sem_unlock(sma);
return err;
}
static int semctl_main(struct ipc_namespace *ns, int semid, int semnum,
int cmd, int version, union semun arg)
{
struct sem_array *sma;
struct sem* curr;
int err;
ushort fast_sem_io[SEMMSL_FAST];
ushort* sem_io = fast_sem_io;
int nsems;
sma = sem_lock(ns, semid);
if(sma==NULL)
return -EINVAL;
nsems = sma->sem_nsems;
err=-EIDRM;
if (sem_checkid(ns,sma,semid))
goto out_unlock;
err = -EACCES;
if (ipcperms (&sma->sem_perm, (cmd==SETVAL||cmd==SETALL)?S_IWUGO:S_IRUGO))
goto out_unlock;
err = security_sem_semctl(sma, cmd);
if (err)
goto out_unlock;
err = -EACCES;
switch (cmd) {
case GETALL:
{
ushort __user *array = arg.array;
int i;
if(nsems > SEMMSL_FAST) {
ipc_rcu_getref(sma);
sem_unlock(sma);
sem_io = ipc_alloc(sizeof(ushort)*nsems);
if(sem_io == NULL) {
ipc_lock_by_ptr(&sma->sem_perm);
ipc_rcu_putref(sma);
sem_unlock(sma);
return -ENOMEM;
}
ipc_lock_by_ptr(&sma->sem_perm);
ipc_rcu_putref(sma);
if (sma->sem_perm.deleted) {
sem_unlock(sma);
err = -EIDRM;
goto out_free;
}
}
for (i = 0; i < sma->sem_nsems; i++)
sem_io[i] = sma->sem_base[i].semval;
sem_unlock(sma);
err = 0;
if(copy_to_user(array, sem_io, nsems*sizeof(ushort)))
err = -EFAULT;
goto out_free;
}
case SETALL:
{
int i;
struct sem_undo *un;
ipc_rcu_getref(sma);
sem_unlock(sma);
if(nsems > SEMMSL_FAST) {
sem_io = ipc_alloc(sizeof(ushort)*nsems);
if(sem_io == NULL) {
ipc_lock_by_ptr(&sma->sem_perm);
ipc_rcu_putref(sma);
sem_unlock(sma);
return -ENOMEM;
}
}
if (copy_from_user (sem_io, arg.array, nsems*sizeof(ushort))) {
ipc_lock_by_ptr(&sma->sem_perm);
ipc_rcu_putref(sma);
sem_unlock(sma);
err = -EFAULT;
goto out_free;
}
for (i = 0; i < nsems; i++) {
if (sem_io[i] > SEMVMX) {
ipc_lock_by_ptr(&sma->sem_perm);
ipc_rcu_putref(sma);
sem_unlock(sma);
err = -ERANGE;
goto out_free;
}
}
ipc_lock_by_ptr(&sma->sem_perm);
ipc_rcu_putref(sma);
if (sma->sem_perm.deleted) {
sem_unlock(sma);
err = -EIDRM;
goto out_free;
}
for (i = 0; i < nsems; i++)
sma->sem_base[i].semval = sem_io[i];
for (un = sma->undo; un; un = un->id_next)
for (i = 0; i < nsems; i++)
un->semadj[i] = 0;
sma->sem_ctime = get_seconds();
/* maybe some queued-up processes were waiting for this */
update_queue(sma);
err = 0;
goto out_unlock;
}
case IPC_STAT:
{
struct semid64_ds tbuf;
memset(&tbuf,0,sizeof(tbuf));
kernel_to_ipc64_perm(&sma->sem_perm, &tbuf.sem_perm);
tbuf.sem_otime = sma->sem_otime;
tbuf.sem_ctime = sma->sem_ctime;
tbuf.sem_nsems = sma->sem_nsems;
sem_unlock(sma);
if (copy_semid_to_user (arg.buf, &tbuf, version))
return -EFAULT;
return 0;
}
/* GETVAL, GETPID, GETNCTN, GETZCNT, SETVAL: fall-through */
}
err = -EINVAL;
if(semnum < 0 || semnum >= nsems)
goto out_unlock;
curr = &sma->sem_base[semnum];
switch (cmd) {
case GETVAL:
err = curr->semval;
goto out_unlock;
case GETPID:
err = curr->sempid;
goto out_unlock;
case GETNCNT:
err = count_semncnt(sma,semnum);
goto out_unlock;
case GETZCNT:
err = count_semzcnt(sma,semnum);
goto out_unlock;
case SETVAL:
{
int val = arg.val;
struct sem_undo *un;
err = -ERANGE;
if (val > SEMVMX || val < 0)
goto out_unlock;
for (un = sma->undo; un; un = un->id_next)
un->semadj[semnum] = 0;
curr->semval = val;
curr->sempid = current->tgid;
sma->sem_ctime = get_seconds();
/* maybe some queued-up processes were waiting for this */
update_queue(sma);
err = 0;
goto out_unlock;
}
}
out_unlock:
sem_unlock(sma);
out_free:
if(sem_io != fast_sem_io)
ipc_free(sem_io, sizeof(ushort)*nsems);
return err;
}
struct sem_setbuf {
uid_t uid;
gid_t gid;
mode_t mode;
};
static inline unsigned long copy_semid_from_user(struct sem_setbuf *out, void __user *buf, int version)
{
switch(version) {
case IPC_64:
{
struct semid64_ds tbuf;
if(copy_from_user(&tbuf, buf, sizeof(tbuf)))
return -EFAULT;
out->uid = tbuf.sem_perm.uid;
out->gid = tbuf.sem_perm.gid;
out->mode = tbuf.sem_perm.mode;
return 0;
}
case IPC_OLD:
{
struct semid_ds tbuf_old;
if(copy_from_user(&tbuf_old, buf, sizeof(tbuf_old)))
return -EFAULT;
out->uid = tbuf_old.sem_perm.uid;
out->gid = tbuf_old.sem_perm.gid;
out->mode = tbuf_old.sem_perm.mode;
return 0;
}
default:
return -EINVAL;
}
}
static int semctl_down(struct ipc_namespace *ns, int semid, int semnum,
int cmd, int version, union semun arg)
{
struct sem_array *sma;
int err;
struct sem_setbuf setbuf;
struct kern_ipc_perm *ipcp;
if(cmd == IPC_SET) {
if(copy_semid_from_user (&setbuf, arg.buf, version))
return -EFAULT;
}
sma = sem_lock(ns, semid);
if(sma==NULL)
return -EINVAL;
if (sem_checkid(ns,sma,semid)) {
err=-EIDRM;
goto out_unlock;
}
ipcp = &sma->sem_perm;
err = audit_ipc_obj(ipcp);
if (err)
goto out_unlock;
if (cmd == IPC_SET) {
err = audit_ipc_set_perm(0, setbuf.uid, setbuf.gid, setbuf.mode);
if (err)
goto out_unlock;
}
if (current->euid != ipcp->cuid &&
current->euid != ipcp->uid && !capable(CAP_SYS_ADMIN)) {
err=-EPERM;
goto out_unlock;
}
err = security_sem_semctl(sma, cmd);
if (err)
goto out_unlock;
switch(cmd){
case IPC_RMID:
freeary(ns, sma, semid);
err = 0;
break;
case IPC_SET:
ipcp->uid = setbuf.uid;
ipcp->gid = setbuf.gid;
ipcp->mode = (ipcp->mode & ~S_IRWXUGO)
| (setbuf.mode & S_IRWXUGO);
sma->sem_ctime = get_seconds();
sem_unlock(sma);
err = 0;
break;
default:
sem_unlock(sma);
err = -EINVAL;
break;
}
return err;
out_unlock:
sem_unlock(sma);
return err;
}
asmlinkage long sys_semctl (int semid, int semnum, int cmd, union semun arg)
{
int err = -EINVAL;
int version;
struct ipc_namespace *ns;
if (semid < 0)
return -EINVAL;
version = ipc_parse_version(&cmd);
ns = current->nsproxy->ipc_ns;
switch(cmd) {
case IPC_INFO:
case SEM_INFO:
case SEM_STAT:
err = semctl_nolock(ns,semid,semnum,cmd,version,arg);
return err;
case GETALL:
case GETVAL:
case GETPID:
case GETNCNT:
case GETZCNT:
case IPC_STAT:
case SETVAL:
case SETALL:
err = semctl_main(ns,semid,semnum,cmd,version,arg);
return err;
case IPC_RMID:
case IPC_SET:
mutex_lock(&sem_ids(ns).mutex);
err = semctl_down(ns,semid,semnum,cmd,version,arg);
mutex_unlock(&sem_ids(ns).mutex);
return err;
default:
return -EINVAL;
}
}
static inline void lock_semundo(void)
{
struct sem_undo_list *undo_list;
undo_list = current->sysvsem.undo_list;
if (undo_list)
spin_lock(&undo_list->lock);
}
/* This code has an interaction with copy_semundo().
* Consider; two tasks are sharing the undo_list. task1
* acquires the undo_list lock in lock_semundo(). If task2 now
* exits before task1 releases the lock (by calling
* unlock_semundo()), then task1 will never call spin_unlock().
* This leave the sem_undo_list in a locked state. If task1 now creats task3
* and once again shares the sem_undo_list, the sem_undo_list will still be
* locked, and future SEM_UNDO operations will deadlock. This case is
* dealt with in copy_semundo() by having it reinitialize the spin lock when
* the refcnt goes from 1 to 2.
*/
static inline void unlock_semundo(void)
{
struct sem_undo_list *undo_list;
undo_list = current->sysvsem.undo_list;
if (undo_list)
spin_unlock(&undo_list->lock);
}
/* If the task doesn't already have a undo_list, then allocate one
* here. We guarantee there is only one thread using this undo list,
* and current is THE ONE
*
* If this allocation and assignment succeeds, but later
* portions of this code fail, there is no need to free the sem_undo_list.
* Just let it stay associated with the task, and it'll be freed later
* at exit time.
*
* This can block, so callers must hold no locks.
*/
static inline int get_undo_list(struct sem_undo_list **undo_listp)
{
struct sem_undo_list *undo_list;
undo_list = current->sysvsem.undo_list;
if (!undo_list) {
undo_list = kzalloc(sizeof(*undo_list), GFP_KERNEL);
if (undo_list == NULL)
return -ENOMEM;
spin_lock_init(&undo_list->lock);
atomic_set(&undo_list->refcnt, 1);
current->sysvsem.undo_list = undo_list;
}
*undo_listp = undo_list;
return 0;
}
static struct sem_undo *lookup_undo(struct sem_undo_list *ulp, int semid)
{
struct sem_undo **last, *un;
last = &ulp->proc_list;
un = *last;
while(un != NULL) {
if(un->semid==semid)
break;
if(un->semid==-1) {
*last=un->proc_next;
kfree(un);
} else {
last=&un->proc_next;
}
un=*last;
}
return un;
}
static struct sem_undo *find_undo(struct ipc_namespace *ns, int semid)
{
struct sem_array *sma;
struct sem_undo_list *ulp;
struct sem_undo *un, *new;
int nsems;
int error;
error = get_undo_list(&ulp);
if (error)
return ERR_PTR(error);
lock_semundo();
un = lookup_undo(ulp, semid);
unlock_semundo();
if (likely(un!=NULL))
goto out;
/* no undo structure around - allocate one. */
sma = sem_lock(ns, semid);
un = ERR_PTR(-EINVAL);
if(sma==NULL)
goto out;
un = ERR_PTR(-EIDRM);
if (sem_checkid(ns,sma,semid)) {
sem_unlock(sma);
goto out;
}
nsems = sma->sem_nsems;
ipc_rcu_getref(sma);
sem_unlock(sma);
new = (struct sem_undo *) kmalloc(sizeof(struct sem_undo) + sizeof(short)*nsems, GFP_KERNEL);
if (!new) {
ipc_lock_by_ptr(&sma->sem_perm);
ipc_rcu_putref(sma);
sem_unlock(sma);
return ERR_PTR(-ENOMEM);
}
memset(new, 0, sizeof(struct sem_undo) + sizeof(short)*nsems);
new->semadj = (short *) &new[1];
new->semid = semid;
lock_semundo();
un = lookup_undo(ulp, semid);
if (un) {
unlock_semundo();
kfree(new);
ipc_lock_by_ptr(&sma->sem_perm);
ipc_rcu_putref(sma);
sem_unlock(sma);
goto out;
}
ipc_lock_by_ptr(&sma->sem_perm);
ipc_rcu_putref(sma);
if (sma->sem_perm.deleted) {
sem_unlock(sma);
unlock_semundo();
kfree(new);
un = ERR_PTR(-EIDRM);
goto out;
}
new->proc_next = ulp->proc_list;
ulp->proc_list = new;
new->id_next = sma->undo;
sma->undo = new;
sem_unlock(sma);
un = new;
unlock_semundo();
out:
return un;
}
asmlinkage long sys_semtimedop(int semid, struct sembuf __user *tsops,
unsigned nsops, const struct timespec __user *timeout)
{
int error = -EINVAL;
struct sem_array *sma;
struct sembuf fast_sops[SEMOPM_FAST];
struct sembuf* sops = fast_sops, *sop;
struct sem_undo *un;
int undos = 0, alter = 0, max;
struct sem_queue queue;
unsigned long jiffies_left = 0;
struct ipc_namespace *ns;
ns = current->nsproxy->ipc_ns;
if (nsops < 1 || semid < 0)
return -EINVAL;
if (nsops > ns->sc_semopm)
return -E2BIG;
if(nsops > SEMOPM_FAST) {
sops = kmalloc(sizeof(*sops)*nsops,GFP_KERNEL);
if(sops==NULL)
return -ENOMEM;
}
if (copy_from_user (sops, tsops, nsops * sizeof(*tsops))) {
error=-EFAULT;
goto out_free;
}
if (timeout) {
struct timespec _timeout;
if (copy_from_user(&_timeout, timeout, sizeof(*timeout))) {
error = -EFAULT;
goto out_free;
}
if (_timeout.tv_sec < 0 || _timeout.tv_nsec < 0 ||
_timeout.tv_nsec >= 1000000000L) {
error = -EINVAL;
goto out_free;
}
jiffies_left = timespec_to_jiffies(&_timeout);
}
max = 0;
for (sop = sops; sop < sops + nsops; sop++) {
if (sop->sem_num >= max)
max = sop->sem_num;
if (sop->sem_flg & SEM_UNDO)
undos = 1;
if (sop->sem_op != 0)
alter = 1;
}
retry_undos:
if (undos) {
un = find_undo(ns, semid);
if (IS_ERR(un)) {
error = PTR_ERR(un);
goto out_free;
}
} else
un = NULL;
sma = sem_lock(ns, semid);
error=-EINVAL;
if(sma==NULL)
goto out_free;
error = -EIDRM;
if (sem_checkid(ns,sma,semid))
goto out_unlock_free;
/*
* semid identifies are not unique - find_undo may have
* allocated an undo structure, it was invalidated by an RMID
* and now a new array with received the same id. Check and retry.
*/
if (un && un->semid == -1) {
sem_unlock(sma);
goto retry_undos;
}
error = -EFBIG;
if (max >= sma->sem_nsems)
goto out_unlock_free;
error = -EACCES;
if (ipcperms(&sma->sem_perm, alter ? S_IWUGO : S_IRUGO))
goto out_unlock_free;
error = security_sem_semop(sma, sops, nsops, alter);
if (error)
goto out_unlock_free;
error = try_atomic_semop (sma, sops, nsops, un, current->tgid);
if (error <= 0) {
if (alter && error == 0)
update_queue (sma);
goto out_unlock_free;
}
/* We need to sleep on this operation, so we put the current
* task into the pending queue and go to sleep.
*/
queue.sma = sma;
queue.sops = sops;
queue.nsops = nsops;
queue.undo = un;
queue.pid = current->tgid;
queue.id = semid;
queue.alter = alter;
if (alter)
append_to_queue(sma ,&queue);
else
prepend_to_queue(sma ,&queue);
queue.status = -EINTR;
queue.sleeper = current;
current->state = TASK_INTERRUPTIBLE;
sem_unlock(sma);
if (timeout)
jiffies_left = schedule_timeout(jiffies_left);
else
schedule();
error = queue.status;
while(unlikely(error == IN_WAKEUP)) {
cpu_relax();
error = queue.status;
}
if (error != -EINTR) {
/* fast path: update_queue already obtained all requested
* resources */
goto out_free;
}
sma = sem_lock(ns, semid);
if(sma==NULL) {
BUG_ON(queue.prev != NULL);
error = -EIDRM;
goto out_free;
}
/*
* If queue.status != -EINTR we are woken up by another process
*/
error = queue.status;
if (error != -EINTR) {
goto out_unlock_free;
}
/*
* If an interrupt occurred we have to clean up the queue
*/
if (timeout && jiffies_left == 0)
error = -EAGAIN;
remove_from_queue(sma,&queue);
goto out_unlock_free;
out_unlock_free:
sem_unlock(sma);
out_free:
if(sops != fast_sops)
kfree(sops);
return error;
}
asmlinkage long sys_semop (int semid, struct sembuf __user *tsops, unsigned nsops)
{
return sys_semtimedop(semid, tsops, nsops, NULL);
}
/* If CLONE_SYSVSEM is set, establish sharing of SEM_UNDO state between
* parent and child tasks.
*
* See the notes above unlock_semundo() regarding the spin_lock_init()
* in this code. Initialize the undo_list->lock here instead of get_undo_list()
* because of the reasoning in the comment above unlock_semundo.
*/
int copy_semundo(unsigned long clone_flags, struct task_struct *tsk)
{
struct sem_undo_list *undo_list;
int error;
if (clone_flags & CLONE_SYSVSEM) {
error = get_undo_list(&undo_list);
if (error)
return error;
atomic_inc(&undo_list->refcnt);
tsk->sysvsem.undo_list = undo_list;
} else
tsk->sysvsem.undo_list = NULL;
return 0;
}
/*
* add semadj values to semaphores, free undo structures.
* undo structures are not freed when semaphore arrays are destroyed
* so some of them may be out of date.
* IMPLEMENTATION NOTE: There is some confusion over whether the
* set of adjustments that needs to be done should be done in an atomic
* manner or not. That is, if we are attempting to decrement the semval
* should we queue up and wait until we can do so legally?
* The original implementation attempted to do this (queue and wait).
* The current implementation does not do so. The POSIX standard
* and SVID should be consulted to determine what behavior is mandated.
*/
void exit_sem(struct task_struct *tsk)
{
struct sem_undo_list *undo_list;
struct sem_undo *u, **up;
struct ipc_namespace *ns;
undo_list = tsk->sysvsem.undo_list;
if (!undo_list)
return;
if (!atomic_dec_and_test(&undo_list->refcnt))
return;
ns = tsk->nsproxy->ipc_ns;
/* There's no need to hold the semundo list lock, as current
* is the last task exiting for this undo list.
*/
for (up = &undo_list->proc_list; (u = *up); *up = u->proc_next, kfree(u)) {
struct sem_array *sma;
int nsems, i;
struct sem_undo *un, **unp;
int semid;
semid = u->semid;
if(semid == -1)
continue;
sma = sem_lock(ns, semid);
if (sma == NULL)
continue;
if (u->semid == -1)
goto next_entry;
BUG_ON(sem_checkid(ns,sma,u->semid));
/* remove u from the sma->undo list */
for (unp = &sma->undo; (un = *unp); unp = &un->id_next) {
if (u == un)
goto found;
}
printk ("exit_sem undo list error id=%d\n", u->semid);
goto next_entry;
found:
*unp = un->id_next;
/* perform adjustments registered in u */
nsems = sma->sem_nsems;
for (i = 0; i < nsems; i++) {
struct sem * semaphore = &sma->sem_base[i];
if (u->semadj[i]) {
semaphore->semval += u->semadj[i];
/*
* Range checks of the new semaphore value,
* not defined by sus:
* - Some unices ignore the undo entirely
* (e.g. HP UX 11i 11.22, Tru64 V5.1)
* - some cap the value (e.g. FreeBSD caps
* at 0, but doesn't enforce SEMVMX)
*
* Linux caps the semaphore value, both at 0
* and at SEMVMX.
*
* Manfred <manfred@colorfullife.com>
*/
if (semaphore->semval < 0)
semaphore->semval = 0;
if (semaphore->semval > SEMVMX)
semaphore->semval = SEMVMX;
semaphore->sempid = current->tgid;
}
}
sma->sem_otime = get_seconds();
/* maybe some queued-up processes were waiting for this */
update_queue(sma);
next_entry:
sem_unlock(sma);
}
kfree(undo_list);
}
#ifdef CONFIG_PROC_FS
static int sysvipc_sem_proc_show(struct seq_file *s, void *it)
{
struct sem_array *sma = it;
return seq_printf(s,
"%10d %10d %4o %10lu %5u %5u %5u %5u %10lu %10lu\n",
sma->sem_perm.key,
sma->sem_id,
sma->sem_perm.mode,
sma->sem_nsems,
sma->sem_perm.uid,
sma->sem_perm.gid,
sma->sem_perm.cuid,
sma->sem_perm.cgid,
sma->sem_otime,
sma->sem_ctime);
}
#endif