1143 lines
27 KiB
C
1143 lines
27 KiB
C
/*
|
|
* Support for Marvell's crypto engine which can be found on some Orion5X
|
|
* boards.
|
|
*
|
|
* Author: Sebastian Andrzej Siewior < sebastian at breakpoint dot cc >
|
|
* License: GPLv2
|
|
*
|
|
*/
|
|
#include <crypto/aes.h>
|
|
#include <crypto/algapi.h>
|
|
#include <linux/crypto.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/io.h>
|
|
#include <linux/kthread.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/scatterlist.h>
|
|
#include <linux/slab.h>
|
|
#include <crypto/internal/hash.h>
|
|
#include <crypto/sha.h>
|
|
|
|
#include "mv_cesa.h"
|
|
|
|
#define MV_CESA "MV-CESA:"
|
|
#define MAX_HW_HASH_SIZE 0xFFFF
|
|
|
|
/*
|
|
* STM:
|
|
* /---------------------------------------\
|
|
* | | request complete
|
|
* \./ |
|
|
* IDLE -> new request -> BUSY -> done -> DEQUEUE
|
|
* /°\ |
|
|
* | | more scatter entries
|
|
* \________________/
|
|
*/
|
|
enum engine_status {
|
|
ENGINE_IDLE,
|
|
ENGINE_BUSY,
|
|
ENGINE_W_DEQUEUE,
|
|
};
|
|
|
|
/**
|
|
* struct req_progress - used for every crypt request
|
|
* @src_sg_it: sg iterator for src
|
|
* @dst_sg_it: sg iterator for dst
|
|
* @sg_src_left: bytes left in src to process (scatter list)
|
|
* @src_start: offset to add to src start position (scatter list)
|
|
* @crypt_len: length of current hw crypt/hash process
|
|
* @hw_nbytes: total bytes to process in hw for this request
|
|
* @copy_back: whether to copy data back (crypt) or not (hash)
|
|
* @sg_dst_left: bytes left dst to process in this scatter list
|
|
* @dst_start: offset to add to dst start position (scatter list)
|
|
* @hw_processed_bytes: number of bytes processed by hw (request).
|
|
*
|
|
* sg helper are used to iterate over the scatterlist. Since the size of the
|
|
* SRAM may be less than the scatter size, this struct struct is used to keep
|
|
* track of progress within current scatterlist.
|
|
*/
|
|
struct req_progress {
|
|
struct sg_mapping_iter src_sg_it;
|
|
struct sg_mapping_iter dst_sg_it;
|
|
void (*complete) (void);
|
|
void (*process) (int is_first);
|
|
|
|
/* src mostly */
|
|
int sg_src_left;
|
|
int src_start;
|
|
int crypt_len;
|
|
int hw_nbytes;
|
|
/* dst mostly */
|
|
int copy_back;
|
|
int sg_dst_left;
|
|
int dst_start;
|
|
int hw_processed_bytes;
|
|
};
|
|
|
|
struct crypto_priv {
|
|
void __iomem *reg;
|
|
void __iomem *sram;
|
|
int irq;
|
|
struct task_struct *queue_th;
|
|
|
|
/* the lock protects queue and eng_st */
|
|
spinlock_t lock;
|
|
struct crypto_queue queue;
|
|
enum engine_status eng_st;
|
|
struct crypto_async_request *cur_req;
|
|
struct req_progress p;
|
|
int max_req_size;
|
|
int sram_size;
|
|
int has_sha1;
|
|
int has_hmac_sha1;
|
|
};
|
|
|
|
static struct crypto_priv *cpg;
|
|
|
|
struct mv_ctx {
|
|
u8 aes_enc_key[AES_KEY_LEN];
|
|
u32 aes_dec_key[8];
|
|
int key_len;
|
|
u32 need_calc_aes_dkey;
|
|
};
|
|
|
|
enum crypto_op {
|
|
COP_AES_ECB,
|
|
COP_AES_CBC,
|
|
};
|
|
|
|
struct mv_req_ctx {
|
|
enum crypto_op op;
|
|
int decrypt;
|
|
};
|
|
|
|
enum hash_op {
|
|
COP_SHA1,
|
|
COP_HMAC_SHA1
|
|
};
|
|
|
|
struct mv_tfm_hash_ctx {
|
|
struct crypto_shash *fallback;
|
|
struct crypto_shash *base_hash;
|
|
u32 ivs[2 * SHA1_DIGEST_SIZE / 4];
|
|
int count_add;
|
|
enum hash_op op;
|
|
};
|
|
|
|
struct mv_req_hash_ctx {
|
|
u64 count;
|
|
u32 state[SHA1_DIGEST_SIZE / 4];
|
|
u8 buffer[SHA1_BLOCK_SIZE];
|
|
int first_hash; /* marks that we don't have previous state */
|
|
int last_chunk; /* marks that this is the 'final' request */
|
|
int extra_bytes; /* unprocessed bytes in buffer */
|
|
enum hash_op op;
|
|
int count_add;
|
|
};
|
|
|
|
static void compute_aes_dec_key(struct mv_ctx *ctx)
|
|
{
|
|
struct crypto_aes_ctx gen_aes_key;
|
|
int key_pos;
|
|
|
|
if (!ctx->need_calc_aes_dkey)
|
|
return;
|
|
|
|
crypto_aes_expand_key(&gen_aes_key, ctx->aes_enc_key, ctx->key_len);
|
|
|
|
key_pos = ctx->key_len + 24;
|
|
memcpy(ctx->aes_dec_key, &gen_aes_key.key_enc[key_pos], 4 * 4);
|
|
switch (ctx->key_len) {
|
|
case AES_KEYSIZE_256:
|
|
key_pos -= 2;
|
|
/* fall */
|
|
case AES_KEYSIZE_192:
|
|
key_pos -= 2;
|
|
memcpy(&ctx->aes_dec_key[4], &gen_aes_key.key_enc[key_pos],
|
|
4 * 4);
|
|
break;
|
|
}
|
|
ctx->need_calc_aes_dkey = 0;
|
|
}
|
|
|
|
static int mv_setkey_aes(struct crypto_ablkcipher *cipher, const u8 *key,
|
|
unsigned int len)
|
|
{
|
|
struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
|
|
struct mv_ctx *ctx = crypto_tfm_ctx(tfm);
|
|
|
|
switch (len) {
|
|
case AES_KEYSIZE_128:
|
|
case AES_KEYSIZE_192:
|
|
case AES_KEYSIZE_256:
|
|
break;
|
|
default:
|
|
crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
|
|
return -EINVAL;
|
|
}
|
|
ctx->key_len = len;
|
|
ctx->need_calc_aes_dkey = 1;
|
|
|
|
memcpy(ctx->aes_enc_key, key, AES_KEY_LEN);
|
|
return 0;
|
|
}
|
|
|
|
static void copy_src_to_buf(struct req_progress *p, char *dbuf, int len)
|
|
{
|
|
int ret;
|
|
void *sbuf;
|
|
int copy_len;
|
|
|
|
while (len) {
|
|
if (!p->sg_src_left) {
|
|
ret = sg_miter_next(&p->src_sg_it);
|
|
BUG_ON(!ret);
|
|
p->sg_src_left = p->src_sg_it.length;
|
|
p->src_start = 0;
|
|
}
|
|
|
|
sbuf = p->src_sg_it.addr + p->src_start;
|
|
|
|
copy_len = min(p->sg_src_left, len);
|
|
memcpy(dbuf, sbuf, copy_len);
|
|
|
|
p->src_start += copy_len;
|
|
p->sg_src_left -= copy_len;
|
|
|
|
len -= copy_len;
|
|
dbuf += copy_len;
|
|
}
|
|
}
|
|
|
|
static void setup_data_in(void)
|
|
{
|
|
struct req_progress *p = &cpg->p;
|
|
int data_in_sram =
|
|
min(p->hw_nbytes - p->hw_processed_bytes, cpg->max_req_size);
|
|
copy_src_to_buf(p, cpg->sram + SRAM_DATA_IN_START + p->crypt_len,
|
|
data_in_sram - p->crypt_len);
|
|
p->crypt_len = data_in_sram;
|
|
}
|
|
|
|
static void mv_process_current_q(int first_block)
|
|
{
|
|
struct ablkcipher_request *req = ablkcipher_request_cast(cpg->cur_req);
|
|
struct mv_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
|
|
struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
|
|
struct sec_accel_config op;
|
|
|
|
switch (req_ctx->op) {
|
|
case COP_AES_ECB:
|
|
op.config = CFG_OP_CRYPT_ONLY | CFG_ENCM_AES | CFG_ENC_MODE_ECB;
|
|
break;
|
|
case COP_AES_CBC:
|
|
default:
|
|
op.config = CFG_OP_CRYPT_ONLY | CFG_ENCM_AES | CFG_ENC_MODE_CBC;
|
|
op.enc_iv = ENC_IV_POINT(SRAM_DATA_IV) |
|
|
ENC_IV_BUF_POINT(SRAM_DATA_IV_BUF);
|
|
if (first_block)
|
|
memcpy(cpg->sram + SRAM_DATA_IV, req->info, 16);
|
|
break;
|
|
}
|
|
if (req_ctx->decrypt) {
|
|
op.config |= CFG_DIR_DEC;
|
|
memcpy(cpg->sram + SRAM_DATA_KEY_P, ctx->aes_dec_key,
|
|
AES_KEY_LEN);
|
|
} else {
|
|
op.config |= CFG_DIR_ENC;
|
|
memcpy(cpg->sram + SRAM_DATA_KEY_P, ctx->aes_enc_key,
|
|
AES_KEY_LEN);
|
|
}
|
|
|
|
switch (ctx->key_len) {
|
|
case AES_KEYSIZE_128:
|
|
op.config |= CFG_AES_LEN_128;
|
|
break;
|
|
case AES_KEYSIZE_192:
|
|
op.config |= CFG_AES_LEN_192;
|
|
break;
|
|
case AES_KEYSIZE_256:
|
|
op.config |= CFG_AES_LEN_256;
|
|
break;
|
|
}
|
|
op.enc_p = ENC_P_SRC(SRAM_DATA_IN_START) |
|
|
ENC_P_DST(SRAM_DATA_OUT_START);
|
|
op.enc_key_p = SRAM_DATA_KEY_P;
|
|
|
|
setup_data_in();
|
|
op.enc_len = cpg->p.crypt_len;
|
|
memcpy(cpg->sram + SRAM_CONFIG, &op,
|
|
sizeof(struct sec_accel_config));
|
|
|
|
/* GO */
|
|
writel(SEC_CMD_EN_SEC_ACCL0, cpg->reg + SEC_ACCEL_CMD);
|
|
|
|
/*
|
|
* XXX: add timer if the interrupt does not occur for some mystery
|
|
* reason
|
|
*/
|
|
}
|
|
|
|
static void mv_crypto_algo_completion(void)
|
|
{
|
|
struct ablkcipher_request *req = ablkcipher_request_cast(cpg->cur_req);
|
|
struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
|
|
|
|
sg_miter_stop(&cpg->p.src_sg_it);
|
|
sg_miter_stop(&cpg->p.dst_sg_it);
|
|
|
|
if (req_ctx->op != COP_AES_CBC)
|
|
return ;
|
|
|
|
memcpy(req->info, cpg->sram + SRAM_DATA_IV_BUF, 16);
|
|
}
|
|
|
|
static void mv_process_hash_current(int first_block)
|
|
{
|
|
struct ahash_request *req = ahash_request_cast(cpg->cur_req);
|
|
const struct mv_tfm_hash_ctx *tfm_ctx = crypto_tfm_ctx(req->base.tfm);
|
|
struct mv_req_hash_ctx *req_ctx = ahash_request_ctx(req);
|
|
struct req_progress *p = &cpg->p;
|
|
struct sec_accel_config op = { 0 };
|
|
int is_last;
|
|
|
|
switch (req_ctx->op) {
|
|
case COP_SHA1:
|
|
default:
|
|
op.config = CFG_OP_MAC_ONLY | CFG_MACM_SHA1;
|
|
break;
|
|
case COP_HMAC_SHA1:
|
|
op.config = CFG_OP_MAC_ONLY | CFG_MACM_HMAC_SHA1;
|
|
memcpy(cpg->sram + SRAM_HMAC_IV_IN,
|
|
tfm_ctx->ivs, sizeof(tfm_ctx->ivs));
|
|
break;
|
|
}
|
|
|
|
op.mac_src_p =
|
|
MAC_SRC_DATA_P(SRAM_DATA_IN_START) | MAC_SRC_TOTAL_LEN((u32)
|
|
req_ctx->
|
|
count);
|
|
|
|
setup_data_in();
|
|
|
|
op.mac_digest =
|
|
MAC_DIGEST_P(SRAM_DIGEST_BUF) | MAC_FRAG_LEN(p->crypt_len);
|
|
op.mac_iv =
|
|
MAC_INNER_IV_P(SRAM_HMAC_IV_IN) |
|
|
MAC_OUTER_IV_P(SRAM_HMAC_IV_OUT);
|
|
|
|
is_last = req_ctx->last_chunk
|
|
&& (p->hw_processed_bytes + p->crypt_len >= p->hw_nbytes)
|
|
&& (req_ctx->count <= MAX_HW_HASH_SIZE);
|
|
if (req_ctx->first_hash) {
|
|
if (is_last)
|
|
op.config |= CFG_NOT_FRAG;
|
|
else
|
|
op.config |= CFG_FIRST_FRAG;
|
|
|
|
req_ctx->first_hash = 0;
|
|
} else {
|
|
if (is_last)
|
|
op.config |= CFG_LAST_FRAG;
|
|
else
|
|
op.config |= CFG_MID_FRAG;
|
|
|
|
writel(req_ctx->state[0], cpg->reg + DIGEST_INITIAL_VAL_A);
|
|
writel(req_ctx->state[1], cpg->reg + DIGEST_INITIAL_VAL_B);
|
|
writel(req_ctx->state[2], cpg->reg + DIGEST_INITIAL_VAL_C);
|
|
writel(req_ctx->state[3], cpg->reg + DIGEST_INITIAL_VAL_D);
|
|
writel(req_ctx->state[4], cpg->reg + DIGEST_INITIAL_VAL_E);
|
|
}
|
|
|
|
memcpy(cpg->sram + SRAM_CONFIG, &op, sizeof(struct sec_accel_config));
|
|
|
|
/* GO */
|
|
writel(SEC_CMD_EN_SEC_ACCL0, cpg->reg + SEC_ACCEL_CMD);
|
|
|
|
/*
|
|
* XXX: add timer if the interrupt does not occur for some mystery
|
|
* reason
|
|
*/
|
|
}
|
|
|
|
static inline int mv_hash_import_sha1_ctx(const struct mv_req_hash_ctx *ctx,
|
|
struct shash_desc *desc)
|
|
{
|
|
int i;
|
|
struct sha1_state shash_state;
|
|
|
|
shash_state.count = ctx->count + ctx->count_add;
|
|
for (i = 0; i < 5; i++)
|
|
shash_state.state[i] = ctx->state[i];
|
|
memcpy(shash_state.buffer, ctx->buffer, sizeof(shash_state.buffer));
|
|
return crypto_shash_import(desc, &shash_state);
|
|
}
|
|
|
|
static int mv_hash_final_fallback(struct ahash_request *req)
|
|
{
|
|
const struct mv_tfm_hash_ctx *tfm_ctx = crypto_tfm_ctx(req->base.tfm);
|
|
struct mv_req_hash_ctx *req_ctx = ahash_request_ctx(req);
|
|
struct {
|
|
struct shash_desc shash;
|
|
char ctx[crypto_shash_descsize(tfm_ctx->fallback)];
|
|
} desc;
|
|
int rc;
|
|
|
|
desc.shash.tfm = tfm_ctx->fallback;
|
|
desc.shash.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
|
|
if (unlikely(req_ctx->first_hash)) {
|
|
crypto_shash_init(&desc.shash);
|
|
crypto_shash_update(&desc.shash, req_ctx->buffer,
|
|
req_ctx->extra_bytes);
|
|
} else {
|
|
/* only SHA1 for now....
|
|
*/
|
|
rc = mv_hash_import_sha1_ctx(req_ctx, &desc.shash);
|
|
if (rc)
|
|
goto out;
|
|
}
|
|
rc = crypto_shash_final(&desc.shash, req->result);
|
|
out:
|
|
return rc;
|
|
}
|
|
|
|
static void mv_hash_algo_completion(void)
|
|
{
|
|
struct ahash_request *req = ahash_request_cast(cpg->cur_req);
|
|
struct mv_req_hash_ctx *ctx = ahash_request_ctx(req);
|
|
|
|
if (ctx->extra_bytes)
|
|
copy_src_to_buf(&cpg->p, ctx->buffer, ctx->extra_bytes);
|
|
sg_miter_stop(&cpg->p.src_sg_it);
|
|
|
|
if (likely(ctx->last_chunk)) {
|
|
if (likely(ctx->count <= MAX_HW_HASH_SIZE)) {
|
|
memcpy(req->result, cpg->sram + SRAM_DIGEST_BUF,
|
|
crypto_ahash_digestsize(crypto_ahash_reqtfm
|
|
(req)));
|
|
} else
|
|
mv_hash_final_fallback(req);
|
|
} else {
|
|
ctx->state[0] = readl(cpg->reg + DIGEST_INITIAL_VAL_A);
|
|
ctx->state[1] = readl(cpg->reg + DIGEST_INITIAL_VAL_B);
|
|
ctx->state[2] = readl(cpg->reg + DIGEST_INITIAL_VAL_C);
|
|
ctx->state[3] = readl(cpg->reg + DIGEST_INITIAL_VAL_D);
|
|
ctx->state[4] = readl(cpg->reg + DIGEST_INITIAL_VAL_E);
|
|
}
|
|
}
|
|
|
|
static void dequeue_complete_req(void)
|
|
{
|
|
struct crypto_async_request *req = cpg->cur_req;
|
|
void *buf;
|
|
int ret;
|
|
cpg->p.hw_processed_bytes += cpg->p.crypt_len;
|
|
if (cpg->p.copy_back) {
|
|
int need_copy_len = cpg->p.crypt_len;
|
|
int sram_offset = 0;
|
|
do {
|
|
int dst_copy;
|
|
|
|
if (!cpg->p.sg_dst_left) {
|
|
ret = sg_miter_next(&cpg->p.dst_sg_it);
|
|
BUG_ON(!ret);
|
|
cpg->p.sg_dst_left = cpg->p.dst_sg_it.length;
|
|
cpg->p.dst_start = 0;
|
|
}
|
|
|
|
buf = cpg->p.dst_sg_it.addr;
|
|
buf += cpg->p.dst_start;
|
|
|
|
dst_copy = min(need_copy_len, cpg->p.sg_dst_left);
|
|
|
|
memcpy(buf,
|
|
cpg->sram + SRAM_DATA_OUT_START + sram_offset,
|
|
dst_copy);
|
|
sram_offset += dst_copy;
|
|
cpg->p.sg_dst_left -= dst_copy;
|
|
need_copy_len -= dst_copy;
|
|
cpg->p.dst_start += dst_copy;
|
|
} while (need_copy_len > 0);
|
|
}
|
|
|
|
cpg->p.crypt_len = 0;
|
|
|
|
BUG_ON(cpg->eng_st != ENGINE_W_DEQUEUE);
|
|
if (cpg->p.hw_processed_bytes < cpg->p.hw_nbytes) {
|
|
/* process next scatter list entry */
|
|
cpg->eng_st = ENGINE_BUSY;
|
|
cpg->p.process(0);
|
|
} else {
|
|
cpg->p.complete();
|
|
cpg->eng_st = ENGINE_IDLE;
|
|
local_bh_disable();
|
|
req->complete(req, 0);
|
|
local_bh_enable();
|
|
}
|
|
}
|
|
|
|
static int count_sgs(struct scatterlist *sl, unsigned int total_bytes)
|
|
{
|
|
int i = 0;
|
|
size_t cur_len;
|
|
|
|
while (sl) {
|
|
cur_len = sl[i].length;
|
|
++i;
|
|
if (total_bytes > cur_len)
|
|
total_bytes -= cur_len;
|
|
else
|
|
break;
|
|
}
|
|
|
|
return i;
|
|
}
|
|
|
|
static void mv_start_new_crypt_req(struct ablkcipher_request *req)
|
|
{
|
|
struct req_progress *p = &cpg->p;
|
|
int num_sgs;
|
|
|
|
cpg->cur_req = &req->base;
|
|
memset(p, 0, sizeof(struct req_progress));
|
|
p->hw_nbytes = req->nbytes;
|
|
p->complete = mv_crypto_algo_completion;
|
|
p->process = mv_process_current_q;
|
|
p->copy_back = 1;
|
|
|
|
num_sgs = count_sgs(req->src, req->nbytes);
|
|
sg_miter_start(&p->src_sg_it, req->src, num_sgs, SG_MITER_FROM_SG);
|
|
|
|
num_sgs = count_sgs(req->dst, req->nbytes);
|
|
sg_miter_start(&p->dst_sg_it, req->dst, num_sgs, SG_MITER_TO_SG);
|
|
|
|
mv_process_current_q(1);
|
|
}
|
|
|
|
static void mv_start_new_hash_req(struct ahash_request *req)
|
|
{
|
|
struct req_progress *p = &cpg->p;
|
|
struct mv_req_hash_ctx *ctx = ahash_request_ctx(req);
|
|
int num_sgs, hw_bytes, old_extra_bytes, rc;
|
|
cpg->cur_req = &req->base;
|
|
memset(p, 0, sizeof(struct req_progress));
|
|
hw_bytes = req->nbytes + ctx->extra_bytes;
|
|
old_extra_bytes = ctx->extra_bytes;
|
|
|
|
ctx->extra_bytes = hw_bytes % SHA1_BLOCK_SIZE;
|
|
if (ctx->extra_bytes != 0
|
|
&& (!ctx->last_chunk || ctx->count > MAX_HW_HASH_SIZE))
|
|
hw_bytes -= ctx->extra_bytes;
|
|
else
|
|
ctx->extra_bytes = 0;
|
|
|
|
num_sgs = count_sgs(req->src, req->nbytes);
|
|
sg_miter_start(&p->src_sg_it, req->src, num_sgs, SG_MITER_FROM_SG);
|
|
|
|
if (hw_bytes) {
|
|
p->hw_nbytes = hw_bytes;
|
|
p->complete = mv_hash_algo_completion;
|
|
p->process = mv_process_hash_current;
|
|
|
|
if (unlikely(old_extra_bytes)) {
|
|
memcpy(cpg->sram + SRAM_DATA_IN_START, ctx->buffer,
|
|
old_extra_bytes);
|
|
p->crypt_len = old_extra_bytes;
|
|
}
|
|
|
|
mv_process_hash_current(1);
|
|
} else {
|
|
copy_src_to_buf(p, ctx->buffer + old_extra_bytes,
|
|
ctx->extra_bytes - old_extra_bytes);
|
|
sg_miter_stop(&p->src_sg_it);
|
|
if (ctx->last_chunk)
|
|
rc = mv_hash_final_fallback(req);
|
|
else
|
|
rc = 0;
|
|
cpg->eng_st = ENGINE_IDLE;
|
|
local_bh_disable();
|
|
req->base.complete(&req->base, rc);
|
|
local_bh_enable();
|
|
}
|
|
}
|
|
|
|
static int queue_manag(void *data)
|
|
{
|
|
cpg->eng_st = ENGINE_IDLE;
|
|
do {
|
|
struct crypto_async_request *async_req = NULL;
|
|
struct crypto_async_request *backlog;
|
|
|
|
__set_current_state(TASK_INTERRUPTIBLE);
|
|
|
|
if (cpg->eng_st == ENGINE_W_DEQUEUE)
|
|
dequeue_complete_req();
|
|
|
|
spin_lock_irq(&cpg->lock);
|
|
if (cpg->eng_st == ENGINE_IDLE) {
|
|
backlog = crypto_get_backlog(&cpg->queue);
|
|
async_req = crypto_dequeue_request(&cpg->queue);
|
|
if (async_req) {
|
|
BUG_ON(cpg->eng_st != ENGINE_IDLE);
|
|
cpg->eng_st = ENGINE_BUSY;
|
|
}
|
|
}
|
|
spin_unlock_irq(&cpg->lock);
|
|
|
|
if (backlog) {
|
|
backlog->complete(backlog, -EINPROGRESS);
|
|
backlog = NULL;
|
|
}
|
|
|
|
if (async_req) {
|
|
if (async_req->tfm->__crt_alg->cra_type !=
|
|
&crypto_ahash_type) {
|
|
struct ablkcipher_request *req =
|
|
ablkcipher_request_cast(async_req);
|
|
mv_start_new_crypt_req(req);
|
|
} else {
|
|
struct ahash_request *req =
|
|
ahash_request_cast(async_req);
|
|
mv_start_new_hash_req(req);
|
|
}
|
|
async_req = NULL;
|
|
}
|
|
|
|
schedule();
|
|
|
|
} while (!kthread_should_stop());
|
|
return 0;
|
|
}
|
|
|
|
static int mv_handle_req(struct crypto_async_request *req)
|
|
{
|
|
unsigned long flags;
|
|
int ret;
|
|
|
|
spin_lock_irqsave(&cpg->lock, flags);
|
|
ret = crypto_enqueue_request(&cpg->queue, req);
|
|
spin_unlock_irqrestore(&cpg->lock, flags);
|
|
wake_up_process(cpg->queue_th);
|
|
return ret;
|
|
}
|
|
|
|
static int mv_enc_aes_ecb(struct ablkcipher_request *req)
|
|
{
|
|
struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
|
|
|
|
req_ctx->op = COP_AES_ECB;
|
|
req_ctx->decrypt = 0;
|
|
|
|
return mv_handle_req(&req->base);
|
|
}
|
|
|
|
static int mv_dec_aes_ecb(struct ablkcipher_request *req)
|
|
{
|
|
struct mv_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
|
|
struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
|
|
|
|
req_ctx->op = COP_AES_ECB;
|
|
req_ctx->decrypt = 1;
|
|
|
|
compute_aes_dec_key(ctx);
|
|
return mv_handle_req(&req->base);
|
|
}
|
|
|
|
static int mv_enc_aes_cbc(struct ablkcipher_request *req)
|
|
{
|
|
struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
|
|
|
|
req_ctx->op = COP_AES_CBC;
|
|
req_ctx->decrypt = 0;
|
|
|
|
return mv_handle_req(&req->base);
|
|
}
|
|
|
|
static int mv_dec_aes_cbc(struct ablkcipher_request *req)
|
|
{
|
|
struct mv_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
|
|
struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
|
|
|
|
req_ctx->op = COP_AES_CBC;
|
|
req_ctx->decrypt = 1;
|
|
|
|
compute_aes_dec_key(ctx);
|
|
return mv_handle_req(&req->base);
|
|
}
|
|
|
|
static int mv_cra_init(struct crypto_tfm *tfm)
|
|
{
|
|
tfm->crt_ablkcipher.reqsize = sizeof(struct mv_req_ctx);
|
|
return 0;
|
|
}
|
|
|
|
static void mv_init_hash_req_ctx(struct mv_req_hash_ctx *ctx, int op,
|
|
int is_last, unsigned int req_len,
|
|
int count_add)
|
|
{
|
|
memset(ctx, 0, sizeof(*ctx));
|
|
ctx->op = op;
|
|
ctx->count = req_len;
|
|
ctx->first_hash = 1;
|
|
ctx->last_chunk = is_last;
|
|
ctx->count_add = count_add;
|
|
}
|
|
|
|
static void mv_update_hash_req_ctx(struct mv_req_hash_ctx *ctx, int is_last,
|
|
unsigned req_len)
|
|
{
|
|
ctx->last_chunk = is_last;
|
|
ctx->count += req_len;
|
|
}
|
|
|
|
static int mv_hash_init(struct ahash_request *req)
|
|
{
|
|
const struct mv_tfm_hash_ctx *tfm_ctx = crypto_tfm_ctx(req->base.tfm);
|
|
mv_init_hash_req_ctx(ahash_request_ctx(req), tfm_ctx->op, 0, 0,
|
|
tfm_ctx->count_add);
|
|
return 0;
|
|
}
|
|
|
|
static int mv_hash_update(struct ahash_request *req)
|
|
{
|
|
if (!req->nbytes)
|
|
return 0;
|
|
|
|
mv_update_hash_req_ctx(ahash_request_ctx(req), 0, req->nbytes);
|
|
return mv_handle_req(&req->base);
|
|
}
|
|
|
|
static int mv_hash_final(struct ahash_request *req)
|
|
{
|
|
struct mv_req_hash_ctx *ctx = ahash_request_ctx(req);
|
|
|
|
mv_update_hash_req_ctx(ctx, 1, 0);
|
|
return mv_handle_req(&req->base);
|
|
}
|
|
|
|
static int mv_hash_finup(struct ahash_request *req)
|
|
{
|
|
mv_update_hash_req_ctx(ahash_request_ctx(req), 1, req->nbytes);
|
|
return mv_handle_req(&req->base);
|
|
}
|
|
|
|
static int mv_hash_digest(struct ahash_request *req)
|
|
{
|
|
const struct mv_tfm_hash_ctx *tfm_ctx = crypto_tfm_ctx(req->base.tfm);
|
|
mv_init_hash_req_ctx(ahash_request_ctx(req), tfm_ctx->op, 1,
|
|
req->nbytes, tfm_ctx->count_add);
|
|
return mv_handle_req(&req->base);
|
|
}
|
|
|
|
static void mv_hash_init_ivs(struct mv_tfm_hash_ctx *ctx, const void *istate,
|
|
const void *ostate)
|
|
{
|
|
const struct sha1_state *isha1_state = istate, *osha1_state = ostate;
|
|
int i;
|
|
for (i = 0; i < 5; i++) {
|
|
ctx->ivs[i] = cpu_to_be32(isha1_state->state[i]);
|
|
ctx->ivs[i + 5] = cpu_to_be32(osha1_state->state[i]);
|
|
}
|
|
}
|
|
|
|
static int mv_hash_setkey(struct crypto_ahash *tfm, const u8 * key,
|
|
unsigned int keylen)
|
|
{
|
|
int rc;
|
|
struct mv_tfm_hash_ctx *ctx = crypto_tfm_ctx(&tfm->base);
|
|
int bs, ds, ss;
|
|
|
|
if (!ctx->base_hash)
|
|
return 0;
|
|
|
|
rc = crypto_shash_setkey(ctx->fallback, key, keylen);
|
|
if (rc)
|
|
return rc;
|
|
|
|
/* Can't see a way to extract the ipad/opad from the fallback tfm
|
|
so I'm basically copying code from the hmac module */
|
|
bs = crypto_shash_blocksize(ctx->base_hash);
|
|
ds = crypto_shash_digestsize(ctx->base_hash);
|
|
ss = crypto_shash_statesize(ctx->base_hash);
|
|
|
|
{
|
|
struct {
|
|
struct shash_desc shash;
|
|
char ctx[crypto_shash_descsize(ctx->base_hash)];
|
|
} desc;
|
|
unsigned int i;
|
|
char ipad[ss];
|
|
char opad[ss];
|
|
|
|
desc.shash.tfm = ctx->base_hash;
|
|
desc.shash.flags = crypto_shash_get_flags(ctx->base_hash) &
|
|
CRYPTO_TFM_REQ_MAY_SLEEP;
|
|
|
|
if (keylen > bs) {
|
|
int err;
|
|
|
|
err =
|
|
crypto_shash_digest(&desc.shash, key, keylen, ipad);
|
|
if (err)
|
|
return err;
|
|
|
|
keylen = ds;
|
|
} else
|
|
memcpy(ipad, key, keylen);
|
|
|
|
memset(ipad + keylen, 0, bs - keylen);
|
|
memcpy(opad, ipad, bs);
|
|
|
|
for (i = 0; i < bs; i++) {
|
|
ipad[i] ^= 0x36;
|
|
opad[i] ^= 0x5c;
|
|
}
|
|
|
|
rc = crypto_shash_init(&desc.shash) ? :
|
|
crypto_shash_update(&desc.shash, ipad, bs) ? :
|
|
crypto_shash_export(&desc.shash, ipad) ? :
|
|
crypto_shash_init(&desc.shash) ? :
|
|
crypto_shash_update(&desc.shash, opad, bs) ? :
|
|
crypto_shash_export(&desc.shash, opad);
|
|
|
|
if (rc == 0)
|
|
mv_hash_init_ivs(ctx, ipad, opad);
|
|
|
|
return rc;
|
|
}
|
|
}
|
|
|
|
static int mv_cra_hash_init(struct crypto_tfm *tfm, const char *base_hash_name,
|
|
enum hash_op op, int count_add)
|
|
{
|
|
const char *fallback_driver_name = tfm->__crt_alg->cra_name;
|
|
struct mv_tfm_hash_ctx *ctx = crypto_tfm_ctx(tfm);
|
|
struct crypto_shash *fallback_tfm = NULL;
|
|
struct crypto_shash *base_hash = NULL;
|
|
int err = -ENOMEM;
|
|
|
|
ctx->op = op;
|
|
ctx->count_add = count_add;
|
|
|
|
/* Allocate a fallback and abort if it failed. */
|
|
fallback_tfm = crypto_alloc_shash(fallback_driver_name, 0,
|
|
CRYPTO_ALG_NEED_FALLBACK);
|
|
if (IS_ERR(fallback_tfm)) {
|
|
printk(KERN_WARNING MV_CESA
|
|
"Fallback driver '%s' could not be loaded!\n",
|
|
fallback_driver_name);
|
|
err = PTR_ERR(fallback_tfm);
|
|
goto out;
|
|
}
|
|
ctx->fallback = fallback_tfm;
|
|
|
|
if (base_hash_name) {
|
|
/* Allocate a hash to compute the ipad/opad of hmac. */
|
|
base_hash = crypto_alloc_shash(base_hash_name, 0,
|
|
CRYPTO_ALG_NEED_FALLBACK);
|
|
if (IS_ERR(base_hash)) {
|
|
printk(KERN_WARNING MV_CESA
|
|
"Base driver '%s' could not be loaded!\n",
|
|
base_hash_name);
|
|
err = PTR_ERR(base_hash);
|
|
goto err_bad_base;
|
|
}
|
|
}
|
|
ctx->base_hash = base_hash;
|
|
|
|
crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
|
|
sizeof(struct mv_req_hash_ctx) +
|
|
crypto_shash_descsize(ctx->fallback));
|
|
return 0;
|
|
err_bad_base:
|
|
crypto_free_shash(fallback_tfm);
|
|
out:
|
|
return err;
|
|
}
|
|
|
|
static void mv_cra_hash_exit(struct crypto_tfm *tfm)
|
|
{
|
|
struct mv_tfm_hash_ctx *ctx = crypto_tfm_ctx(tfm);
|
|
|
|
crypto_free_shash(ctx->fallback);
|
|
if (ctx->base_hash)
|
|
crypto_free_shash(ctx->base_hash);
|
|
}
|
|
|
|
static int mv_cra_hash_sha1_init(struct crypto_tfm *tfm)
|
|
{
|
|
return mv_cra_hash_init(tfm, NULL, COP_SHA1, 0);
|
|
}
|
|
|
|
static int mv_cra_hash_hmac_sha1_init(struct crypto_tfm *tfm)
|
|
{
|
|
return mv_cra_hash_init(tfm, "sha1", COP_HMAC_SHA1, SHA1_BLOCK_SIZE);
|
|
}
|
|
|
|
irqreturn_t crypto_int(int irq, void *priv)
|
|
{
|
|
u32 val;
|
|
|
|
val = readl(cpg->reg + SEC_ACCEL_INT_STATUS);
|
|
if (!(val & SEC_INT_ACCEL0_DONE))
|
|
return IRQ_NONE;
|
|
|
|
val &= ~SEC_INT_ACCEL0_DONE;
|
|
writel(val, cpg->reg + FPGA_INT_STATUS);
|
|
writel(val, cpg->reg + SEC_ACCEL_INT_STATUS);
|
|
BUG_ON(cpg->eng_st != ENGINE_BUSY);
|
|
cpg->eng_st = ENGINE_W_DEQUEUE;
|
|
wake_up_process(cpg->queue_th);
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
struct crypto_alg mv_aes_alg_ecb = {
|
|
.cra_name = "ecb(aes)",
|
|
.cra_driver_name = "mv-ecb-aes",
|
|
.cra_priority = 300,
|
|
.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
|
|
.cra_blocksize = 16,
|
|
.cra_ctxsize = sizeof(struct mv_ctx),
|
|
.cra_alignmask = 0,
|
|
.cra_type = &crypto_ablkcipher_type,
|
|
.cra_module = THIS_MODULE,
|
|
.cra_init = mv_cra_init,
|
|
.cra_u = {
|
|
.ablkcipher = {
|
|
.min_keysize = AES_MIN_KEY_SIZE,
|
|
.max_keysize = AES_MAX_KEY_SIZE,
|
|
.setkey = mv_setkey_aes,
|
|
.encrypt = mv_enc_aes_ecb,
|
|
.decrypt = mv_dec_aes_ecb,
|
|
},
|
|
},
|
|
};
|
|
|
|
struct crypto_alg mv_aes_alg_cbc = {
|
|
.cra_name = "cbc(aes)",
|
|
.cra_driver_name = "mv-cbc-aes",
|
|
.cra_priority = 300,
|
|
.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
|
|
.cra_blocksize = AES_BLOCK_SIZE,
|
|
.cra_ctxsize = sizeof(struct mv_ctx),
|
|
.cra_alignmask = 0,
|
|
.cra_type = &crypto_ablkcipher_type,
|
|
.cra_module = THIS_MODULE,
|
|
.cra_init = mv_cra_init,
|
|
.cra_u = {
|
|
.ablkcipher = {
|
|
.ivsize = AES_BLOCK_SIZE,
|
|
.min_keysize = AES_MIN_KEY_SIZE,
|
|
.max_keysize = AES_MAX_KEY_SIZE,
|
|
.setkey = mv_setkey_aes,
|
|
.encrypt = mv_enc_aes_cbc,
|
|
.decrypt = mv_dec_aes_cbc,
|
|
},
|
|
},
|
|
};
|
|
|
|
struct ahash_alg mv_sha1_alg = {
|
|
.init = mv_hash_init,
|
|
.update = mv_hash_update,
|
|
.final = mv_hash_final,
|
|
.finup = mv_hash_finup,
|
|
.digest = mv_hash_digest,
|
|
.halg = {
|
|
.digestsize = SHA1_DIGEST_SIZE,
|
|
.base = {
|
|
.cra_name = "sha1",
|
|
.cra_driver_name = "mv-sha1",
|
|
.cra_priority = 300,
|
|
.cra_flags =
|
|
CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK,
|
|
.cra_blocksize = SHA1_BLOCK_SIZE,
|
|
.cra_ctxsize = sizeof(struct mv_tfm_hash_ctx),
|
|
.cra_init = mv_cra_hash_sha1_init,
|
|
.cra_exit = mv_cra_hash_exit,
|
|
.cra_module = THIS_MODULE,
|
|
}
|
|
}
|
|
};
|
|
|
|
struct ahash_alg mv_hmac_sha1_alg = {
|
|
.init = mv_hash_init,
|
|
.update = mv_hash_update,
|
|
.final = mv_hash_final,
|
|
.finup = mv_hash_finup,
|
|
.digest = mv_hash_digest,
|
|
.setkey = mv_hash_setkey,
|
|
.halg = {
|
|
.digestsize = SHA1_DIGEST_SIZE,
|
|
.base = {
|
|
.cra_name = "hmac(sha1)",
|
|
.cra_driver_name = "mv-hmac-sha1",
|
|
.cra_priority = 300,
|
|
.cra_flags =
|
|
CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK,
|
|
.cra_blocksize = SHA1_BLOCK_SIZE,
|
|
.cra_ctxsize = sizeof(struct mv_tfm_hash_ctx),
|
|
.cra_init = mv_cra_hash_hmac_sha1_init,
|
|
.cra_exit = mv_cra_hash_exit,
|
|
.cra_module = THIS_MODULE,
|
|
}
|
|
}
|
|
};
|
|
|
|
static int mv_probe(struct platform_device *pdev)
|
|
{
|
|
struct crypto_priv *cp;
|
|
struct resource *res;
|
|
int irq;
|
|
int ret;
|
|
|
|
if (cpg) {
|
|
printk(KERN_ERR MV_CESA "Second crypto dev?\n");
|
|
return -EEXIST;
|
|
}
|
|
|
|
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "regs");
|
|
if (!res)
|
|
return -ENXIO;
|
|
|
|
cp = kzalloc(sizeof(*cp), GFP_KERNEL);
|
|
if (!cp)
|
|
return -ENOMEM;
|
|
|
|
spin_lock_init(&cp->lock);
|
|
crypto_init_queue(&cp->queue, 50);
|
|
cp->reg = ioremap(res->start, resource_size(res));
|
|
if (!cp->reg) {
|
|
ret = -ENOMEM;
|
|
goto err;
|
|
}
|
|
|
|
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "sram");
|
|
if (!res) {
|
|
ret = -ENXIO;
|
|
goto err_unmap_reg;
|
|
}
|
|
cp->sram_size = resource_size(res);
|
|
cp->max_req_size = cp->sram_size - SRAM_CFG_SPACE;
|
|
cp->sram = ioremap(res->start, cp->sram_size);
|
|
if (!cp->sram) {
|
|
ret = -ENOMEM;
|
|
goto err_unmap_reg;
|
|
}
|
|
|
|
irq = platform_get_irq(pdev, 0);
|
|
if (irq < 0 || irq == NO_IRQ) {
|
|
ret = irq;
|
|
goto err_unmap_sram;
|
|
}
|
|
cp->irq = irq;
|
|
|
|
platform_set_drvdata(pdev, cp);
|
|
cpg = cp;
|
|
|
|
cp->queue_th = kthread_run(queue_manag, cp, "mv_crypto");
|
|
if (IS_ERR(cp->queue_th)) {
|
|
ret = PTR_ERR(cp->queue_th);
|
|
goto err_unmap_sram;
|
|
}
|
|
|
|
ret = request_irq(irq, crypto_int, IRQF_DISABLED, dev_name(&pdev->dev),
|
|
cp);
|
|
if (ret)
|
|
goto err_thread;
|
|
|
|
writel(SEC_INT_ACCEL0_DONE, cpg->reg + SEC_ACCEL_INT_MASK);
|
|
writel(SEC_CFG_STOP_DIG_ERR, cpg->reg + SEC_ACCEL_CFG);
|
|
writel(SRAM_CONFIG, cpg->reg + SEC_ACCEL_DESC_P0);
|
|
|
|
ret = crypto_register_alg(&mv_aes_alg_ecb);
|
|
if (ret) {
|
|
printk(KERN_WARNING MV_CESA
|
|
"Could not register aes-ecb driver\n");
|
|
goto err_irq;
|
|
}
|
|
|
|
ret = crypto_register_alg(&mv_aes_alg_cbc);
|
|
if (ret) {
|
|
printk(KERN_WARNING MV_CESA
|
|
"Could not register aes-cbc driver\n");
|
|
goto err_unreg_ecb;
|
|
}
|
|
|
|
ret = crypto_register_ahash(&mv_sha1_alg);
|
|
if (ret == 0)
|
|
cpg->has_sha1 = 1;
|
|
else
|
|
printk(KERN_WARNING MV_CESA "Could not register sha1 driver\n");
|
|
|
|
ret = crypto_register_ahash(&mv_hmac_sha1_alg);
|
|
if (ret == 0) {
|
|
cpg->has_hmac_sha1 = 1;
|
|
} else {
|
|
printk(KERN_WARNING MV_CESA
|
|
"Could not register hmac-sha1 driver\n");
|
|
}
|
|
|
|
return 0;
|
|
err_unreg_ecb:
|
|
crypto_unregister_alg(&mv_aes_alg_ecb);
|
|
err_irq:
|
|
free_irq(irq, cp);
|
|
err_thread:
|
|
kthread_stop(cp->queue_th);
|
|
err_unmap_sram:
|
|
iounmap(cp->sram);
|
|
err_unmap_reg:
|
|
iounmap(cp->reg);
|
|
err:
|
|
kfree(cp);
|
|
cpg = NULL;
|
|
platform_set_drvdata(pdev, NULL);
|
|
return ret;
|
|
}
|
|
|
|
static int mv_remove(struct platform_device *pdev)
|
|
{
|
|
struct crypto_priv *cp = platform_get_drvdata(pdev);
|
|
|
|
crypto_unregister_alg(&mv_aes_alg_ecb);
|
|
crypto_unregister_alg(&mv_aes_alg_cbc);
|
|
if (cp->has_sha1)
|
|
crypto_unregister_ahash(&mv_sha1_alg);
|
|
if (cp->has_hmac_sha1)
|
|
crypto_unregister_ahash(&mv_hmac_sha1_alg);
|
|
kthread_stop(cp->queue_th);
|
|
free_irq(cp->irq, cp);
|
|
memset(cp->sram, 0, cp->sram_size);
|
|
iounmap(cp->sram);
|
|
iounmap(cp->reg);
|
|
kfree(cp);
|
|
cpg = NULL;
|
|
return 0;
|
|
}
|
|
|
|
static struct platform_driver marvell_crypto = {
|
|
.probe = mv_probe,
|
|
.remove = mv_remove,
|
|
.driver = {
|
|
.owner = THIS_MODULE,
|
|
.name = "mv_crypto",
|
|
},
|
|
};
|
|
MODULE_ALIAS("platform:mv_crypto");
|
|
|
|
static int __init mv_crypto_init(void)
|
|
{
|
|
return platform_driver_register(&marvell_crypto);
|
|
}
|
|
module_init(mv_crypto_init);
|
|
|
|
static void __exit mv_crypto_exit(void)
|
|
{
|
|
platform_driver_unregister(&marvell_crypto);
|
|
}
|
|
module_exit(mv_crypto_exit);
|
|
|
|
MODULE_AUTHOR("Sebastian Andrzej Siewior <sebastian@breakpoint.cc>");
|
|
MODULE_DESCRIPTION("Support for Marvell's cryptographic engine");
|
|
MODULE_LICENSE("GPL");
|