linux-sg2042/drivers/atm/lanai.c

2604 lines
80 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/* lanai.c -- Copyright 1999-2003 by Mitchell Blank Jr <mitch@sfgoth.com>
*
* This driver supports ATM cards based on the Efficient "Lanai"
* chipset such as the Speedstream 3010 and the ENI-25p. The
* Speedstream 3060 is currently not supported since we don't
* have the code to drive the on-board Alcatel DSL chipset (yet).
*
* Thanks to Efficient for supporting this project with hardware,
* documentation, and by answering my questions.
*
* Things not working yet:
*
* o We don't support the Speedstream 3060 yet - this card has
* an on-board DSL modem chip by Alcatel and the driver will
* need some extra code added to handle it
*
* o Note that due to limitations of the Lanai only one VCC can be
* in CBR at once
*
* o We don't currently parse the EEPROM at all. The code is all
* there as per the spec, but it doesn't actually work. I think
* there may be some issues with the docs. Anyway, do NOT
* enable it yet - bugs in that code may actually damage your
* hardware! Because of this you should hardware an ESI before
* trying to use this in a LANE or MPOA environment.
*
* o AAL0 is stubbed in but the actual rx/tx path isn't written yet:
* vcc_tx_aal0() needs to send or queue a SKB
* vcc_tx_unqueue_aal0() needs to attempt to send queued SKBs
* vcc_rx_aal0() needs to handle AAL0 interrupts
* This isn't too much work - I just wanted to get other things
* done first.
*
* o lanai_change_qos() isn't written yet
*
* o There aren't any ioctl's yet -- I'd like to eventually support
* setting loopback and LED modes that way.
*
* o If the segmentation engine or DMA gets shut down we should restart
* card as per section 17.0i. (see lanai_reset)
*
* o setsockopt(SO_CIRANGE) isn't done (although despite what the
* API says it isn't exactly commonly implemented)
*/
/* Version history:
* v.1.00 -- 26-JUL-2003 -- PCI/DMA updates
* v.0.02 -- 11-JAN-2000 -- Endian fixes
* v.0.01 -- 30-NOV-1999 -- Initial release
*/
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/mm.h>
#include <linux/atmdev.h>
#include <asm/io.h>
#include <asm/byteorder.h>
#include <linux/spinlock.h>
#include <linux/pci.h>
#include <linux/dma-mapping.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
/* -------------------- TUNABLE PARAMATERS: */
/*
* Maximum number of VCIs per card. Setting it lower could theoretically
* save some memory, but since we allocate our vcc list with get_free_pages,
* it's not really likely for most architectures
*/
#define NUM_VCI (1024)
/*
* Enable extra debugging
*/
#define DEBUG
/*
* Debug _all_ register operations with card, except the memory test.
* Also disables the timed poll to prevent extra chattiness. This
* isn't for normal use
*/
#undef DEBUG_RW
/*
* The programming guide specifies a full test of the on-board SRAM
* at initialization time. Undefine to remove this
*/
#define FULL_MEMORY_TEST
/*
* This is the number of (4 byte) service entries that we will
* try to allocate at startup. Note that we will end up with
* one PAGE_SIZE's worth regardless of what this is set to
*/
#define SERVICE_ENTRIES (1024)
/* TODO: make above a module load-time option */
/*
* We normally read the onboard EEPROM in order to discover our MAC
* address. Undefine to _not_ do this
*/
/* #define READ_EEPROM */ /* ***DONT ENABLE YET*** */
/* TODO: make above a module load-time option (also) */
/*
* Depth of TX fifo (in 128 byte units; range 2-31)
* Smaller numbers are better for network latency
* Larger numbers are better for PCI latency
* I'm really sure where the best tradeoff is, but the BSD driver uses
* 7 and it seems to work ok.
*/
#define TX_FIFO_DEPTH (7)
/* TODO: make above a module load-time option */
/*
* How often (in jiffies) we will try to unstick stuck connections -
* shouldn't need to happen much
*/
#define LANAI_POLL_PERIOD (10*HZ)
/* TODO: make above a module load-time option */
/*
* When allocating an AAL5 receiving buffer, try to make it at least
* large enough to hold this many max_sdu sized PDUs
*/
#define AAL5_RX_MULTIPLIER (3)
/* TODO: make above a module load-time option */
/*
* Same for transmitting buffer
*/
#define AAL5_TX_MULTIPLIER (3)
/* TODO: make above a module load-time option */
/*
* When allocating an AAL0 transmiting buffer, how many cells should fit.
* Remember we'll end up with a PAGE_SIZE of them anyway, so this isn't
* really critical
*/
#define AAL0_TX_MULTIPLIER (40)
/* TODO: make above a module load-time option */
/*
* How large should we make the AAL0 receiving buffer. Remember that this
* is shared between all AAL0 VC's
*/
#define AAL0_RX_BUFFER_SIZE (PAGE_SIZE)
/* TODO: make above a module load-time option */
/*
* Should we use Lanai's "powerdown" feature when no vcc's are bound?
*/
/* #define USE_POWERDOWN */
/* TODO: make above a module load-time option (also) */
/* -------------------- DEBUGGING AIDS: */
#define DEV_LABEL "lanai"
#ifdef DEBUG
#define DPRINTK(format, args...) \
printk(KERN_DEBUG DEV_LABEL ": " format, ##args)
#define APRINTK(truth, format, args...) \
do { \
if (unlikely(!(truth))) \
printk(KERN_ERR DEV_LABEL ": " format, ##args); \
} while (0)
#else /* !DEBUG */
#define DPRINTK(format, args...)
#define APRINTK(truth, format, args...)
#endif /* DEBUG */
#ifdef DEBUG_RW
#define RWDEBUG(format, args...) \
printk(KERN_DEBUG DEV_LABEL ": " format, ##args)
#else /* !DEBUG_RW */
#define RWDEBUG(format, args...)
#endif
/* -------------------- DATA DEFINITIONS: */
#define LANAI_MAPPING_SIZE (0x40000)
#define LANAI_EEPROM_SIZE (128)
typedef int vci_t;
typedef void __iomem *bus_addr_t;
/* DMA buffer in host memory for TX, RX, or service list. */
struct lanai_buffer {
u32 *start; /* From get_free_pages */
u32 *end; /* One past last byte */
u32 *ptr; /* Pointer to current host location */
dma_addr_t dmaaddr;
};
struct lanai_vcc_stats {
unsigned rx_nomem;
union {
struct {
unsigned rx_badlen;
unsigned service_trash;
unsigned service_stream;
unsigned service_rxcrc;
} aal5;
struct {
} aal0;
} x;
};
struct lanai_dev; /* Forward declaration */
/*
* This is the card-specific per-vcc data. Note that unlike some other
* drivers there is NOT a 1-to-1 correspondance between these and
* atm_vcc's - each one of these represents an actual 2-way vcc, but
* an atm_vcc can be 1-way and share with a 1-way vcc in the other
* direction. To make it weirder, there can even be 0-way vccs
* bound to us, waiting to do a change_qos
*/
struct lanai_vcc {
bus_addr_t vbase; /* Base of VCC's registers */
struct lanai_vcc_stats stats;
int nref; /* # of atm_vcc's who reference us */
vci_t vci;
struct {
struct lanai_buffer buf;
struct atm_vcc *atmvcc; /* atm_vcc who is receiver */
} rx;
struct {
struct lanai_buffer buf;
struct atm_vcc *atmvcc; /* atm_vcc who is transmitter */
int endptr; /* last endptr from service entry */
struct sk_buff_head backlog;
void (*unqueue)(struct lanai_dev *, struct lanai_vcc *, int);
} tx;
};
enum lanai_type {
lanai2 = PCI_DEVICE_ID_EF_ATM_LANAI2,
lanaihb = PCI_DEVICE_ID_EF_ATM_LANAIHB
};
struct lanai_dev_stats {
unsigned ovfl_trash; /* # of cells dropped - buffer overflow */
unsigned vci_trash; /* # of cells dropped - closed vci */
unsigned hec_err; /* # of cells dropped - bad HEC */
unsigned atm_ovfl; /* # of cells dropped - rx fifo overflow */
unsigned pcierr_parity_detect;
unsigned pcierr_serr_set;
unsigned pcierr_master_abort;
unsigned pcierr_m_target_abort;
unsigned pcierr_s_target_abort;
unsigned pcierr_master_parity;
unsigned service_notx;
unsigned service_norx;
unsigned service_rxnotaal5;
unsigned dma_reenable;
unsigned card_reset;
};
struct lanai_dev {
bus_addr_t base;
struct lanai_dev_stats stats;
struct lanai_buffer service;
struct lanai_vcc **vccs;
#ifdef USE_POWERDOWN
int nbound; /* number of bound vccs */
#endif
enum lanai_type type;
vci_t num_vci; /* Currently just NUM_VCI */
u8 eeprom[LANAI_EEPROM_SIZE];
u32 serialno, magicno;
struct pci_dev *pci;
DECLARE_BITMAP(backlog_vccs, NUM_VCI); /* VCCs with tx backlog */
DECLARE_BITMAP(transmit_ready, NUM_VCI); /* VCCs with transmit space */
struct timer_list timer;
int naal0;
struct lanai_buffer aal0buf; /* AAL0 RX buffers */
u32 conf1, conf2; /* CONFIG[12] registers */
u32 status; /* STATUS register */
spinlock_t endtxlock;
spinlock_t servicelock;
struct atm_vcc *cbrvcc;
int number;
int board_rev;
/* TODO - look at race conditions with maintence of conf1/conf2 */
/* TODO - transmit locking: should we use _irq not _irqsave? */
/* TODO - organize above in some rational fashion (see <asm/cache.h>) */
};
/*
* Each device has two bitmaps for each VCC (baclog_vccs and transmit_ready)
* This function iterates one of these, calling a given function for each
* vci with their bit set
*/
static void vci_bitfield_iterate(struct lanai_dev *lanai,
const unsigned long *lp,
void (*func)(struct lanai_dev *,vci_t vci))
{
vci_t vci;
for_each_set_bit(vci, lp, NUM_VCI)
func(lanai, vci);
}
/* -------------------- BUFFER UTILITIES: */
/*
* Lanai needs DMA buffers aligned to 256 bytes of at least 1024 bytes -
* usually any page allocation will do. Just to be safe in case
* PAGE_SIZE is insanely tiny, though...
*/
#define LANAI_PAGE_SIZE ((PAGE_SIZE >= 1024) ? PAGE_SIZE : 1024)
/*
* Allocate a buffer in host RAM for service list, RX, or TX
* Returns buf->start==NULL if no memory
* Note that the size will be rounded up 2^n bytes, and
* if we can't allocate that we'll settle for something smaller
* until minbytes
*/
static void lanai_buf_allocate(struct lanai_buffer *buf,
size_t bytes, size_t minbytes, struct pci_dev *pci)
{
int size;
if (bytes > (128 * 1024)) /* max lanai buffer size */
bytes = 128 * 1024;
for (size = LANAI_PAGE_SIZE; size < bytes; size *= 2)
;
if (minbytes < LANAI_PAGE_SIZE)
minbytes = LANAI_PAGE_SIZE;
do {
/*
* Technically we could use non-consistent mappings for
* everything, but the way the lanai uses DMA memory would
* make that a terrific pain. This is much simpler.
*/
buf->start = dma_alloc_coherent(&pci->dev,
size, &buf->dmaaddr, GFP_KERNEL);
if (buf->start != NULL) { /* Success */
/* Lanai requires 256-byte alignment of DMA bufs */
APRINTK((buf->dmaaddr & ~0xFFFFFF00) == 0,
"bad dmaaddr: 0x%lx\n",
(unsigned long) buf->dmaaddr);
buf->ptr = buf->start;
buf->end = (u32 *)
(&((unsigned char *) buf->start)[size]);
memset(buf->start, 0, size);
break;
}
size /= 2;
} while (size >= minbytes);
}
/* size of buffer in bytes */
static inline size_t lanai_buf_size(const struct lanai_buffer *buf)
{
return ((unsigned long) buf->end) - ((unsigned long) buf->start);
}
static void lanai_buf_deallocate(struct lanai_buffer *buf,
struct pci_dev *pci)
{
if (buf->start != NULL) {
dma_free_coherent(&pci->dev, lanai_buf_size(buf),
buf->start, buf->dmaaddr);
buf->start = buf->end = buf->ptr = NULL;
}
}
/* size of buffer as "card order" (0=1k .. 7=128k) */
static int lanai_buf_size_cardorder(const struct lanai_buffer *buf)
{
int order = get_order(lanai_buf_size(buf)) + (PAGE_SHIFT - 10);
/* This can only happen if PAGE_SIZE is gigantic, but just in case */
if (order > 7)
order = 7;
return order;
}
/* -------------------- PORT I/O UTILITIES: */
/* Registers (and their bit-fields) */
enum lanai_register {
Reset_Reg = 0x00, /* Reset; read for chip type; bits: */
#define RESET_GET_BOARD_REV(x) (((x)>> 0)&0x03) /* Board revision */
#define RESET_GET_BOARD_ID(x) (((x)>> 2)&0x03) /* Board ID */
#define BOARD_ID_LANAI256 (0) /* 25.6M adapter card */
Endian_Reg = 0x04, /* Endian setting */
IntStatus_Reg = 0x08, /* Interrupt status */
IntStatusMasked_Reg = 0x0C, /* Interrupt status (masked) */
IntAck_Reg = 0x10, /* Interrupt acknowledge */
IntAckMasked_Reg = 0x14, /* Interrupt acknowledge (masked) */
IntStatusSet_Reg = 0x18, /* Get status + enable/disable */
IntStatusSetMasked_Reg = 0x1C, /* Get status + en/di (masked) */
IntControlEna_Reg = 0x20, /* Interrupt control enable */
IntControlDis_Reg = 0x24, /* Interrupt control disable */
Status_Reg = 0x28, /* Status */
#define STATUS_PROMDATA (0x00000001) /* PROM_DATA pin */
#define STATUS_WAITING (0x00000002) /* Interrupt being delayed */
#define STATUS_SOOL (0x00000004) /* SOOL alarm */
#define STATUS_LOCD (0x00000008) /* LOCD alarm */
#define STATUS_LED (0x00000010) /* LED (HAPPI) output */
#define STATUS_GPIN (0x00000020) /* GPIN pin */
#define STATUS_BUTTBUSY (0x00000040) /* Butt register is pending */
Config1_Reg = 0x2C, /* Config word 1; bits: */
#define CONFIG1_PROMDATA (0x00000001) /* PROM_DATA pin */
#define CONFIG1_PROMCLK (0x00000002) /* PROM_CLK pin */
#define CONFIG1_SET_READMODE(x) ((x)*0x004) /* PCI BM reads; values: */
#define READMODE_PLAIN (0) /* Plain memory read */
#define READMODE_LINE (2) /* Memory read line */
#define READMODE_MULTIPLE (3) /* Memory read multiple */
#define CONFIG1_DMA_ENABLE (0x00000010) /* Turn on DMA */
#define CONFIG1_POWERDOWN (0x00000020) /* Turn off clocks */
#define CONFIG1_SET_LOOPMODE(x) ((x)*0x080) /* Clock&loop mode; values: */
#define LOOPMODE_NORMAL (0) /* Normal - no loop */
#define LOOPMODE_TIME (1)
#define LOOPMODE_DIAG (2)
#define LOOPMODE_LINE (3)
#define CONFIG1_MASK_LOOPMODE (0x00000180)
#define CONFIG1_SET_LEDMODE(x) ((x)*0x0200) /* Mode of LED; values: */
#define LEDMODE_NOT_SOOL (0) /* !SOOL */
#define LEDMODE_OFF (1) /* 0 */
#define LEDMODE_ON (2) /* 1 */
#define LEDMODE_NOT_LOCD (3) /* !LOCD */
#define LEDMORE_GPIN (4) /* GPIN */
#define LEDMODE_NOT_GPIN (7) /* !GPIN */
#define CONFIG1_MASK_LEDMODE (0x00000E00)
#define CONFIG1_GPOUT1 (0x00001000) /* Toggle for reset */
#define CONFIG1_GPOUT2 (0x00002000) /* Loopback PHY */
#define CONFIG1_GPOUT3 (0x00004000) /* Loopback lanai */
Config2_Reg = 0x30, /* Config word 2; bits: */
#define CONFIG2_HOWMANY (0x00000001) /* >512 VCIs? */
#define CONFIG2_PTI7_MODE (0x00000002) /* Make PTI=7 RM, not OAM */
#define CONFIG2_VPI_CHK_DIS (0x00000004) /* Ignore RX VPI value */
#define CONFIG2_HEC_DROP (0x00000008) /* Drop cells w/ HEC errors */
#define CONFIG2_VCI0_NORMAL (0x00000010) /* Treat VCI=0 normally */
#define CONFIG2_CBR_ENABLE (0x00000020) /* Deal with CBR traffic */
#define CONFIG2_TRASH_ALL (0x00000040) /* Trashing incoming cells */
#define CONFIG2_TX_DISABLE (0x00000080) /* Trashing outgoing cells */
#define CONFIG2_SET_TRASH (0x00000100) /* Turn trashing on */
Statistics_Reg = 0x34, /* Statistics; bits: */
#define STATS_GET_FIFO_OVFL(x) (((x)>> 0)&0xFF) /* FIFO overflowed */
#define STATS_GET_HEC_ERR(x) (((x)>> 8)&0xFF) /* HEC was bad */
#define STATS_GET_BAD_VCI(x) (((x)>>16)&0xFF) /* VCI not open */
#define STATS_GET_BUF_OVFL(x) (((x)>>24)&0xFF) /* VCC buffer full */
ServiceStuff_Reg = 0x38, /* Service stuff; bits: */
#define SSTUFF_SET_SIZE(x) ((x)*0x20000000) /* size of service buffer */
#define SSTUFF_SET_ADDR(x) ((x)>>8) /* set address of buffer */
ServWrite_Reg = 0x3C, /* ServWrite Pointer */
ServRead_Reg = 0x40, /* ServRead Pointer */
TxDepth_Reg = 0x44, /* FIFO Transmit Depth */
Butt_Reg = 0x48, /* Butt register */
CBR_ICG_Reg = 0x50,
CBR_PTR_Reg = 0x54,
PingCount_Reg = 0x58, /* Ping count */
DMA_Addr_Reg = 0x5C /* DMA address */
};
static inline bus_addr_t reg_addr(const struct lanai_dev *lanai,
enum lanai_register reg)
{
return lanai->base + reg;
}
static inline u32 reg_read(const struct lanai_dev *lanai,
enum lanai_register reg)
{
u32 t;
t = readl(reg_addr(lanai, reg));
RWDEBUG("R [0x%08X] 0x%02X = 0x%08X\n", (unsigned int) lanai->base,
(int) reg, t);
return t;
}
static inline void reg_write(const struct lanai_dev *lanai, u32 val,
enum lanai_register reg)
{
RWDEBUG("W [0x%08X] 0x%02X < 0x%08X\n", (unsigned int) lanai->base,
(int) reg, val);
writel(val, reg_addr(lanai, reg));
}
static inline void conf1_write(const struct lanai_dev *lanai)
{
reg_write(lanai, lanai->conf1, Config1_Reg);
}
static inline void conf2_write(const struct lanai_dev *lanai)
{
reg_write(lanai, lanai->conf2, Config2_Reg);
}
/* Same as conf2_write(), but defers I/O if we're powered down */
static inline void conf2_write_if_powerup(const struct lanai_dev *lanai)
{
#ifdef USE_POWERDOWN
if (unlikely((lanai->conf1 & CONFIG1_POWERDOWN) != 0))
return;
#endif /* USE_POWERDOWN */
conf2_write(lanai);
}
static inline void reset_board(const struct lanai_dev *lanai)
{
DPRINTK("about to reset board\n");
reg_write(lanai, 0, Reset_Reg);
/*
* If we don't delay a little while here then we can end up
* leaving the card in a VERY weird state and lock up the
* PCI bus. This isn't documented anywhere but I've convinced
* myself after a lot of painful experimentation
*/
udelay(5);
}
/* -------------------- CARD SRAM UTILITIES: */
/* The SRAM is mapped into normal PCI memory space - the only catch is
* that it is only 16-bits wide but must be accessed as 32-bit. The
* 16 high bits will be zero. We don't hide this, since they get
* programmed mostly like discrete registers anyway
*/
#define SRAM_START (0x20000)
#define SRAM_BYTES (0x20000) /* Again, half don't really exist */
static inline bus_addr_t sram_addr(const struct lanai_dev *lanai, int offset)
{
return lanai->base + SRAM_START + offset;
}
static inline u32 sram_read(const struct lanai_dev *lanai, int offset)
{
return readl(sram_addr(lanai, offset));
}
static inline void sram_write(const struct lanai_dev *lanai,
u32 val, int offset)
{
writel(val, sram_addr(lanai, offset));
}
static int sram_test_word(const struct lanai_dev *lanai, int offset,
u32 pattern)
{
u32 readback;
sram_write(lanai, pattern, offset);
readback = sram_read(lanai, offset);
if (likely(readback == pattern))
return 0;
printk(KERN_ERR DEV_LABEL
"(itf %d): SRAM word at %d bad: wrote 0x%X, read 0x%X\n",
lanai->number, offset,
(unsigned int) pattern, (unsigned int) readback);
return -EIO;
}
static int sram_test_pass(const struct lanai_dev *lanai, u32 pattern)
{
int offset, result = 0;
for (offset = 0; offset < SRAM_BYTES && result == 0; offset += 4)
result = sram_test_word(lanai, offset, pattern);
return result;
}
static int sram_test_and_clear(const struct lanai_dev *lanai)
{
#ifdef FULL_MEMORY_TEST
int result;
DPRINTK("testing SRAM\n");
if ((result = sram_test_pass(lanai, 0x5555)) != 0)
return result;
if ((result = sram_test_pass(lanai, 0xAAAA)) != 0)
return result;
#endif
DPRINTK("clearing SRAM\n");
return sram_test_pass(lanai, 0x0000);
}
/* -------------------- CARD-BASED VCC TABLE UTILITIES: */
/* vcc table */
enum lanai_vcc_offset {
vcc_rxaddr1 = 0x00, /* Location1, plus bits: */
#define RXADDR1_SET_SIZE(x) ((x)*0x0000100) /* size of RX buffer */
#define RXADDR1_SET_RMMODE(x) ((x)*0x00800) /* RM cell action; values: */
#define RMMODE_TRASH (0) /* discard */
#define RMMODE_PRESERVE (1) /* input as AAL0 */
#define RMMODE_PIPE (2) /* pipe to coscheduler */
#define RMMODE_PIPEALL (3) /* pipe non-RM too */
#define RXADDR1_OAM_PRESERVE (0x00002000) /* Input OAM cells as AAL0 */
#define RXADDR1_SET_MODE(x) ((x)*0x0004000) /* Reassembly mode */
#define RXMODE_TRASH (0) /* discard */
#define RXMODE_AAL0 (1) /* non-AAL5 mode */
#define RXMODE_AAL5 (2) /* AAL5, intr. each PDU */
#define RXMODE_AAL5_STREAM (3) /* AAL5 w/o per-PDU intr */
vcc_rxaddr2 = 0x04, /* Location2 */
vcc_rxcrc1 = 0x08, /* RX CRC claculation space */
vcc_rxcrc2 = 0x0C,
vcc_rxwriteptr = 0x10, /* RX writeptr, plus bits: */
#define RXWRITEPTR_LASTEFCI (0x00002000) /* Last PDU had EFCI bit */
#define RXWRITEPTR_DROPPING (0x00004000) /* Had error, dropping */
#define RXWRITEPTR_TRASHING (0x00008000) /* Trashing */
vcc_rxbufstart = 0x14, /* RX bufstart, plus bits: */
#define RXBUFSTART_CLP (0x00004000)
#define RXBUFSTART_CI (0x00008000)
vcc_rxreadptr = 0x18, /* RX readptr */
vcc_txicg = 0x1C, /* TX ICG */
vcc_txaddr1 = 0x20, /* Location1, plus bits: */
#define TXADDR1_SET_SIZE(x) ((x)*0x0000100) /* size of TX buffer */
#define TXADDR1_ABR (0x00008000) /* use ABR (doesn't work) */
vcc_txaddr2 = 0x24, /* Location2 */
vcc_txcrc1 = 0x28, /* TX CRC claculation space */
vcc_txcrc2 = 0x2C,
vcc_txreadptr = 0x30, /* TX Readptr, plus bits: */
#define TXREADPTR_GET_PTR(x) ((x)&0x01FFF)
#define TXREADPTR_MASK_DELTA (0x0000E000) /* ? */
vcc_txendptr = 0x34, /* TX Endptr, plus bits: */
#define TXENDPTR_CLP (0x00002000)
#define TXENDPTR_MASK_PDUMODE (0x0000C000) /* PDU mode; values: */
#define PDUMODE_AAL0 (0*0x04000)
#define PDUMODE_AAL5 (2*0x04000)
#define PDUMODE_AAL5STREAM (3*0x04000)
vcc_txwriteptr = 0x38, /* TX Writeptr */
#define TXWRITEPTR_GET_PTR(x) ((x)&0x1FFF)
vcc_txcbr_next = 0x3C /* # of next CBR VCI in ring */
#define TXCBR_NEXT_BOZO (0x00008000) /* "bozo bit" */
};
#define CARDVCC_SIZE (0x40)
static inline bus_addr_t cardvcc_addr(const struct lanai_dev *lanai,
vci_t vci)
{
return sram_addr(lanai, vci * CARDVCC_SIZE);
}
static inline u32 cardvcc_read(const struct lanai_vcc *lvcc,
enum lanai_vcc_offset offset)
{
u32 val;
APRINTK(lvcc->vbase != NULL, "cardvcc_read: unbound vcc!\n");
val= readl(lvcc->vbase + offset);
RWDEBUG("VR vci=%04d 0x%02X = 0x%08X\n",
lvcc->vci, (int) offset, val);
return val;
}
static inline void cardvcc_write(const struct lanai_vcc *lvcc,
u32 val, enum lanai_vcc_offset offset)
{
APRINTK(lvcc->vbase != NULL, "cardvcc_write: unbound vcc!\n");
APRINTK((val & ~0xFFFF) == 0,
"cardvcc_write: bad val 0x%X (vci=%d, addr=0x%02X)\n",
(unsigned int) val, lvcc->vci, (unsigned int) offset);
RWDEBUG("VW vci=%04d 0x%02X > 0x%08X\n",
lvcc->vci, (unsigned int) offset, (unsigned int) val);
writel(val, lvcc->vbase + offset);
}
/* -------------------- COMPUTE SIZE OF AN AAL5 PDU: */
/* How many bytes will an AAL5 PDU take to transmit - remember that:
* o we need to add 8 bytes for length, CPI, UU, and CRC
* o we need to round up to 48 bytes for cells
*/
static inline int aal5_size(int size)
{
int cells = (size + 8 + 47) / 48;
return cells * 48;
}
/* -------------------- FREE AN ATM SKB: */
static inline void lanai_free_skb(struct atm_vcc *atmvcc, struct sk_buff *skb)
{
if (atmvcc->pop != NULL)
atmvcc->pop(atmvcc, skb);
else
dev_kfree_skb_any(skb);
}
/* -------------------- TURN VCCS ON AND OFF: */
static void host_vcc_start_rx(const struct lanai_vcc *lvcc)
{
u32 addr1;
if (lvcc->rx.atmvcc->qos.aal == ATM_AAL5) {
dma_addr_t dmaaddr = lvcc->rx.buf.dmaaddr;
cardvcc_write(lvcc, 0xFFFF, vcc_rxcrc1);
cardvcc_write(lvcc, 0xFFFF, vcc_rxcrc2);
cardvcc_write(lvcc, 0, vcc_rxwriteptr);
cardvcc_write(lvcc, 0, vcc_rxbufstart);
cardvcc_write(lvcc, 0, vcc_rxreadptr);
cardvcc_write(lvcc, (dmaaddr >> 16) & 0xFFFF, vcc_rxaddr2);
addr1 = ((dmaaddr >> 8) & 0xFF) |
RXADDR1_SET_SIZE(lanai_buf_size_cardorder(&lvcc->rx.buf))|
RXADDR1_SET_RMMODE(RMMODE_TRASH) | /* ??? */
/* RXADDR1_OAM_PRESERVE | --- no OAM support yet */
RXADDR1_SET_MODE(RXMODE_AAL5);
} else
addr1 = RXADDR1_SET_RMMODE(RMMODE_PRESERVE) | /* ??? */
RXADDR1_OAM_PRESERVE | /* ??? */
RXADDR1_SET_MODE(RXMODE_AAL0);
/* This one must be last! */
cardvcc_write(lvcc, addr1, vcc_rxaddr1);
}
static void host_vcc_start_tx(const struct lanai_vcc *lvcc)
{
dma_addr_t dmaaddr = lvcc->tx.buf.dmaaddr;
cardvcc_write(lvcc, 0, vcc_txicg);
cardvcc_write(lvcc, 0xFFFF, vcc_txcrc1);
cardvcc_write(lvcc, 0xFFFF, vcc_txcrc2);
cardvcc_write(lvcc, 0, vcc_txreadptr);
cardvcc_write(lvcc, 0, vcc_txendptr);
cardvcc_write(lvcc, 0, vcc_txwriteptr);
cardvcc_write(lvcc,
(lvcc->tx.atmvcc->qos.txtp.traffic_class == ATM_CBR) ?
TXCBR_NEXT_BOZO | lvcc->vci : 0, vcc_txcbr_next);
cardvcc_write(lvcc, (dmaaddr >> 16) & 0xFFFF, vcc_txaddr2);
cardvcc_write(lvcc,
((dmaaddr >> 8) & 0xFF) |
TXADDR1_SET_SIZE(lanai_buf_size_cardorder(&lvcc->tx.buf)),
vcc_txaddr1);
}
/* Shutdown receiving on card */
static void lanai_shutdown_rx_vci(const struct lanai_vcc *lvcc)
{
if (lvcc->vbase == NULL) /* We were never bound to a VCI */
return;
/* 15.1.1 - set to trashing, wait one cell time (15us) */
cardvcc_write(lvcc,
RXADDR1_SET_RMMODE(RMMODE_TRASH) |
RXADDR1_SET_MODE(RXMODE_TRASH), vcc_rxaddr1);
udelay(15);
/* 15.1.2 - clear rest of entries */
cardvcc_write(lvcc, 0, vcc_rxaddr2);
cardvcc_write(lvcc, 0, vcc_rxcrc1);
cardvcc_write(lvcc, 0, vcc_rxcrc2);
cardvcc_write(lvcc, 0, vcc_rxwriteptr);
cardvcc_write(lvcc, 0, vcc_rxbufstart);
cardvcc_write(lvcc, 0, vcc_rxreadptr);
}
/* Shutdown transmitting on card.
* Unfortunately the lanai needs us to wait until all the data
* drains out of the buffer before we can dealloc it, so this
* can take awhile -- up to 370ms for a full 128KB buffer
* assuming everone else is quiet. In theory the time is
* boundless if there's a CBR VCC holding things up.
*/
static void lanai_shutdown_tx_vci(struct lanai_dev *lanai,
struct lanai_vcc *lvcc)
{
struct sk_buff *skb;
unsigned long flags, timeout;
int read, write, lastread = -1;
if (lvcc->vbase == NULL) /* We were never bound to a VCI */
return;
/* 15.2.1 - wait for queue to drain */
while ((skb = skb_dequeue(&lvcc->tx.backlog)) != NULL)
lanai_free_skb(lvcc->tx.atmvcc, skb);
read_lock_irqsave(&vcc_sklist_lock, flags);
__clear_bit(lvcc->vci, lanai->backlog_vccs);
read_unlock_irqrestore(&vcc_sklist_lock, flags);
/*
* We need to wait for the VCC to drain but don't wait forever. We
* give each 1K of buffer size 1/128th of a second to clear out.
* TODO: maybe disable CBR if we're about to timeout?
*/
timeout = jiffies +
(((lanai_buf_size(&lvcc->tx.buf) / 1024) * HZ) >> 7);
write = TXWRITEPTR_GET_PTR(cardvcc_read(lvcc, vcc_txwriteptr));
for (;;) {
read = TXREADPTR_GET_PTR(cardvcc_read(lvcc, vcc_txreadptr));
if (read == write && /* Is TX buffer empty? */
(lvcc->tx.atmvcc->qos.txtp.traffic_class != ATM_CBR ||
(cardvcc_read(lvcc, vcc_txcbr_next) &
TXCBR_NEXT_BOZO) == 0))
break;
if (read != lastread) { /* Has there been any progress? */
lastread = read;
timeout += HZ / 10;
}
if (unlikely(time_after(jiffies, timeout))) {
printk(KERN_ERR DEV_LABEL "(itf %d): Timed out on "
"backlog closing vci %d\n",
lvcc->tx.atmvcc->dev->number, lvcc->vci);
DPRINTK("read, write = %d, %d\n", read, write);
break;
}
msleep(40);
}
/* 15.2.2 - clear out all tx registers */
cardvcc_write(lvcc, 0, vcc_txreadptr);
cardvcc_write(lvcc, 0, vcc_txwriteptr);
cardvcc_write(lvcc, 0, vcc_txendptr);
cardvcc_write(lvcc, 0, vcc_txcrc1);
cardvcc_write(lvcc, 0, vcc_txcrc2);
cardvcc_write(lvcc, 0, vcc_txaddr2);
cardvcc_write(lvcc, 0, vcc_txaddr1);
}
/* -------------------- MANAGING AAL0 RX BUFFER: */
static inline int aal0_buffer_allocate(struct lanai_dev *lanai)
{
DPRINTK("aal0_buffer_allocate: allocating AAL0 RX buffer\n");
lanai_buf_allocate(&lanai->aal0buf, AAL0_RX_BUFFER_SIZE, 80,
lanai->pci);
return (lanai->aal0buf.start == NULL) ? -ENOMEM : 0;
}
static inline void aal0_buffer_free(struct lanai_dev *lanai)
{
DPRINTK("aal0_buffer_allocate: freeing AAL0 RX buffer\n");
lanai_buf_deallocate(&lanai->aal0buf, lanai->pci);
}
/* -------------------- EEPROM UTILITIES: */
/* Offsets of data in the EEPROM */
#define EEPROM_COPYRIGHT (0)
#define EEPROM_COPYRIGHT_LEN (44)
#define EEPROM_CHECKSUM (62)
#define EEPROM_CHECKSUM_REV (63)
#define EEPROM_MAC (64)
#define EEPROM_MAC_REV (70)
#define EEPROM_SERIAL (112)
#define EEPROM_SERIAL_REV (116)
#define EEPROM_MAGIC (120)
#define EEPROM_MAGIC_REV (124)
#define EEPROM_MAGIC_VALUE (0x5AB478D2)
#ifndef READ_EEPROM
/* Stub functions to use if EEPROM reading is disabled */
static int eeprom_read(struct lanai_dev *lanai)
{
printk(KERN_INFO DEV_LABEL "(itf %d): *NOT* reading EEPROM\n",
lanai->number);
memset(&lanai->eeprom[EEPROM_MAC], 0, 6);
return 0;
}
static int eeprom_validate(struct lanai_dev *lanai)
{
lanai->serialno = 0;
lanai->magicno = EEPROM_MAGIC_VALUE;
return 0;
}
#else /* READ_EEPROM */
static int eeprom_read(struct lanai_dev *lanai)
{
int i, address;
u8 data;
u32 tmp;
#define set_config1(x) do { lanai->conf1 = x; conf1_write(lanai); \
} while (0)
#define clock_h() set_config1(lanai->conf1 | CONFIG1_PROMCLK)
#define clock_l() set_config1(lanai->conf1 &~ CONFIG1_PROMCLK)
#define data_h() set_config1(lanai->conf1 | CONFIG1_PROMDATA)
#define data_l() set_config1(lanai->conf1 &~ CONFIG1_PROMDATA)
#define pre_read() do { data_h(); clock_h(); udelay(5); } while (0)
#define read_pin() (reg_read(lanai, Status_Reg) & STATUS_PROMDATA)
#define send_stop() do { data_l(); udelay(5); clock_h(); udelay(5); \
data_h(); udelay(5); } while (0)
/* start with both clock and data high */
data_h(); clock_h(); udelay(5);
for (address = 0; address < LANAI_EEPROM_SIZE; address++) {
data = (address << 1) | 1; /* Command=read + address */
/* send start bit */
data_l(); udelay(5);
clock_l(); udelay(5);
for (i = 128; i != 0; i >>= 1) { /* write command out */
tmp = (lanai->conf1 & ~CONFIG1_PROMDATA) |
((data & i) ? CONFIG1_PROMDATA : 0);
if (lanai->conf1 != tmp) {
set_config1(tmp);
udelay(5); /* Let new data settle */
}
clock_h(); udelay(5); clock_l(); udelay(5);
}
/* look for ack */
data_h(); clock_h(); udelay(5);
if (read_pin() != 0)
goto error; /* No ack seen */
clock_l(); udelay(5);
/* read back result */
for (data = 0, i = 7; i >= 0; i--) {
data_h(); clock_h(); udelay(5);
data = (data << 1) | !!read_pin();
clock_l(); udelay(5);
}
/* look again for ack */
data_h(); clock_h(); udelay(5);
if (read_pin() == 0)
goto error; /* Spurious ack */
clock_l(); udelay(5);
send_stop();
lanai->eeprom[address] = data;
DPRINTK("EEPROM 0x%04X %02X\n",
(unsigned int) address, (unsigned int) data);
}
return 0;
error:
clock_l(); udelay(5); /* finish read */
send_stop();
printk(KERN_ERR DEV_LABEL "(itf %d): error reading EEPROM byte %d\n",
lanai->number, address);
return -EIO;
#undef set_config1
#undef clock_h
#undef clock_l
#undef data_h
#undef data_l
#undef pre_read
#undef read_pin
#undef send_stop
}
/* read a big-endian 4-byte value out of eeprom */
static inline u32 eeprom_be4(const struct lanai_dev *lanai, int address)
{
return be32_to_cpup((const u32 *) &lanai->eeprom[address]);
}
/* Checksum/validate EEPROM contents */
static int eeprom_validate(struct lanai_dev *lanai)
{
int i, s;
u32 v;
const u8 *e = lanai->eeprom;
#ifdef DEBUG
/* First, see if we can get an ASCIIZ string out of the copyright */
for (i = EEPROM_COPYRIGHT;
i < (EEPROM_COPYRIGHT + EEPROM_COPYRIGHT_LEN); i++)
if (e[i] < 0x20 || e[i] > 0x7E)
break;
if ( i != EEPROM_COPYRIGHT &&
i != EEPROM_COPYRIGHT + EEPROM_COPYRIGHT_LEN && e[i] == '\0')
DPRINTK("eeprom: copyright = \"%s\"\n",
(char *) &e[EEPROM_COPYRIGHT]);
else
DPRINTK("eeprom: copyright not found\n");
#endif
/* Validate checksum */
for (i = s = 0; i < EEPROM_CHECKSUM; i++)
s += e[i];
s &= 0xFF;
if (s != e[EEPROM_CHECKSUM]) {
printk(KERN_ERR DEV_LABEL "(itf %d): EEPROM checksum bad "
"(wanted 0x%02X, got 0x%02X)\n", lanai->number,
(unsigned int) s, (unsigned int) e[EEPROM_CHECKSUM]);
return -EIO;
}
s ^= 0xFF;
if (s != e[EEPROM_CHECKSUM_REV]) {
printk(KERN_ERR DEV_LABEL "(itf %d): EEPROM inverse checksum "
"bad (wanted 0x%02X, got 0x%02X)\n", lanai->number,
(unsigned int) s, (unsigned int) e[EEPROM_CHECKSUM_REV]);
return -EIO;
}
/* Verify MAC address */
for (i = 0; i < 6; i++)
if ((e[EEPROM_MAC + i] ^ e[EEPROM_MAC_REV + i]) != 0xFF) {
printk(KERN_ERR DEV_LABEL
"(itf %d) : EEPROM MAC addresses don't match "
"(0x%02X, inverse 0x%02X)\n", lanai->number,
(unsigned int) e[EEPROM_MAC + i],
(unsigned int) e[EEPROM_MAC_REV + i]);
return -EIO;
}
DPRINTK("eeprom: MAC address = %pM\n", &e[EEPROM_MAC]);
/* Verify serial number */
lanai->serialno = eeprom_be4(lanai, EEPROM_SERIAL);
v = eeprom_be4(lanai, EEPROM_SERIAL_REV);
if ((lanai->serialno ^ v) != 0xFFFFFFFF) {
printk(KERN_ERR DEV_LABEL "(itf %d): EEPROM serial numbers "
"don't match (0x%08X, inverse 0x%08X)\n", lanai->number,
(unsigned int) lanai->serialno, (unsigned int) v);
return -EIO;
}
DPRINTK("eeprom: Serial number = %d\n", (unsigned int) lanai->serialno);
/* Verify magic number */
lanai->magicno = eeprom_be4(lanai, EEPROM_MAGIC);
v = eeprom_be4(lanai, EEPROM_MAGIC_REV);
if ((lanai->magicno ^ v) != 0xFFFFFFFF) {
printk(KERN_ERR DEV_LABEL "(itf %d): EEPROM magic numbers "
"don't match (0x%08X, inverse 0x%08X)\n", lanai->number,
lanai->magicno, v);
return -EIO;
}
DPRINTK("eeprom: Magic number = 0x%08X\n", lanai->magicno);
if (lanai->magicno != EEPROM_MAGIC_VALUE)
printk(KERN_WARNING DEV_LABEL "(itf %d): warning - EEPROM "
"magic not what expected (got 0x%08X, not 0x%08X)\n",
lanai->number, (unsigned int) lanai->magicno,
(unsigned int) EEPROM_MAGIC_VALUE);
return 0;
}
#endif /* READ_EEPROM */
static inline const u8 *eeprom_mac(const struct lanai_dev *lanai)
{
return &lanai->eeprom[EEPROM_MAC];
}
/* -------------------- INTERRUPT HANDLING UTILITIES: */
/* Interrupt types */
#define INT_STATS (0x00000002) /* Statistics counter overflow */
#define INT_SOOL (0x00000004) /* SOOL changed state */
#define INT_LOCD (0x00000008) /* LOCD changed state */
#define INT_LED (0x00000010) /* LED (HAPPI) changed state */
#define INT_GPIN (0x00000020) /* GPIN changed state */
#define INT_PING (0x00000040) /* PING_COUNT fulfilled */
#define INT_WAKE (0x00000080) /* Lanai wants bus */
#define INT_CBR0 (0x00000100) /* CBR sched hit VCI 0 */
#define INT_LOCK (0x00000200) /* Service list overflow */
#define INT_MISMATCH (0x00000400) /* TX magic list mismatch */
#define INT_AAL0_STR (0x00000800) /* Non-AAL5 buffer half filled */
#define INT_AAL0 (0x00001000) /* Non-AAL5 data available */
#define INT_SERVICE (0x00002000) /* Service list entries available */
#define INT_TABORTSENT (0x00004000) /* Target abort sent by lanai */
#define INT_TABORTBM (0x00008000) /* Abort rcv'd as bus master */
#define INT_TIMEOUTBM (0x00010000) /* No response to bus master */
#define INT_PCIPARITY (0x00020000) /* Parity error on PCI */
/* Sets of the above */
#define INT_ALL (0x0003FFFE) /* All interrupts */
#define INT_STATUS (0x0000003C) /* Some status pin changed */
#define INT_DMASHUT (0x00038000) /* DMA engine got shut down */
#define INT_SEGSHUT (0x00000700) /* Segmentation got shut down */
static inline u32 intr_pending(const struct lanai_dev *lanai)
{
return reg_read(lanai, IntStatusMasked_Reg);
}
static inline void intr_enable(const struct lanai_dev *lanai, u32 i)
{
reg_write(lanai, i, IntControlEna_Reg);
}
static inline void intr_disable(const struct lanai_dev *lanai, u32 i)
{
reg_write(lanai, i, IntControlDis_Reg);
}
/* -------------------- CARD/PCI STATUS: */
static void status_message(int itf, const char *name, int status)
{
static const char *onoff[2] = { "off to on", "on to off" };
printk(KERN_INFO DEV_LABEL "(itf %d): %s changed from %s\n",
itf, name, onoff[!status]);
}
static void lanai_check_status(struct lanai_dev *lanai)
{
u32 new = reg_read(lanai, Status_Reg);
u32 changes = new ^ lanai->status;
lanai->status = new;
#define e(flag, name) \
if (changes & flag) \
status_message(lanai->number, name, new & flag)
e(STATUS_SOOL, "SOOL");
e(STATUS_LOCD, "LOCD");
e(STATUS_LED, "LED");
e(STATUS_GPIN, "GPIN");
#undef e
}
static void pcistatus_got(int itf, const char *name)
{
printk(KERN_INFO DEV_LABEL "(itf %d): PCI got %s error\n", itf, name);
}
static void pcistatus_check(struct lanai_dev *lanai, int clearonly)
{
u16 s;
int result;
result = pci_read_config_word(lanai->pci, PCI_STATUS, &s);
if (result != PCIBIOS_SUCCESSFUL) {
printk(KERN_ERR DEV_LABEL "(itf %d): can't read PCI_STATUS: "
"%d\n", lanai->number, result);
return;
}
s &= PCI_STATUS_DETECTED_PARITY | PCI_STATUS_SIG_SYSTEM_ERROR |
PCI_STATUS_REC_MASTER_ABORT | PCI_STATUS_REC_TARGET_ABORT |
PCI_STATUS_SIG_TARGET_ABORT | PCI_STATUS_PARITY;
if (s == 0)
return;
result = pci_write_config_word(lanai->pci, PCI_STATUS, s);
if (result != PCIBIOS_SUCCESSFUL)
printk(KERN_ERR DEV_LABEL "(itf %d): can't write PCI_STATUS: "
"%d\n", lanai->number, result);
if (clearonly)
return;
#define e(flag, name, stat) \
if (s & flag) { \
pcistatus_got(lanai->number, name); \
++lanai->stats.pcierr_##stat; \
}
e(PCI_STATUS_DETECTED_PARITY, "parity", parity_detect);
e(PCI_STATUS_SIG_SYSTEM_ERROR, "signalled system", serr_set);
e(PCI_STATUS_REC_MASTER_ABORT, "master", master_abort);
e(PCI_STATUS_REC_TARGET_ABORT, "master target", m_target_abort);
e(PCI_STATUS_SIG_TARGET_ABORT, "slave", s_target_abort);
e(PCI_STATUS_PARITY, "master parity", master_parity);
#undef e
}
/* -------------------- VCC TX BUFFER UTILITIES: */
/* space left in tx buffer in bytes */
static inline int vcc_tx_space(const struct lanai_vcc *lvcc, int endptr)
{
int r;
r = endptr * 16;
r -= ((unsigned long) lvcc->tx.buf.ptr) -
((unsigned long) lvcc->tx.buf.start);
r -= 16; /* Leave "bubble" - if start==end it looks empty */
if (r < 0)
r += lanai_buf_size(&lvcc->tx.buf);
return r;
}
/* test if VCC is currently backlogged */
static inline int vcc_is_backlogged(const struct lanai_vcc *lvcc)
{
return !skb_queue_empty(&lvcc->tx.backlog);
}
/* Bit fields in the segmentation buffer descriptor */
#define DESCRIPTOR_MAGIC (0xD0000000)
#define DESCRIPTOR_AAL5 (0x00008000)
#define DESCRIPTOR_AAL5_STREAM (0x00004000)
#define DESCRIPTOR_CLP (0x00002000)
/* Add 32-bit descriptor with its padding */
static inline void vcc_tx_add_aal5_descriptor(struct lanai_vcc *lvcc,
u32 flags, int len)
{
int pos;
APRINTK((((unsigned long) lvcc->tx.buf.ptr) & 15) == 0,
"vcc_tx_add_aal5_descriptor: bad ptr=%p\n", lvcc->tx.buf.ptr);
lvcc->tx.buf.ptr += 4; /* Hope the values REALLY don't matter */
pos = ((unsigned char *) lvcc->tx.buf.ptr) -
(unsigned char *) lvcc->tx.buf.start;
APRINTK((pos & ~0x0001FFF0) == 0,
"vcc_tx_add_aal5_descriptor: bad pos (%d) before, vci=%d, "
"start,ptr,end=%p,%p,%p\n", pos, lvcc->vci,
lvcc->tx.buf.start, lvcc->tx.buf.ptr, lvcc->tx.buf.end);
pos = (pos + len) & (lanai_buf_size(&lvcc->tx.buf) - 1);
APRINTK((pos & ~0x0001FFF0) == 0,
"vcc_tx_add_aal5_descriptor: bad pos (%d) after, vci=%d, "
"start,ptr,end=%p,%p,%p\n", pos, lvcc->vci,
lvcc->tx.buf.start, lvcc->tx.buf.ptr, lvcc->tx.buf.end);
lvcc->tx.buf.ptr[-1] =
cpu_to_le32(DESCRIPTOR_MAGIC | DESCRIPTOR_AAL5 |
((lvcc->tx.atmvcc->atm_options & ATM_ATMOPT_CLP) ?
DESCRIPTOR_CLP : 0) | flags | pos >> 4);
if (lvcc->tx.buf.ptr >= lvcc->tx.buf.end)
lvcc->tx.buf.ptr = lvcc->tx.buf.start;
}
/* Add 32-bit AAL5 trailer and leave room for its CRC */
static inline void vcc_tx_add_aal5_trailer(struct lanai_vcc *lvcc,
int len, int cpi, int uu)
{
APRINTK((((unsigned long) lvcc->tx.buf.ptr) & 15) == 8,
"vcc_tx_add_aal5_trailer: bad ptr=%p\n", lvcc->tx.buf.ptr);
lvcc->tx.buf.ptr += 2;
lvcc->tx.buf.ptr[-2] = cpu_to_be32((uu << 24) | (cpi << 16) | len);
if (lvcc->tx.buf.ptr >= lvcc->tx.buf.end)
lvcc->tx.buf.ptr = lvcc->tx.buf.start;
}
static inline void vcc_tx_memcpy(struct lanai_vcc *lvcc,
const unsigned char *src, int n)
{
unsigned char *e;
int m;
e = ((unsigned char *) lvcc->tx.buf.ptr) + n;
m = e - (unsigned char *) lvcc->tx.buf.end;
if (m < 0)
m = 0;
memcpy(lvcc->tx.buf.ptr, src, n - m);
if (m != 0) {
memcpy(lvcc->tx.buf.start, src + n - m, m);
e = ((unsigned char *) lvcc->tx.buf.start) + m;
}
lvcc->tx.buf.ptr = (u32 *) e;
}
static inline void vcc_tx_memzero(struct lanai_vcc *lvcc, int n)
{
unsigned char *e;
int m;
if (n == 0)
return;
e = ((unsigned char *) lvcc->tx.buf.ptr) + n;
m = e - (unsigned char *) lvcc->tx.buf.end;
if (m < 0)
m = 0;
memset(lvcc->tx.buf.ptr, 0, n - m);
if (m != 0) {
memset(lvcc->tx.buf.start, 0, m);
e = ((unsigned char *) lvcc->tx.buf.start) + m;
}
lvcc->tx.buf.ptr = (u32 *) e;
}
/* Update "butt" register to specify new WritePtr */
static inline void lanai_endtx(struct lanai_dev *lanai,
const struct lanai_vcc *lvcc)
{
int i, ptr = ((unsigned char *) lvcc->tx.buf.ptr) -
(unsigned char *) lvcc->tx.buf.start;
APRINTK((ptr & ~0x0001FFF0) == 0,
"lanai_endtx: bad ptr (%d), vci=%d, start,ptr,end=%p,%p,%p\n",
ptr, lvcc->vci, lvcc->tx.buf.start, lvcc->tx.buf.ptr,
lvcc->tx.buf.end);
/*
* Since the "butt register" is a shared resounce on the card we
* serialize all accesses to it through this spinlock. This is
* mostly just paranoia since the register is rarely "busy" anyway
* but is needed for correctness.
*/
spin_lock(&lanai->endtxlock);
/*
* We need to check if the "butt busy" bit is set before
* updating the butt register. In theory this should
* never happen because the ATM card is plenty fast at
* updating the register. Still, we should make sure
*/
for (i = 0; reg_read(lanai, Status_Reg) & STATUS_BUTTBUSY; i++) {
if (unlikely(i > 50)) {
printk(KERN_ERR DEV_LABEL "(itf %d): butt register "
"always busy!\n", lanai->number);
break;
}
udelay(5);
}
/*
* Before we tall the card to start work we need to be sure 100% of
* the info in the service buffer has been written before we tell
* the card about it
*/
wmb();
reg_write(lanai, (ptr << 12) | lvcc->vci, Butt_Reg);
spin_unlock(&lanai->endtxlock);
}
/*
* Add one AAL5 PDU to lvcc's transmit buffer. Caller garauntees there's
* space available. "pdusize" is the number of bytes the PDU will take
*/
static void lanai_send_one_aal5(struct lanai_dev *lanai,
struct lanai_vcc *lvcc, struct sk_buff *skb, int pdusize)
{
int pad;
APRINTK(pdusize == aal5_size(skb->len),
"lanai_send_one_aal5: wrong size packet (%d != %d)\n",
pdusize, aal5_size(skb->len));
vcc_tx_add_aal5_descriptor(lvcc, 0, pdusize);
pad = pdusize - skb->len - 8;
APRINTK(pad >= 0, "pad is negative (%d)\n", pad);
APRINTK(pad < 48, "pad is too big (%d)\n", pad);
vcc_tx_memcpy(lvcc, skb->data, skb->len);
vcc_tx_memzero(lvcc, pad);
vcc_tx_add_aal5_trailer(lvcc, skb->len, 0, 0);
lanai_endtx(lanai, lvcc);
lanai_free_skb(lvcc->tx.atmvcc, skb);
atomic_inc(&lvcc->tx.atmvcc->stats->tx);
}
/* Try to fill the buffer - don't call unless there is backlog */
static void vcc_tx_unqueue_aal5(struct lanai_dev *lanai,
struct lanai_vcc *lvcc, int endptr)
{
int n;
struct sk_buff *skb;
int space = vcc_tx_space(lvcc, endptr);
APRINTK(vcc_is_backlogged(lvcc),
"vcc_tx_unqueue() called with empty backlog (vci=%d)\n",
lvcc->vci);
while (space >= 64) {
skb = skb_dequeue(&lvcc->tx.backlog);
if (skb == NULL)
goto no_backlog;
n = aal5_size(skb->len);
if (n + 16 > space) {
/* No room for this packet - put it back on queue */
skb_queue_head(&lvcc->tx.backlog, skb);
return;
}
lanai_send_one_aal5(lanai, lvcc, skb, n);
space -= n + 16;
}
if (!vcc_is_backlogged(lvcc)) {
no_backlog:
__clear_bit(lvcc->vci, lanai->backlog_vccs);
}
}
/* Given an skb that we want to transmit either send it now or queue */
static void vcc_tx_aal5(struct lanai_dev *lanai, struct lanai_vcc *lvcc,
struct sk_buff *skb)
{
int space, n;
if (vcc_is_backlogged(lvcc)) /* Already backlogged */
goto queue_it;
space = vcc_tx_space(lvcc,
TXREADPTR_GET_PTR(cardvcc_read(lvcc, vcc_txreadptr)));
n = aal5_size(skb->len);
APRINTK(n + 16 >= 64, "vcc_tx_aal5: n too small (%d)\n", n);
if (space < n + 16) { /* No space for this PDU */
__set_bit(lvcc->vci, lanai->backlog_vccs);
queue_it:
skb_queue_tail(&lvcc->tx.backlog, skb);
return;
}
lanai_send_one_aal5(lanai, lvcc, skb, n);
}
static void vcc_tx_unqueue_aal0(struct lanai_dev *lanai,
struct lanai_vcc *lvcc, int endptr)
{
printk(KERN_INFO DEV_LABEL
": vcc_tx_unqueue_aal0: not implemented\n");
}
static void vcc_tx_aal0(struct lanai_dev *lanai, struct lanai_vcc *lvcc,
struct sk_buff *skb)
{
printk(KERN_INFO DEV_LABEL ": vcc_tx_aal0: not implemented\n");
/* Remember to increment lvcc->tx.atmvcc->stats->tx */
lanai_free_skb(lvcc->tx.atmvcc, skb);
}
/* -------------------- VCC RX BUFFER UTILITIES: */
/* unlike the _tx_ cousins, this doesn't update ptr */
static inline void vcc_rx_memcpy(unsigned char *dest,
const struct lanai_vcc *lvcc, int n)
{
int m = ((const unsigned char *) lvcc->rx.buf.ptr) + n -
((const unsigned char *) (lvcc->rx.buf.end));
if (m < 0)
m = 0;
memcpy(dest, lvcc->rx.buf.ptr, n - m);
memcpy(dest + n - m, lvcc->rx.buf.start, m);
/* Make sure that these copies don't get reordered */
barrier();
}
/* Receive AAL5 data on a VCC with a particular endptr */
static void vcc_rx_aal5(struct lanai_vcc *lvcc, int endptr)
{
int size;
struct sk_buff *skb;
const u32 *x;
u32 *end = &lvcc->rx.buf.start[endptr * 4];
int n = ((unsigned long) end) - ((unsigned long) lvcc->rx.buf.ptr);
if (n < 0)
n += lanai_buf_size(&lvcc->rx.buf);
APRINTK(n >= 0 && n < lanai_buf_size(&lvcc->rx.buf) && !(n & 15),
"vcc_rx_aal5: n out of range (%d/%zu)\n",
n, lanai_buf_size(&lvcc->rx.buf));
/* Recover the second-to-last word to get true pdu length */
if ((x = &end[-2]) < lvcc->rx.buf.start)
x = &lvcc->rx.buf.end[-2];
/*
* Before we actually read from the buffer, make sure the memory
* changes have arrived
*/
rmb();
size = be32_to_cpup(x) & 0xffff;
if (unlikely(n != aal5_size(size))) {
/* Make sure size matches padding */
printk(KERN_INFO DEV_LABEL "(itf %d): Got bad AAL5 length "
"on vci=%d - size=%d n=%d\n",
lvcc->rx.atmvcc->dev->number, lvcc->vci, size, n);
lvcc->stats.x.aal5.rx_badlen++;
goto out;
}
skb = atm_alloc_charge(lvcc->rx.atmvcc, size, GFP_ATOMIC);
if (unlikely(skb == NULL)) {
lvcc->stats.rx_nomem++;
goto out;
}
skb_put(skb, size);
vcc_rx_memcpy(skb->data, lvcc, size);
ATM_SKB(skb)->vcc = lvcc->rx.atmvcc;
__net_timestamp(skb);
lvcc->rx.atmvcc->push(lvcc->rx.atmvcc, skb);
atomic_inc(&lvcc->rx.atmvcc->stats->rx);
out:
lvcc->rx.buf.ptr = end;
cardvcc_write(lvcc, endptr, vcc_rxreadptr);
}
static void vcc_rx_aal0(struct lanai_dev *lanai)
{
printk(KERN_INFO DEV_LABEL ": vcc_rx_aal0: not implemented\n");
/* Remember to get read_lock(&vcc_sklist_lock) while looking up VC */
/* Remember to increment lvcc->rx.atmvcc->stats->rx */
}
/* -------------------- MANAGING HOST-BASED VCC TABLE: */
/* Decide whether to use vmalloc or get_zeroed_page for VCC table */
#if (NUM_VCI * BITS_PER_LONG) <= PAGE_SIZE
#define VCCTABLE_GETFREEPAGE
#else
#include <linux/vmalloc.h>
#endif
static int vcc_table_allocate(struct lanai_dev *lanai)
{
#ifdef VCCTABLE_GETFREEPAGE
APRINTK((lanai->num_vci) * sizeof(struct lanai_vcc *) <= PAGE_SIZE,
"vcc table > PAGE_SIZE!");
lanai->vccs = (struct lanai_vcc **) get_zeroed_page(GFP_KERNEL);
return (lanai->vccs == NULL) ? -ENOMEM : 0;
#else
int bytes = (lanai->num_vci) * sizeof(struct lanai_vcc *);
lanai->vccs = vzalloc(bytes);
if (unlikely(lanai->vccs == NULL))
return -ENOMEM;
return 0;
#endif
}
static inline void vcc_table_deallocate(const struct lanai_dev *lanai)
{
#ifdef VCCTABLE_GETFREEPAGE
free_page((unsigned long) lanai->vccs);
#else
vfree(lanai->vccs);
#endif
}
/* Allocate a fresh lanai_vcc, with the appropriate things cleared */
static inline struct lanai_vcc *new_lanai_vcc(void)
{
struct lanai_vcc *lvcc;
lvcc = kzalloc(sizeof(*lvcc), GFP_KERNEL);
if (likely(lvcc != NULL)) {
skb_queue_head_init(&lvcc->tx.backlog);
#ifdef DEBUG
lvcc->vci = -1;
#endif
}
return lvcc;
}
static int lanai_get_sized_buffer(struct lanai_dev *lanai,
struct lanai_buffer *buf, int max_sdu, int multiplier,
const char *name)
{
int size;
if (unlikely(max_sdu < 1))
max_sdu = 1;
max_sdu = aal5_size(max_sdu);
size = (max_sdu + 16) * multiplier + 16;
lanai_buf_allocate(buf, size, max_sdu + 32, lanai->pci);
if (unlikely(buf->start == NULL))
return -ENOMEM;
if (unlikely(lanai_buf_size(buf) < size))
printk(KERN_WARNING DEV_LABEL "(itf %d): wanted %d bytes "
"for %s buffer, got only %zu\n", lanai->number, size,
name, lanai_buf_size(buf));
DPRINTK("Allocated %zu byte %s buffer\n", lanai_buf_size(buf), name);
return 0;
}
/* Setup a RX buffer for a currently unbound AAL5 vci */
static inline int lanai_setup_rx_vci_aal5(struct lanai_dev *lanai,
struct lanai_vcc *lvcc, const struct atm_qos *qos)
{
return lanai_get_sized_buffer(lanai, &lvcc->rx.buf,
qos->rxtp.max_sdu, AAL5_RX_MULTIPLIER, "RX");
}
/* Setup a TX buffer for a currently unbound AAL5 vci */
static int lanai_setup_tx_vci(struct lanai_dev *lanai, struct lanai_vcc *lvcc,
const struct atm_qos *qos)
{
int max_sdu, multiplier;
if (qos->aal == ATM_AAL0) {
lvcc->tx.unqueue = vcc_tx_unqueue_aal0;
max_sdu = ATM_CELL_SIZE - 1;
multiplier = AAL0_TX_MULTIPLIER;
} else {
lvcc->tx.unqueue = vcc_tx_unqueue_aal5;
max_sdu = qos->txtp.max_sdu;
multiplier = AAL5_TX_MULTIPLIER;
}
return lanai_get_sized_buffer(lanai, &lvcc->tx.buf, max_sdu,
multiplier, "TX");
}
static inline void host_vcc_bind(struct lanai_dev *lanai,
struct lanai_vcc *lvcc, vci_t vci)
{
if (lvcc->vbase != NULL)
return; /* We already were bound in the other direction */
DPRINTK("Binding vci %d\n", vci);
#ifdef USE_POWERDOWN
if (lanai->nbound++ == 0) {
DPRINTK("Coming out of powerdown\n");
lanai->conf1 &= ~CONFIG1_POWERDOWN;
conf1_write(lanai);
conf2_write(lanai);
}
#endif
lvcc->vbase = cardvcc_addr(lanai, vci);
lanai->vccs[lvcc->vci = vci] = lvcc;
}
static inline void host_vcc_unbind(struct lanai_dev *lanai,
struct lanai_vcc *lvcc)
{
if (lvcc->vbase == NULL)
return; /* This vcc was never bound */
DPRINTK("Unbinding vci %d\n", lvcc->vci);
lvcc->vbase = NULL;
lanai->vccs[lvcc->vci] = NULL;
#ifdef USE_POWERDOWN
if (--lanai->nbound == 0) {
DPRINTK("Going into powerdown\n");
lanai->conf1 |= CONFIG1_POWERDOWN;
conf1_write(lanai);
}
#endif
}
/* -------------------- RESET CARD: */
static void lanai_reset(struct lanai_dev *lanai)
{
printk(KERN_CRIT DEV_LABEL "(itf %d): *NOT* resetting - not "
"implemented\n", lanai->number);
/* TODO */
/* The following is just a hack until we write the real
* resetter - at least ack whatever interrupt sent us
* here
*/
reg_write(lanai, INT_ALL, IntAck_Reg);
lanai->stats.card_reset++;
}
/* -------------------- SERVICE LIST UTILITIES: */
/*
* Allocate service buffer and tell card about it
*/
static int service_buffer_allocate(struct lanai_dev *lanai)
{
lanai_buf_allocate(&lanai->service, SERVICE_ENTRIES * 4, 8,
lanai->pci);
if (unlikely(lanai->service.start == NULL))
return -ENOMEM;
DPRINTK("allocated service buffer at %p, size %zu(%d)\n",
lanai->service.start,
lanai_buf_size(&lanai->service),
lanai_buf_size_cardorder(&lanai->service));
/* Clear ServWrite register to be safe */
reg_write(lanai, 0, ServWrite_Reg);
/* ServiceStuff register contains size and address of buffer */
reg_write(lanai,
SSTUFF_SET_SIZE(lanai_buf_size_cardorder(&lanai->service)) |
SSTUFF_SET_ADDR(lanai->service.dmaaddr),
ServiceStuff_Reg);
return 0;
}
static inline void service_buffer_deallocate(struct lanai_dev *lanai)
{
lanai_buf_deallocate(&lanai->service, lanai->pci);
}
/* Bitfields in service list */
#define SERVICE_TX (0x80000000) /* Was from transmission */
#define SERVICE_TRASH (0x40000000) /* RXed PDU was trashed */
#define SERVICE_CRCERR (0x20000000) /* RXed PDU had CRC error */
#define SERVICE_CI (0x10000000) /* RXed PDU had CI set */
#define SERVICE_CLP (0x08000000) /* RXed PDU had CLP set */
#define SERVICE_STREAM (0x04000000) /* RX Stream mode */
#define SERVICE_GET_VCI(x) (((x)>>16)&0x3FF)
#define SERVICE_GET_END(x) ((x)&0x1FFF)
/* Handle one thing from the service list - returns true if it marked a
* VCC ready for xmit
*/
static int handle_service(struct lanai_dev *lanai, u32 s)
{
vci_t vci = SERVICE_GET_VCI(s);
struct lanai_vcc *lvcc;
read_lock(&vcc_sklist_lock);
lvcc = lanai->vccs[vci];
if (unlikely(lvcc == NULL)) {
read_unlock(&vcc_sklist_lock);
DPRINTK("(itf %d) got service entry 0x%X for nonexistent "
"vcc %d\n", lanai->number, (unsigned int) s, vci);
if (s & SERVICE_TX)
lanai->stats.service_notx++;
else
lanai->stats.service_norx++;
return 0;
}
if (s & SERVICE_TX) { /* segmentation interrupt */
if (unlikely(lvcc->tx.atmvcc == NULL)) {
read_unlock(&vcc_sklist_lock);
DPRINTK("(itf %d) got service entry 0x%X for non-TX "
"vcc %d\n", lanai->number, (unsigned int) s, vci);
lanai->stats.service_notx++;
return 0;
}
__set_bit(vci, lanai->transmit_ready);
lvcc->tx.endptr = SERVICE_GET_END(s);
read_unlock(&vcc_sklist_lock);
return 1;
}
if (unlikely(lvcc->rx.atmvcc == NULL)) {
read_unlock(&vcc_sklist_lock);
DPRINTK("(itf %d) got service entry 0x%X for non-RX "
"vcc %d\n", lanai->number, (unsigned int) s, vci);
lanai->stats.service_norx++;
return 0;
}
if (unlikely(lvcc->rx.atmvcc->qos.aal != ATM_AAL5)) {
read_unlock(&vcc_sklist_lock);
DPRINTK("(itf %d) got RX service entry 0x%X for non-AAL5 "
"vcc %d\n", lanai->number, (unsigned int) s, vci);
lanai->stats.service_rxnotaal5++;
atomic_inc(&lvcc->rx.atmvcc->stats->rx_err);
return 0;
}
if (likely(!(s & (SERVICE_TRASH | SERVICE_STREAM | SERVICE_CRCERR)))) {
vcc_rx_aal5(lvcc, SERVICE_GET_END(s));
read_unlock(&vcc_sklist_lock);
return 0;
}
if (s & SERVICE_TRASH) {
int bytes;
read_unlock(&vcc_sklist_lock);
DPRINTK("got trashed rx pdu on vci %d\n", vci);
atomic_inc(&lvcc->rx.atmvcc->stats->rx_err);
lvcc->stats.x.aal5.service_trash++;
bytes = (SERVICE_GET_END(s) * 16) -
(((unsigned long) lvcc->rx.buf.ptr) -
((unsigned long) lvcc->rx.buf.start)) + 47;
if (bytes < 0)
bytes += lanai_buf_size(&lvcc->rx.buf);
lanai->stats.ovfl_trash += (bytes / 48);
return 0;
}
if (s & SERVICE_STREAM) {
read_unlock(&vcc_sklist_lock);
atomic_inc(&lvcc->rx.atmvcc->stats->rx_err);
lvcc->stats.x.aal5.service_stream++;
printk(KERN_ERR DEV_LABEL "(itf %d): Got AAL5 stream "
"PDU on VCI %d!\n", lanai->number, vci);
lanai_reset(lanai);
return 0;
}
DPRINTK("got rx crc error on vci %d\n", vci);
atomic_inc(&lvcc->rx.atmvcc->stats->rx_err);
lvcc->stats.x.aal5.service_rxcrc++;
lvcc->rx.buf.ptr = &lvcc->rx.buf.start[SERVICE_GET_END(s) * 4];
cardvcc_write(lvcc, SERVICE_GET_END(s), vcc_rxreadptr);
read_unlock(&vcc_sklist_lock);
return 0;
}
/* Try transmitting on all VCIs that we marked ready to serve */
static void iter_transmit(struct lanai_dev *lanai, vci_t vci)
{
struct lanai_vcc *lvcc = lanai->vccs[vci];
if (vcc_is_backlogged(lvcc))
lvcc->tx.unqueue(lanai, lvcc, lvcc->tx.endptr);
}
/* Run service queue -- called from interrupt context or with
* interrupts otherwise disabled and with the lanai->servicelock
* lock held
*/
static void run_service(struct lanai_dev *lanai)
{
int ntx = 0;
u32 wreg = reg_read(lanai, ServWrite_Reg);
const u32 *end = lanai->service.start + wreg;
while (lanai->service.ptr != end) {
ntx += handle_service(lanai,
le32_to_cpup(lanai->service.ptr++));
if (lanai->service.ptr >= lanai->service.end)
lanai->service.ptr = lanai->service.start;
}
reg_write(lanai, wreg, ServRead_Reg);
if (ntx != 0) {
read_lock(&vcc_sklist_lock);
vci_bitfield_iterate(lanai, lanai->transmit_ready,
iter_transmit);
bitmap_zero(lanai->transmit_ready, NUM_VCI);
read_unlock(&vcc_sklist_lock);
}
}
/* -------------------- GATHER STATISTICS: */
static void get_statistics(struct lanai_dev *lanai)
{
u32 statreg = reg_read(lanai, Statistics_Reg);
lanai->stats.atm_ovfl += STATS_GET_FIFO_OVFL(statreg);
lanai->stats.hec_err += STATS_GET_HEC_ERR(statreg);
lanai->stats.vci_trash += STATS_GET_BAD_VCI(statreg);
lanai->stats.ovfl_trash += STATS_GET_BUF_OVFL(statreg);
}
/* -------------------- POLLING TIMER: */
#ifndef DEBUG_RW
/* Try to undequeue 1 backlogged vcc */
static void iter_dequeue(struct lanai_dev *lanai, vci_t vci)
{
struct lanai_vcc *lvcc = lanai->vccs[vci];
int endptr;
if (lvcc == NULL || lvcc->tx.atmvcc == NULL ||
!vcc_is_backlogged(lvcc)) {
__clear_bit(vci, lanai->backlog_vccs);
return;
}
endptr = TXREADPTR_GET_PTR(cardvcc_read(lvcc, vcc_txreadptr));
lvcc->tx.unqueue(lanai, lvcc, endptr);
}
#endif /* !DEBUG_RW */
static void lanai_timed_poll(struct timer_list *t)
{
struct lanai_dev *lanai = from_timer(lanai, t, timer);
#ifndef DEBUG_RW
unsigned long flags;
#ifdef USE_POWERDOWN
if (lanai->conf1 & CONFIG1_POWERDOWN)
return;
#endif /* USE_POWERDOWN */
local_irq_save(flags);
/* If we can grab the spinlock, check if any services need to be run */
if (spin_trylock(&lanai->servicelock)) {
run_service(lanai);
spin_unlock(&lanai->servicelock);
}
/* ...and see if any backlogged VCs can make progress */
/* unfortunately linux has no read_trylock() currently */
read_lock(&vcc_sklist_lock);
vci_bitfield_iterate(lanai, lanai->backlog_vccs, iter_dequeue);
read_unlock(&vcc_sklist_lock);
local_irq_restore(flags);
get_statistics(lanai);
#endif /* !DEBUG_RW */
mod_timer(&lanai->timer, jiffies + LANAI_POLL_PERIOD);
}
static inline void lanai_timed_poll_start(struct lanai_dev *lanai)
{
timer_setup(&lanai->timer, lanai_timed_poll, 0);
lanai->timer.expires = jiffies + LANAI_POLL_PERIOD;
add_timer(&lanai->timer);
}
static inline void lanai_timed_poll_stop(struct lanai_dev *lanai)
{
del_timer_sync(&lanai->timer);
}
/* -------------------- INTERRUPT SERVICE: */
static inline void lanai_int_1(struct lanai_dev *lanai, u32 reason)
{
u32 ack = 0;
if (reason & INT_SERVICE) {
ack = INT_SERVICE;
spin_lock(&lanai->servicelock);
run_service(lanai);
spin_unlock(&lanai->servicelock);
}
if (reason & (INT_AAL0_STR | INT_AAL0)) {
ack |= reason & (INT_AAL0_STR | INT_AAL0);
vcc_rx_aal0(lanai);
}
/* The rest of the interrupts are pretty rare */
if (ack == reason)
goto done;
if (reason & INT_STATS) {
reason &= ~INT_STATS; /* No need to ack */
get_statistics(lanai);
}
if (reason & INT_STATUS) {
ack |= reason & INT_STATUS;
lanai_check_status(lanai);
}
if (unlikely(reason & INT_DMASHUT)) {
printk(KERN_ERR DEV_LABEL "(itf %d): driver error - DMA "
"shutdown, reason=0x%08X, address=0x%08X\n",
lanai->number, (unsigned int) (reason & INT_DMASHUT),
(unsigned int) reg_read(lanai, DMA_Addr_Reg));
if (reason & INT_TABORTBM) {
lanai_reset(lanai);
return;
}
ack |= (reason & INT_DMASHUT);
printk(KERN_ERR DEV_LABEL "(itf %d): re-enabling DMA\n",
lanai->number);
conf1_write(lanai);
lanai->stats.dma_reenable++;
pcistatus_check(lanai, 0);
}
if (unlikely(reason & INT_TABORTSENT)) {
ack |= (reason & INT_TABORTSENT);
printk(KERN_ERR DEV_LABEL "(itf %d): sent PCI target abort\n",
lanai->number);
pcistatus_check(lanai, 0);
}
if (unlikely(reason & INT_SEGSHUT)) {
printk(KERN_ERR DEV_LABEL "(itf %d): driver error - "
"segmentation shutdown, reason=0x%08X\n", lanai->number,
(unsigned int) (reason & INT_SEGSHUT));
lanai_reset(lanai);
return;
}
if (unlikely(reason & (INT_PING | INT_WAKE))) {
printk(KERN_ERR DEV_LABEL "(itf %d): driver error - "
"unexpected interrupt 0x%08X, resetting\n",
lanai->number,
(unsigned int) (reason & (INT_PING | INT_WAKE)));
lanai_reset(lanai);
return;
}
#ifdef DEBUG
if (unlikely(ack != reason)) {
DPRINTK("unacked ints: 0x%08X\n",
(unsigned int) (reason & ~ack));
ack = reason;
}
#endif
done:
if (ack != 0)
reg_write(lanai, ack, IntAck_Reg);
}
static irqreturn_t lanai_int(int irq, void *devid)
{
struct lanai_dev *lanai = devid;
u32 reason;
#ifdef USE_POWERDOWN
/*
* If we're powered down we shouldn't be generating any interrupts -
* so assume that this is a shared interrupt line and it's for someone
* else
*/
if (unlikely(lanai->conf1 & CONFIG1_POWERDOWN))
return IRQ_NONE;
#endif
reason = intr_pending(lanai);
if (reason == 0)
return IRQ_NONE; /* Must be for someone else */
do {
if (unlikely(reason == 0xFFFFFFFF))
break; /* Maybe we've been unplugged? */
lanai_int_1(lanai, reason);
reason = intr_pending(lanai);
} while (reason != 0);
return IRQ_HANDLED;
}
/* TODO - it would be nice if we could use the "delayed interrupt" system
* to some advantage
*/
/* -------------------- CHECK BOARD ID/REV: */
/*
* The board id and revision are stored both in the reset register and
* in the PCI configuration space - the documentation says to check
* each of them. If revp!=NULL we store the revision there
*/
static int check_board_id_and_rev(const char *name, u32 val, int *revp)
{
DPRINTK("%s says board_id=%d, board_rev=%d\n", name,
(int) RESET_GET_BOARD_ID(val),
(int) RESET_GET_BOARD_REV(val));
if (RESET_GET_BOARD_ID(val) != BOARD_ID_LANAI256) {
printk(KERN_ERR DEV_LABEL ": Found %s board-id %d -- not a "
"Lanai 25.6\n", name, (int) RESET_GET_BOARD_ID(val));
return -ENODEV;
}
if (revp != NULL)
*revp = RESET_GET_BOARD_REV(val);
return 0;
}
/* -------------------- PCI INITIALIZATION/SHUTDOWN: */
static int lanai_pci_start(struct lanai_dev *lanai)
{
struct pci_dev *pci = lanai->pci;
int result;
if (pci_enable_device(pci) != 0) {
printk(KERN_ERR DEV_LABEL "(itf %d): can't enable "
"PCI device", lanai->number);
return -ENXIO;
}
pci_set_master(pci);
if (dma_set_mask_and_coherent(&pci->dev, DMA_BIT_MASK(32)) != 0) {
printk(KERN_WARNING DEV_LABEL
"(itf %d): No suitable DMA available.\n", lanai->number);
return -EBUSY;
}
result = check_board_id_and_rev("PCI", pci->subsystem_device, NULL);
if (result != 0)
return result;
/* Set latency timer to zero as per lanai docs */
result = pci_write_config_byte(pci, PCI_LATENCY_TIMER, 0);
if (result != PCIBIOS_SUCCESSFUL) {
printk(KERN_ERR DEV_LABEL "(itf %d): can't write "
"PCI_LATENCY_TIMER: %d\n", lanai->number, result);
return -EINVAL;
}
pcistatus_check(lanai, 1);
pcistatus_check(lanai, 0);
return 0;
}
/* -------------------- VPI/VCI ALLOCATION: */
/*
* We _can_ use VCI==0 for normal traffic, but only for UBR (or we'll
* get a CBRZERO interrupt), and we can use it only if no one is receiving
* AAL0 traffic (since they will use the same queue) - according to the
* docs we shouldn't even use it for AAL0 traffic
*/
static inline int vci0_is_ok(struct lanai_dev *lanai,
const struct atm_qos *qos)
{
if (qos->txtp.traffic_class == ATM_CBR || qos->aal == ATM_AAL0)
return 0;
if (qos->rxtp.traffic_class != ATM_NONE) {
if (lanai->naal0 != 0)
return 0;
lanai->conf2 |= CONFIG2_VCI0_NORMAL;
conf2_write_if_powerup(lanai);
}
return 1;
}
/* return true if vci is currently unused, or if requested qos is
* compatible
*/
static int vci_is_ok(struct lanai_dev *lanai, vci_t vci,
const struct atm_vcc *atmvcc)
{
const struct atm_qos *qos = &atmvcc->qos;
const struct lanai_vcc *lvcc = lanai->vccs[vci];
if (vci == 0 && !vci0_is_ok(lanai, qos))
return 0;
if (unlikely(lvcc != NULL)) {
if (qos->rxtp.traffic_class != ATM_NONE &&
lvcc->rx.atmvcc != NULL && lvcc->rx.atmvcc != atmvcc)
return 0;
if (qos->txtp.traffic_class != ATM_NONE &&
lvcc->tx.atmvcc != NULL && lvcc->tx.atmvcc != atmvcc)
return 0;
if (qos->txtp.traffic_class == ATM_CBR &&
lanai->cbrvcc != NULL && lanai->cbrvcc != atmvcc)
return 0;
}
if (qos->aal == ATM_AAL0 && lanai->naal0 == 0 &&
qos->rxtp.traffic_class != ATM_NONE) {
const struct lanai_vcc *vci0 = lanai->vccs[0];
if (vci0 != NULL && vci0->rx.atmvcc != NULL)
return 0;
lanai->conf2 &= ~CONFIG2_VCI0_NORMAL;
conf2_write_if_powerup(lanai);
}
return 1;
}
static int lanai_normalize_ci(struct lanai_dev *lanai,
const struct atm_vcc *atmvcc, short *vpip, vci_t *vcip)
{
switch (*vpip) {
case ATM_VPI_ANY:
*vpip = 0;
fallthrough;
case 0:
break;
default:
return -EADDRINUSE;
}
switch (*vcip) {
case ATM_VCI_ANY:
for (*vcip = ATM_NOT_RSV_VCI; *vcip < lanai->num_vci;
(*vcip)++)
if (vci_is_ok(lanai, *vcip, atmvcc))
return 0;
return -EADDRINUSE;
default:
if (*vcip >= lanai->num_vci || *vcip < 0 ||
!vci_is_ok(lanai, *vcip, atmvcc))
return -EADDRINUSE;
}
return 0;
}
/* -------------------- MANAGE CBR: */
/*
* CBR ICG is stored as a fixed-point number with 4 fractional bits.
* Note that storing a number greater than 2046.0 will result in
* incorrect shaping
*/
#define CBRICG_FRAC_BITS (4)
#define CBRICG_MAX (2046 << CBRICG_FRAC_BITS)
/*
* ICG is related to PCR with the formula PCR = MAXPCR / (ICG + 1)
* where MAXPCR is (according to the docs) 25600000/(54*8),
* which is equal to (3125<<9)/27.
*
* Solving for ICG, we get:
* ICG = MAXPCR/PCR - 1
* ICG = (3125<<9)/(27*PCR) - 1
* ICG = ((3125<<9) - (27*PCR)) / (27*PCR)
*
* The end result is supposed to be a fixed-point number with FRAC_BITS
* bits of a fractional part, so we keep everything in the numerator
* shifted by that much as we compute
*
*/
static int pcr_to_cbricg(const struct atm_qos *qos)
{
int rounddown = 0; /* 1 = Round PCR down, i.e. round ICG _up_ */
int x, icg, pcr = atm_pcr_goal(&qos->txtp);
if (pcr == 0) /* Use maximum bandwidth */
return 0;
if (pcr < 0) {
rounddown = 1;
pcr = -pcr;
}
x = pcr * 27;
icg = (3125 << (9 + CBRICG_FRAC_BITS)) - (x << CBRICG_FRAC_BITS);
if (rounddown)
icg += x - 1;
icg /= x;
if (icg > CBRICG_MAX)
icg = CBRICG_MAX;
DPRINTK("pcr_to_cbricg: pcr=%d rounddown=%c icg=%d\n",
pcr, rounddown ? 'Y' : 'N', icg);
return icg;
}
static inline void lanai_cbr_setup(struct lanai_dev *lanai)
{
reg_write(lanai, pcr_to_cbricg(&lanai->cbrvcc->qos), CBR_ICG_Reg);
reg_write(lanai, lanai->cbrvcc->vci, CBR_PTR_Reg);
lanai->conf2 |= CONFIG2_CBR_ENABLE;
conf2_write(lanai);
}
static inline void lanai_cbr_shutdown(struct lanai_dev *lanai)
{
lanai->conf2 &= ~CONFIG2_CBR_ENABLE;
conf2_write(lanai);
}
/* -------------------- OPERATIONS: */
/* setup a newly detected device */
static int lanai_dev_open(struct atm_dev *atmdev)
{
struct lanai_dev *lanai = (struct lanai_dev *) atmdev->dev_data;
unsigned long raw_base;
int result;
DPRINTK("In lanai_dev_open()\n");
/* Basic device fields */
lanai->number = atmdev->number;
lanai->num_vci = NUM_VCI;
bitmap_zero(lanai->backlog_vccs, NUM_VCI);
bitmap_zero(lanai->transmit_ready, NUM_VCI);
lanai->naal0 = 0;
#ifdef USE_POWERDOWN
lanai->nbound = 0;
#endif
lanai->cbrvcc = NULL;
memset(&lanai->stats, 0, sizeof lanai->stats);
spin_lock_init(&lanai->endtxlock);
spin_lock_init(&lanai->servicelock);
atmdev->ci_range.vpi_bits = 0;
atmdev->ci_range.vci_bits = 0;
while (1 << atmdev->ci_range.vci_bits < lanai->num_vci)
atmdev->ci_range.vci_bits++;
atmdev->link_rate = ATM_25_PCR;
/* 3.2: PCI initialization */
if ((result = lanai_pci_start(lanai)) != 0)
goto error;
raw_base = lanai->pci->resource[0].start;
lanai->base = (bus_addr_t) ioremap(raw_base, LANAI_MAPPING_SIZE);
if (lanai->base == NULL) {
printk(KERN_ERR DEV_LABEL ": couldn't remap I/O space\n");
result = -ENOMEM;
goto error_pci;
}
/* 3.3: Reset lanai and PHY */
reset_board(lanai);
lanai->conf1 = reg_read(lanai, Config1_Reg);
lanai->conf1 &= ~(CONFIG1_GPOUT1 | CONFIG1_POWERDOWN |
CONFIG1_MASK_LEDMODE);
lanai->conf1 |= CONFIG1_SET_LEDMODE(LEDMODE_NOT_SOOL);
reg_write(lanai, lanai->conf1 | CONFIG1_GPOUT1, Config1_Reg);
udelay(1000);
conf1_write(lanai);
/*
* 3.4: Turn on endian mode for big-endian hardware
* We don't actually want to do this - the actual bit fields
* in the endian register are not documented anywhere.
* Instead we do the bit-flipping ourselves on big-endian
* hardware.
*
* 3.5: get the board ID/rev by reading the reset register
*/
result = check_board_id_and_rev("register",
reg_read(lanai, Reset_Reg), &lanai->board_rev);
if (result != 0)
goto error_unmap;
/* 3.6: read EEPROM */
if ((result = eeprom_read(lanai)) != 0)
goto error_unmap;
if ((result = eeprom_validate(lanai)) != 0)
goto error_unmap;
/* 3.7: re-reset PHY, do loopback tests, setup PHY */
reg_write(lanai, lanai->conf1 | CONFIG1_GPOUT1, Config1_Reg);
udelay(1000);
conf1_write(lanai);
/* TODO - loopback tests */
lanai->conf1 |= (CONFIG1_GPOUT2 | CONFIG1_GPOUT3 | CONFIG1_DMA_ENABLE);
conf1_write(lanai);
/* 3.8/3.9: test and initialize card SRAM */
if ((result = sram_test_and_clear(lanai)) != 0)
goto error_unmap;
/* 3.10: initialize lanai registers */
lanai->conf1 |= CONFIG1_DMA_ENABLE;
conf1_write(lanai);
if ((result = service_buffer_allocate(lanai)) != 0)
goto error_unmap;
if ((result = vcc_table_allocate(lanai)) != 0)
goto error_service;
lanai->conf2 = (lanai->num_vci >= 512 ? CONFIG2_HOWMANY : 0) |
CONFIG2_HEC_DROP | /* ??? */ CONFIG2_PTI7_MODE;
conf2_write(lanai);
reg_write(lanai, TX_FIFO_DEPTH, TxDepth_Reg);
reg_write(lanai, 0, CBR_ICG_Reg); /* CBR defaults to no limit */
if ((result = request_irq(lanai->pci->irq, lanai_int, IRQF_SHARED,
DEV_LABEL, lanai)) != 0) {
printk(KERN_ERR DEV_LABEL ": can't allocate interrupt\n");
goto error_vcctable;
}
mb(); /* Make sure that all that made it */
intr_enable(lanai, INT_ALL & ~(INT_PING | INT_WAKE));
/* 3.11: initialize loop mode (i.e. turn looping off) */
lanai->conf1 = (lanai->conf1 & ~CONFIG1_MASK_LOOPMODE) |
CONFIG1_SET_LOOPMODE(LOOPMODE_NORMAL) |
CONFIG1_GPOUT2 | CONFIG1_GPOUT3;
conf1_write(lanai);
lanai->status = reg_read(lanai, Status_Reg);
/* We're now done initializing this card */
#ifdef USE_POWERDOWN
lanai->conf1 |= CONFIG1_POWERDOWN;
conf1_write(lanai);
#endif
memcpy(atmdev->esi, eeprom_mac(lanai), ESI_LEN);
lanai_timed_poll_start(lanai);
printk(KERN_NOTICE DEV_LABEL "(itf %d): rev.%d, base=%p, irq=%u "
"(%pMF)\n", lanai->number, (int) lanai->pci->revision,
lanai->base, lanai->pci->irq, atmdev->esi);
printk(KERN_NOTICE DEV_LABEL "(itf %d): LANAI%s, serialno=%u(0x%X), "
"board_rev=%d\n", lanai->number,
lanai->type==lanai2 ? "2" : "HB", (unsigned int) lanai->serialno,
(unsigned int) lanai->serialno, lanai->board_rev);
return 0;
error_vcctable:
vcc_table_deallocate(lanai);
error_service:
service_buffer_deallocate(lanai);
error_unmap:
reset_board(lanai);
#ifdef USE_POWERDOWN
lanai->conf1 = reg_read(lanai, Config1_Reg) | CONFIG1_POWERDOWN;
conf1_write(lanai);
#endif
iounmap(lanai->base);
lanai->base = NULL;
error_pci:
pci_disable_device(lanai->pci);
error:
return result;
}
/* called when device is being shutdown, and all vcc's are gone - higher
* levels will deallocate the atm device for us
*/
static void lanai_dev_close(struct atm_dev *atmdev)
{
struct lanai_dev *lanai = (struct lanai_dev *) atmdev->dev_data;
if (lanai->base==NULL)
return;
printk(KERN_INFO DEV_LABEL "(itf %d): shutting down interface\n",
lanai->number);
lanai_timed_poll_stop(lanai);
#ifdef USE_POWERDOWN
lanai->conf1 = reg_read(lanai, Config1_Reg) & ~CONFIG1_POWERDOWN;
conf1_write(lanai);
#endif
intr_disable(lanai, INT_ALL);
free_irq(lanai->pci->irq, lanai);
reset_board(lanai);
#ifdef USE_POWERDOWN
lanai->conf1 |= CONFIG1_POWERDOWN;
conf1_write(lanai);
#endif
pci_disable_device(lanai->pci);
vcc_table_deallocate(lanai);
service_buffer_deallocate(lanai);
iounmap(lanai->base);
kfree(lanai);
}
/* close a vcc */
static void lanai_close(struct atm_vcc *atmvcc)
{
struct lanai_vcc *lvcc = (struct lanai_vcc *) atmvcc->dev_data;
struct lanai_dev *lanai = (struct lanai_dev *) atmvcc->dev->dev_data;
if (lvcc == NULL)
return;
clear_bit(ATM_VF_READY, &atmvcc->flags);
clear_bit(ATM_VF_PARTIAL, &atmvcc->flags);
if (lvcc->rx.atmvcc == atmvcc) {
lanai_shutdown_rx_vci(lvcc);
if (atmvcc->qos.aal == ATM_AAL0) {
if (--lanai->naal0 <= 0)
aal0_buffer_free(lanai);
} else
lanai_buf_deallocate(&lvcc->rx.buf, lanai->pci);
lvcc->rx.atmvcc = NULL;
}
if (lvcc->tx.atmvcc == atmvcc) {
if (atmvcc == lanai->cbrvcc) {
if (lvcc->vbase != NULL)
lanai_cbr_shutdown(lanai);
lanai->cbrvcc = NULL;
}
lanai_shutdown_tx_vci(lanai, lvcc);
lanai_buf_deallocate(&lvcc->tx.buf, lanai->pci);
lvcc->tx.atmvcc = NULL;
}
if (--lvcc->nref == 0) {
host_vcc_unbind(lanai, lvcc);
kfree(lvcc);
}
atmvcc->dev_data = NULL;
clear_bit(ATM_VF_ADDR, &atmvcc->flags);
}
/* open a vcc on the card to vpi/vci */
static int lanai_open(struct atm_vcc *atmvcc)
{
struct lanai_dev *lanai;
struct lanai_vcc *lvcc;
int result = 0;
int vci = atmvcc->vci;
short vpi = atmvcc->vpi;
/* we don't support partial open - it's not really useful anyway */
if ((test_bit(ATM_VF_PARTIAL, &atmvcc->flags)) ||
(vpi == ATM_VPI_UNSPEC) || (vci == ATM_VCI_UNSPEC))
return -EINVAL;
lanai = (struct lanai_dev *) atmvcc->dev->dev_data;
result = lanai_normalize_ci(lanai, atmvcc, &vpi, &vci);
if (unlikely(result != 0))
goto out;
set_bit(ATM_VF_ADDR, &atmvcc->flags);
if (atmvcc->qos.aal != ATM_AAL0 && atmvcc->qos.aal != ATM_AAL5)
return -EINVAL;
DPRINTK(DEV_LABEL "(itf %d): open %d.%d\n", lanai->number,
(int) vpi, vci);
lvcc = lanai->vccs[vci];
if (lvcc == NULL) {
lvcc = new_lanai_vcc();
if (unlikely(lvcc == NULL))
return -ENOMEM;
atmvcc->dev_data = lvcc;
}
lvcc->nref++;
if (atmvcc->qos.rxtp.traffic_class != ATM_NONE) {
APRINTK(lvcc->rx.atmvcc == NULL, "rx.atmvcc!=NULL, vci=%d\n",
vci);
if (atmvcc->qos.aal == ATM_AAL0) {
if (lanai->naal0 == 0)
result = aal0_buffer_allocate(lanai);
} else
result = lanai_setup_rx_vci_aal5(
lanai, lvcc, &atmvcc->qos);
if (unlikely(result != 0))
goto out_free;
lvcc->rx.atmvcc = atmvcc;
lvcc->stats.rx_nomem = 0;
lvcc->stats.x.aal5.rx_badlen = 0;
lvcc->stats.x.aal5.service_trash = 0;
lvcc->stats.x.aal5.service_stream = 0;
lvcc->stats.x.aal5.service_rxcrc = 0;
if (atmvcc->qos.aal == ATM_AAL0)
lanai->naal0++;
}
if (atmvcc->qos.txtp.traffic_class != ATM_NONE) {
APRINTK(lvcc->tx.atmvcc == NULL, "tx.atmvcc!=NULL, vci=%d\n",
vci);
result = lanai_setup_tx_vci(lanai, lvcc, &atmvcc->qos);
if (unlikely(result != 0))
goto out_free;
lvcc->tx.atmvcc = atmvcc;
if (atmvcc->qos.txtp.traffic_class == ATM_CBR) {
APRINTK(lanai->cbrvcc == NULL,
"cbrvcc!=NULL, vci=%d\n", vci);
lanai->cbrvcc = atmvcc;
}
}
host_vcc_bind(lanai, lvcc, vci);
/*
* Make sure everything made it to RAM before we tell the card about
* the VCC
*/
wmb();
if (atmvcc == lvcc->rx.atmvcc)
host_vcc_start_rx(lvcc);
if (atmvcc == lvcc->tx.atmvcc) {
host_vcc_start_tx(lvcc);
if (lanai->cbrvcc == atmvcc)
lanai_cbr_setup(lanai);
}
set_bit(ATM_VF_READY, &atmvcc->flags);
return 0;
out_free:
lanai_close(atmvcc);
out:
return result;
}
static int lanai_send(struct atm_vcc *atmvcc, struct sk_buff *skb)
{
struct lanai_vcc *lvcc = (struct lanai_vcc *) atmvcc->dev_data;
struct lanai_dev *lanai = (struct lanai_dev *) atmvcc->dev->dev_data;
unsigned long flags;
if (unlikely(lvcc == NULL || lvcc->vbase == NULL ||
lvcc->tx.atmvcc != atmvcc))
goto einval;
#ifdef DEBUG
if (unlikely(skb == NULL)) {
DPRINTK("lanai_send: skb==NULL for vci=%d\n", atmvcc->vci);
goto einval;
}
if (unlikely(lanai == NULL)) {
DPRINTK("lanai_send: lanai==NULL for vci=%d\n", atmvcc->vci);
goto einval;
}
#endif
ATM_SKB(skb)->vcc = atmvcc;
switch (atmvcc->qos.aal) {
case ATM_AAL5:
read_lock_irqsave(&vcc_sklist_lock, flags);
vcc_tx_aal5(lanai, lvcc, skb);
read_unlock_irqrestore(&vcc_sklist_lock, flags);
return 0;
case ATM_AAL0:
if (unlikely(skb->len != ATM_CELL_SIZE-1))
goto einval;
/* NOTE - this next line is technically invalid - we haven't unshared skb */
cpu_to_be32s((u32 *) skb->data);
read_lock_irqsave(&vcc_sklist_lock, flags);
vcc_tx_aal0(lanai, lvcc, skb);
read_unlock_irqrestore(&vcc_sklist_lock, flags);
return 0;
}
DPRINTK("lanai_send: bad aal=%d on vci=%d\n", (int) atmvcc->qos.aal,
atmvcc->vci);
einval:
lanai_free_skb(atmvcc, skb);
return -EINVAL;
}
static int lanai_change_qos(struct atm_vcc *atmvcc,
/*const*/ struct atm_qos *qos, int flags)
{
return -EBUSY; /* TODO: need to write this */
}
#ifndef CONFIG_PROC_FS
#define lanai_proc_read NULL
#else
static int lanai_proc_read(struct atm_dev *atmdev, loff_t *pos, char *page)
{
struct lanai_dev *lanai = (struct lanai_dev *) atmdev->dev_data;
loff_t left = *pos;
struct lanai_vcc *lvcc;
if (left-- == 0)
return sprintf(page, DEV_LABEL "(itf %d): chip=LANAI%s, "
"serial=%u, magic=0x%08X, num_vci=%d\n",
atmdev->number, lanai->type==lanai2 ? "2" : "HB",
(unsigned int) lanai->serialno,
(unsigned int) lanai->magicno, lanai->num_vci);
if (left-- == 0)
return sprintf(page, "revision: board=%d, pci_if=%d\n",
lanai->board_rev, (int) lanai->pci->revision);
if (left-- == 0)
return sprintf(page, "EEPROM ESI: %pM\n",
&lanai->eeprom[EEPROM_MAC]);
if (left-- == 0)
return sprintf(page, "status: SOOL=%d, LOCD=%d, LED=%d, "
"GPIN=%d\n", (lanai->status & STATUS_SOOL) ? 1 : 0,
(lanai->status & STATUS_LOCD) ? 1 : 0,
(lanai->status & STATUS_LED) ? 1 : 0,
(lanai->status & STATUS_GPIN) ? 1 : 0);
if (left-- == 0)
return sprintf(page, "global buffer sizes: service=%zu, "
"aal0_rx=%zu\n", lanai_buf_size(&lanai->service),
lanai->naal0 ? lanai_buf_size(&lanai->aal0buf) : 0);
if (left-- == 0) {
get_statistics(lanai);
return sprintf(page, "cells in error: overflow=%u, "
"closed_vci=%u, bad_HEC=%u, rx_fifo=%u\n",
lanai->stats.ovfl_trash, lanai->stats.vci_trash,
lanai->stats.hec_err, lanai->stats.atm_ovfl);
}
if (left-- == 0)
return sprintf(page, "PCI errors: parity_detect=%u, "
"master_abort=%u, master_target_abort=%u,\n",
lanai->stats.pcierr_parity_detect,
lanai->stats.pcierr_serr_set,
lanai->stats.pcierr_m_target_abort);
if (left-- == 0)
return sprintf(page, " slave_target_abort=%u, "
"master_parity=%u\n", lanai->stats.pcierr_s_target_abort,
lanai->stats.pcierr_master_parity);
if (left-- == 0)
return sprintf(page, " no_tx=%u, "
"no_rx=%u, bad_rx_aal=%u\n", lanai->stats.service_norx,
lanai->stats.service_notx,
lanai->stats.service_rxnotaal5);
if (left-- == 0)
return sprintf(page, "resets: dma=%u, card=%u\n",
lanai->stats.dma_reenable, lanai->stats.card_reset);
/* At this point, "left" should be the VCI we're looking for */
read_lock(&vcc_sklist_lock);
for (; ; left++) {
if (left >= NUM_VCI) {
left = 0;
goto out;
}
if ((lvcc = lanai->vccs[left]) != NULL)
break;
(*pos)++;
}
/* Note that we re-use "left" here since we're done with it */
left = sprintf(page, "VCI %4d: nref=%d, rx_nomem=%u", (vci_t) left,
lvcc->nref, lvcc->stats.rx_nomem);
if (lvcc->rx.atmvcc != NULL) {
left += sprintf(&page[left], ",\n rx_AAL=%d",
lvcc->rx.atmvcc->qos.aal == ATM_AAL5 ? 5 : 0);
if (lvcc->rx.atmvcc->qos.aal == ATM_AAL5)
left += sprintf(&page[left], ", rx_buf_size=%zu, "
"rx_bad_len=%u,\n rx_service_trash=%u, "
"rx_service_stream=%u, rx_bad_crc=%u",
lanai_buf_size(&lvcc->rx.buf),
lvcc->stats.x.aal5.rx_badlen,
lvcc->stats.x.aal5.service_trash,
lvcc->stats.x.aal5.service_stream,
lvcc->stats.x.aal5.service_rxcrc);
}
if (lvcc->tx.atmvcc != NULL)
left += sprintf(&page[left], ",\n tx_AAL=%d, "
"tx_buf_size=%zu, tx_qos=%cBR, tx_backlogged=%c",
lvcc->tx.atmvcc->qos.aal == ATM_AAL5 ? 5 : 0,
lanai_buf_size(&lvcc->tx.buf),
lvcc->tx.atmvcc == lanai->cbrvcc ? 'C' : 'U',
vcc_is_backlogged(lvcc) ? 'Y' : 'N');
page[left++] = '\n';
page[left] = '\0';
out:
read_unlock(&vcc_sklist_lock);
return left;
}
#endif /* CONFIG_PROC_FS */
/* -------------------- HOOKS: */
static const struct atmdev_ops ops = {
.dev_close = lanai_dev_close,
.open = lanai_open,
.close = lanai_close,
.send = lanai_send,
.phy_put = NULL,
.phy_get = NULL,
.change_qos = lanai_change_qos,
.proc_read = lanai_proc_read,
.owner = THIS_MODULE
};
/* initialize one probed card */
static int lanai_init_one(struct pci_dev *pci,
const struct pci_device_id *ident)
{
struct lanai_dev *lanai;
struct atm_dev *atmdev;
int result;
lanai = kzalloc(sizeof(*lanai), GFP_KERNEL);
if (lanai == NULL) {
printk(KERN_ERR DEV_LABEL
": couldn't allocate dev_data structure!\n");
return -ENOMEM;
}
atmdev = atm_dev_register(DEV_LABEL, &pci->dev, &ops, -1, NULL);
if (atmdev == NULL) {
printk(KERN_ERR DEV_LABEL
": couldn't register atm device!\n");
kfree(lanai);
return -EBUSY;
}
atmdev->dev_data = lanai;
lanai->pci = pci;
lanai->type = (enum lanai_type) ident->device;
result = lanai_dev_open(atmdev);
if (result != 0) {
DPRINTK("lanai_start() failed, err=%d\n", -result);
atm_dev_deregister(atmdev);
kfree(lanai);
}
return result;
}
static const struct pci_device_id lanai_pci_tbl[] = {
{ PCI_VDEVICE(EF, PCI_DEVICE_ID_EF_ATM_LANAI2) },
{ PCI_VDEVICE(EF, PCI_DEVICE_ID_EF_ATM_LANAIHB) },
{ 0, } /* terminal entry */
};
MODULE_DEVICE_TABLE(pci, lanai_pci_tbl);
static struct pci_driver lanai_driver = {
.name = DEV_LABEL,
.id_table = lanai_pci_tbl,
.probe = lanai_init_one,
};
module_pci_driver(lanai_driver);
MODULE_AUTHOR("Mitchell Blank Jr <mitch@sfgoth.com>");
MODULE_DESCRIPTION("Efficient Networks Speedstream 3010 driver");
MODULE_LICENSE("GPL");