1152 lines
28 KiB
C
1152 lines
28 KiB
C
/*
|
|
* pSeries NUMA support
|
|
*
|
|
* Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version
|
|
* 2 of the License, or (at your option) any later version.
|
|
*/
|
|
#include <linux/threads.h>
|
|
#include <linux/bootmem.h>
|
|
#include <linux/init.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/mmzone.h>
|
|
#include <linux/module.h>
|
|
#include <linux/nodemask.h>
|
|
#include <linux/cpu.h>
|
|
#include <linux/notifier.h>
|
|
#include <linux/lmb.h>
|
|
#include <linux/of.h>
|
|
#include <asm/sparsemem.h>
|
|
#include <asm/prom.h>
|
|
#include <asm/system.h>
|
|
#include <asm/smp.h>
|
|
|
|
static int numa_enabled = 1;
|
|
|
|
static char *cmdline __initdata;
|
|
|
|
static int numa_debug;
|
|
#define dbg(args...) if (numa_debug) { printk(KERN_INFO args); }
|
|
|
|
int numa_cpu_lookup_table[NR_CPUS];
|
|
cpumask_t numa_cpumask_lookup_table[MAX_NUMNODES];
|
|
struct pglist_data *node_data[MAX_NUMNODES];
|
|
|
|
EXPORT_SYMBOL(numa_cpu_lookup_table);
|
|
EXPORT_SYMBOL(numa_cpumask_lookup_table);
|
|
EXPORT_SYMBOL(node_data);
|
|
|
|
static int min_common_depth;
|
|
static int n_mem_addr_cells, n_mem_size_cells;
|
|
|
|
static int __cpuinit fake_numa_create_new_node(unsigned long end_pfn,
|
|
unsigned int *nid)
|
|
{
|
|
unsigned long long mem;
|
|
char *p = cmdline;
|
|
static unsigned int fake_nid;
|
|
static unsigned long long curr_boundary;
|
|
|
|
/*
|
|
* Modify node id, iff we started creating NUMA nodes
|
|
* We want to continue from where we left of the last time
|
|
*/
|
|
if (fake_nid)
|
|
*nid = fake_nid;
|
|
/*
|
|
* In case there are no more arguments to parse, the
|
|
* node_id should be the same as the last fake node id
|
|
* (we've handled this above).
|
|
*/
|
|
if (!p)
|
|
return 0;
|
|
|
|
mem = memparse(p, &p);
|
|
if (!mem)
|
|
return 0;
|
|
|
|
if (mem < curr_boundary)
|
|
return 0;
|
|
|
|
curr_boundary = mem;
|
|
|
|
if ((end_pfn << PAGE_SHIFT) > mem) {
|
|
/*
|
|
* Skip commas and spaces
|
|
*/
|
|
while (*p == ',' || *p == ' ' || *p == '\t')
|
|
p++;
|
|
|
|
cmdline = p;
|
|
fake_nid++;
|
|
*nid = fake_nid;
|
|
dbg("created new fake_node with id %d\n", fake_nid);
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* get_active_region_work_fn - A helper function for get_node_active_region
|
|
* Returns datax set to the start_pfn and end_pfn if they contain
|
|
* the initial value of datax->start_pfn between them
|
|
* @start_pfn: start page(inclusive) of region to check
|
|
* @end_pfn: end page(exclusive) of region to check
|
|
* @datax: comes in with ->start_pfn set to value to search for and
|
|
* goes out with active range if it contains it
|
|
* Returns 1 if search value is in range else 0
|
|
*/
|
|
static int __init get_active_region_work_fn(unsigned long start_pfn,
|
|
unsigned long end_pfn, void *datax)
|
|
{
|
|
struct node_active_region *data;
|
|
data = (struct node_active_region *)datax;
|
|
|
|
if (start_pfn <= data->start_pfn && end_pfn > data->start_pfn) {
|
|
data->start_pfn = start_pfn;
|
|
data->end_pfn = end_pfn;
|
|
return 1;
|
|
}
|
|
return 0;
|
|
|
|
}
|
|
|
|
/*
|
|
* get_node_active_region - Return active region containing start_pfn
|
|
* Active range returned is empty if none found.
|
|
* @start_pfn: The page to return the region for.
|
|
* @node_ar: Returned set to the active region containing start_pfn
|
|
*/
|
|
static void __init get_node_active_region(unsigned long start_pfn,
|
|
struct node_active_region *node_ar)
|
|
{
|
|
int nid = early_pfn_to_nid(start_pfn);
|
|
|
|
node_ar->nid = nid;
|
|
node_ar->start_pfn = start_pfn;
|
|
node_ar->end_pfn = start_pfn;
|
|
work_with_active_regions(nid, get_active_region_work_fn, node_ar);
|
|
}
|
|
|
|
static void __cpuinit map_cpu_to_node(int cpu, int node)
|
|
{
|
|
numa_cpu_lookup_table[cpu] = node;
|
|
|
|
dbg("adding cpu %d to node %d\n", cpu, node);
|
|
|
|
if (!(cpu_isset(cpu, numa_cpumask_lookup_table[node])))
|
|
cpu_set(cpu, numa_cpumask_lookup_table[node]);
|
|
}
|
|
|
|
#ifdef CONFIG_HOTPLUG_CPU
|
|
static void unmap_cpu_from_node(unsigned long cpu)
|
|
{
|
|
int node = numa_cpu_lookup_table[cpu];
|
|
|
|
dbg("removing cpu %lu from node %d\n", cpu, node);
|
|
|
|
if (cpu_isset(cpu, numa_cpumask_lookup_table[node])) {
|
|
cpu_clear(cpu, numa_cpumask_lookup_table[node]);
|
|
} else {
|
|
printk(KERN_ERR "WARNING: cpu %lu not found in node %d\n",
|
|
cpu, node);
|
|
}
|
|
}
|
|
#endif /* CONFIG_HOTPLUG_CPU */
|
|
|
|
static struct device_node * __cpuinit find_cpu_node(unsigned int cpu)
|
|
{
|
|
unsigned int hw_cpuid = get_hard_smp_processor_id(cpu);
|
|
struct device_node *cpu_node = NULL;
|
|
const unsigned int *interrupt_server, *reg;
|
|
int len;
|
|
|
|
while ((cpu_node = of_find_node_by_type(cpu_node, "cpu")) != NULL) {
|
|
/* Try interrupt server first */
|
|
interrupt_server = of_get_property(cpu_node,
|
|
"ibm,ppc-interrupt-server#s", &len);
|
|
|
|
len = len / sizeof(u32);
|
|
|
|
if (interrupt_server && (len > 0)) {
|
|
while (len--) {
|
|
if (interrupt_server[len] == hw_cpuid)
|
|
return cpu_node;
|
|
}
|
|
} else {
|
|
reg = of_get_property(cpu_node, "reg", &len);
|
|
if (reg && (len > 0) && (reg[0] == hw_cpuid))
|
|
return cpu_node;
|
|
}
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/* must hold reference to node during call */
|
|
static const int *of_get_associativity(struct device_node *dev)
|
|
{
|
|
return of_get_property(dev, "ibm,associativity", NULL);
|
|
}
|
|
|
|
/*
|
|
* Returns the property linux,drconf-usable-memory if
|
|
* it exists (the property exists only in kexec/kdump kernels,
|
|
* added by kexec-tools)
|
|
*/
|
|
static const u32 *of_get_usable_memory(struct device_node *memory)
|
|
{
|
|
const u32 *prop;
|
|
u32 len;
|
|
prop = of_get_property(memory, "linux,drconf-usable-memory", &len);
|
|
if (!prop || len < sizeof(unsigned int))
|
|
return 0;
|
|
return prop;
|
|
}
|
|
|
|
/* Returns nid in the range [0..MAX_NUMNODES-1], or -1 if no useful numa
|
|
* info is found.
|
|
*/
|
|
static int of_node_to_nid_single(struct device_node *device)
|
|
{
|
|
int nid = -1;
|
|
const unsigned int *tmp;
|
|
|
|
if (min_common_depth == -1)
|
|
goto out;
|
|
|
|
tmp = of_get_associativity(device);
|
|
if (!tmp)
|
|
goto out;
|
|
|
|
if (tmp[0] >= min_common_depth)
|
|
nid = tmp[min_common_depth];
|
|
|
|
/* POWER4 LPAR uses 0xffff as invalid node */
|
|
if (nid == 0xffff || nid >= MAX_NUMNODES)
|
|
nid = -1;
|
|
out:
|
|
return nid;
|
|
}
|
|
|
|
/* Walk the device tree upwards, looking for an associativity id */
|
|
int of_node_to_nid(struct device_node *device)
|
|
{
|
|
struct device_node *tmp;
|
|
int nid = -1;
|
|
|
|
of_node_get(device);
|
|
while (device) {
|
|
nid = of_node_to_nid_single(device);
|
|
if (nid != -1)
|
|
break;
|
|
|
|
tmp = device;
|
|
device = of_get_parent(tmp);
|
|
of_node_put(tmp);
|
|
}
|
|
of_node_put(device);
|
|
|
|
return nid;
|
|
}
|
|
EXPORT_SYMBOL_GPL(of_node_to_nid);
|
|
|
|
/*
|
|
* In theory, the "ibm,associativity" property may contain multiple
|
|
* associativity lists because a resource may be multiply connected
|
|
* into the machine. This resource then has different associativity
|
|
* characteristics relative to its multiple connections. We ignore
|
|
* this for now. We also assume that all cpu and memory sets have
|
|
* their distances represented at a common level. This won't be
|
|
* true for hierarchical NUMA.
|
|
*
|
|
* In any case the ibm,associativity-reference-points should give
|
|
* the correct depth for a normal NUMA system.
|
|
*
|
|
* - Dave Hansen <haveblue@us.ibm.com>
|
|
*/
|
|
static int __init find_min_common_depth(void)
|
|
{
|
|
int depth;
|
|
const unsigned int *ref_points;
|
|
struct device_node *rtas_root;
|
|
unsigned int len;
|
|
|
|
rtas_root = of_find_node_by_path("/rtas");
|
|
|
|
if (!rtas_root)
|
|
return -1;
|
|
|
|
/*
|
|
* this property is 2 32-bit integers, each representing a level of
|
|
* depth in the associativity nodes. The first is for an SMP
|
|
* configuration (should be all 0's) and the second is for a normal
|
|
* NUMA configuration.
|
|
*/
|
|
ref_points = of_get_property(rtas_root,
|
|
"ibm,associativity-reference-points", &len);
|
|
|
|
if ((len >= 1) && ref_points) {
|
|
depth = ref_points[1];
|
|
} else {
|
|
dbg("NUMA: ibm,associativity-reference-points not found.\n");
|
|
depth = -1;
|
|
}
|
|
of_node_put(rtas_root);
|
|
|
|
return depth;
|
|
}
|
|
|
|
static void __init get_n_mem_cells(int *n_addr_cells, int *n_size_cells)
|
|
{
|
|
struct device_node *memory = NULL;
|
|
|
|
memory = of_find_node_by_type(memory, "memory");
|
|
if (!memory)
|
|
panic("numa.c: No memory nodes found!");
|
|
|
|
*n_addr_cells = of_n_addr_cells(memory);
|
|
*n_size_cells = of_n_size_cells(memory);
|
|
of_node_put(memory);
|
|
}
|
|
|
|
static unsigned long __devinit read_n_cells(int n, const unsigned int **buf)
|
|
{
|
|
unsigned long result = 0;
|
|
|
|
while (n--) {
|
|
result = (result << 32) | **buf;
|
|
(*buf)++;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
struct of_drconf_cell {
|
|
u64 base_addr;
|
|
u32 drc_index;
|
|
u32 reserved;
|
|
u32 aa_index;
|
|
u32 flags;
|
|
};
|
|
|
|
#define DRCONF_MEM_ASSIGNED 0x00000008
|
|
#define DRCONF_MEM_AI_INVALID 0x00000040
|
|
#define DRCONF_MEM_RESERVED 0x00000080
|
|
|
|
/*
|
|
* Read the next lmb list entry from the ibm,dynamic-memory property
|
|
* and return the information in the provided of_drconf_cell structure.
|
|
*/
|
|
static void read_drconf_cell(struct of_drconf_cell *drmem, const u32 **cellp)
|
|
{
|
|
const u32 *cp;
|
|
|
|
drmem->base_addr = read_n_cells(n_mem_addr_cells, cellp);
|
|
|
|
cp = *cellp;
|
|
drmem->drc_index = cp[0];
|
|
drmem->reserved = cp[1];
|
|
drmem->aa_index = cp[2];
|
|
drmem->flags = cp[3];
|
|
|
|
*cellp = cp + 4;
|
|
}
|
|
|
|
/*
|
|
* Retreive and validate the ibm,dynamic-memory property of the device tree.
|
|
*
|
|
* The layout of the ibm,dynamic-memory property is a number N of lmb
|
|
* list entries followed by N lmb list entries. Each lmb list entry
|
|
* contains information as layed out in the of_drconf_cell struct above.
|
|
*/
|
|
static int of_get_drconf_memory(struct device_node *memory, const u32 **dm)
|
|
{
|
|
const u32 *prop;
|
|
u32 len, entries;
|
|
|
|
prop = of_get_property(memory, "ibm,dynamic-memory", &len);
|
|
if (!prop || len < sizeof(unsigned int))
|
|
return 0;
|
|
|
|
entries = *prop++;
|
|
|
|
/* Now that we know the number of entries, revalidate the size
|
|
* of the property read in to ensure we have everything
|
|
*/
|
|
if (len < (entries * (n_mem_addr_cells + 4) + 1) * sizeof(unsigned int))
|
|
return 0;
|
|
|
|
*dm = prop;
|
|
return entries;
|
|
}
|
|
|
|
/*
|
|
* Retreive and validate the ibm,lmb-size property for drconf memory
|
|
* from the device tree.
|
|
*/
|
|
static u64 of_get_lmb_size(struct device_node *memory)
|
|
{
|
|
const u32 *prop;
|
|
u32 len;
|
|
|
|
prop = of_get_property(memory, "ibm,lmb-size", &len);
|
|
if (!prop || len < sizeof(unsigned int))
|
|
return 0;
|
|
|
|
return read_n_cells(n_mem_size_cells, &prop);
|
|
}
|
|
|
|
struct assoc_arrays {
|
|
u32 n_arrays;
|
|
u32 array_sz;
|
|
const u32 *arrays;
|
|
};
|
|
|
|
/*
|
|
* Retreive and validate the list of associativity arrays for drconf
|
|
* memory from the ibm,associativity-lookup-arrays property of the
|
|
* device tree..
|
|
*
|
|
* The layout of the ibm,associativity-lookup-arrays property is a number N
|
|
* indicating the number of associativity arrays, followed by a number M
|
|
* indicating the size of each associativity array, followed by a list
|
|
* of N associativity arrays.
|
|
*/
|
|
static int of_get_assoc_arrays(struct device_node *memory,
|
|
struct assoc_arrays *aa)
|
|
{
|
|
const u32 *prop;
|
|
u32 len;
|
|
|
|
prop = of_get_property(memory, "ibm,associativity-lookup-arrays", &len);
|
|
if (!prop || len < 2 * sizeof(unsigned int))
|
|
return -1;
|
|
|
|
aa->n_arrays = *prop++;
|
|
aa->array_sz = *prop++;
|
|
|
|
/* Now that we know the number of arrrays and size of each array,
|
|
* revalidate the size of the property read in.
|
|
*/
|
|
if (len < (aa->n_arrays * aa->array_sz + 2) * sizeof(unsigned int))
|
|
return -1;
|
|
|
|
aa->arrays = prop;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* This is like of_node_to_nid_single() for memory represented in the
|
|
* ibm,dynamic-reconfiguration-memory node.
|
|
*/
|
|
static int of_drconf_to_nid_single(struct of_drconf_cell *drmem,
|
|
struct assoc_arrays *aa)
|
|
{
|
|
int default_nid = 0;
|
|
int nid = default_nid;
|
|
int index;
|
|
|
|
if (min_common_depth > 0 && min_common_depth <= aa->array_sz &&
|
|
!(drmem->flags & DRCONF_MEM_AI_INVALID) &&
|
|
drmem->aa_index < aa->n_arrays) {
|
|
index = drmem->aa_index * aa->array_sz + min_common_depth - 1;
|
|
nid = aa->arrays[index];
|
|
|
|
if (nid == 0xffff || nid >= MAX_NUMNODES)
|
|
nid = default_nid;
|
|
}
|
|
|
|
return nid;
|
|
}
|
|
|
|
/*
|
|
* Figure out to which domain a cpu belongs and stick it there.
|
|
* Return the id of the domain used.
|
|
*/
|
|
static int __cpuinit numa_setup_cpu(unsigned long lcpu)
|
|
{
|
|
int nid = 0;
|
|
struct device_node *cpu = find_cpu_node(lcpu);
|
|
|
|
if (!cpu) {
|
|
WARN_ON(1);
|
|
goto out;
|
|
}
|
|
|
|
nid = of_node_to_nid_single(cpu);
|
|
|
|
if (nid < 0 || !node_online(nid))
|
|
nid = any_online_node(NODE_MASK_ALL);
|
|
out:
|
|
map_cpu_to_node(lcpu, nid);
|
|
|
|
of_node_put(cpu);
|
|
|
|
return nid;
|
|
}
|
|
|
|
static int __cpuinit cpu_numa_callback(struct notifier_block *nfb,
|
|
unsigned long action,
|
|
void *hcpu)
|
|
{
|
|
unsigned long lcpu = (unsigned long)hcpu;
|
|
int ret = NOTIFY_DONE;
|
|
|
|
switch (action) {
|
|
case CPU_UP_PREPARE:
|
|
case CPU_UP_PREPARE_FROZEN:
|
|
numa_setup_cpu(lcpu);
|
|
ret = NOTIFY_OK;
|
|
break;
|
|
#ifdef CONFIG_HOTPLUG_CPU
|
|
case CPU_DEAD:
|
|
case CPU_DEAD_FROZEN:
|
|
case CPU_UP_CANCELED:
|
|
case CPU_UP_CANCELED_FROZEN:
|
|
unmap_cpu_from_node(lcpu);
|
|
break;
|
|
ret = NOTIFY_OK;
|
|
#endif
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Check and possibly modify a memory region to enforce the memory limit.
|
|
*
|
|
* Returns the size the region should have to enforce the memory limit.
|
|
* This will either be the original value of size, a truncated value,
|
|
* or zero. If the returned value of size is 0 the region should be
|
|
* discarded as it lies wholy above the memory limit.
|
|
*/
|
|
static unsigned long __init numa_enforce_memory_limit(unsigned long start,
|
|
unsigned long size)
|
|
{
|
|
/*
|
|
* We use lmb_end_of_DRAM() in here instead of memory_limit because
|
|
* we've already adjusted it for the limit and it takes care of
|
|
* having memory holes below the limit. Also, in the case of
|
|
* iommu_is_off, memory_limit is not set but is implicitly enforced.
|
|
*/
|
|
|
|
if (start + size <= lmb_end_of_DRAM())
|
|
return size;
|
|
|
|
if (start >= lmb_end_of_DRAM())
|
|
return 0;
|
|
|
|
return lmb_end_of_DRAM() - start;
|
|
}
|
|
|
|
/*
|
|
* Reads the counter for a given entry in
|
|
* linux,drconf-usable-memory property
|
|
*/
|
|
static inline int __init read_usm_ranges(const u32 **usm)
|
|
{
|
|
/*
|
|
* For each lmb in ibm,dynamic-memory a corresponding
|
|
* entry in linux,drconf-usable-memory property contains
|
|
* a counter followed by that many (base, size) duple.
|
|
* read the counter from linux,drconf-usable-memory
|
|
*/
|
|
return read_n_cells(n_mem_size_cells, usm);
|
|
}
|
|
|
|
/*
|
|
* Extract NUMA information from the ibm,dynamic-reconfiguration-memory
|
|
* node. This assumes n_mem_{addr,size}_cells have been set.
|
|
*/
|
|
static void __init parse_drconf_memory(struct device_node *memory)
|
|
{
|
|
const u32 *dm, *usm;
|
|
unsigned int n, rc, ranges, is_kexec_kdump = 0;
|
|
unsigned long lmb_size, base, size, sz;
|
|
int nid;
|
|
struct assoc_arrays aa;
|
|
|
|
n = of_get_drconf_memory(memory, &dm);
|
|
if (!n)
|
|
return;
|
|
|
|
lmb_size = of_get_lmb_size(memory);
|
|
if (!lmb_size)
|
|
return;
|
|
|
|
rc = of_get_assoc_arrays(memory, &aa);
|
|
if (rc)
|
|
return;
|
|
|
|
/* check if this is a kexec/kdump kernel */
|
|
usm = of_get_usable_memory(memory);
|
|
if (usm != NULL)
|
|
is_kexec_kdump = 1;
|
|
|
|
for (; n != 0; --n) {
|
|
struct of_drconf_cell drmem;
|
|
|
|
read_drconf_cell(&drmem, &dm);
|
|
|
|
/* skip this block if the reserved bit is set in flags (0x80)
|
|
or if the block is not assigned to this partition (0x8) */
|
|
if ((drmem.flags & DRCONF_MEM_RESERVED)
|
|
|| !(drmem.flags & DRCONF_MEM_ASSIGNED))
|
|
continue;
|
|
|
|
base = drmem.base_addr;
|
|
size = lmb_size;
|
|
ranges = 1;
|
|
|
|
if (is_kexec_kdump) {
|
|
ranges = read_usm_ranges(&usm);
|
|
if (!ranges) /* there are no (base, size) duple */
|
|
continue;
|
|
}
|
|
do {
|
|
if (is_kexec_kdump) {
|
|
base = read_n_cells(n_mem_addr_cells, &usm);
|
|
size = read_n_cells(n_mem_size_cells, &usm);
|
|
}
|
|
nid = of_drconf_to_nid_single(&drmem, &aa);
|
|
fake_numa_create_new_node(
|
|
((base + size) >> PAGE_SHIFT),
|
|
&nid);
|
|
node_set_online(nid);
|
|
sz = numa_enforce_memory_limit(base, size);
|
|
if (sz)
|
|
add_active_range(nid, base >> PAGE_SHIFT,
|
|
(base >> PAGE_SHIFT)
|
|
+ (sz >> PAGE_SHIFT));
|
|
} while (--ranges);
|
|
}
|
|
}
|
|
|
|
static int __init parse_numa_properties(void)
|
|
{
|
|
struct device_node *cpu = NULL;
|
|
struct device_node *memory = NULL;
|
|
int default_nid = 0;
|
|
unsigned long i;
|
|
|
|
if (numa_enabled == 0) {
|
|
printk(KERN_WARNING "NUMA disabled by user\n");
|
|
return -1;
|
|
}
|
|
|
|
min_common_depth = find_min_common_depth();
|
|
|
|
if (min_common_depth < 0)
|
|
return min_common_depth;
|
|
|
|
dbg("NUMA associativity depth for CPU/Memory: %d\n", min_common_depth);
|
|
|
|
/*
|
|
* Even though we connect cpus to numa domains later in SMP
|
|
* init, we need to know the node ids now. This is because
|
|
* each node to be onlined must have NODE_DATA etc backing it.
|
|
*/
|
|
for_each_present_cpu(i) {
|
|
int nid;
|
|
|
|
cpu = find_cpu_node(i);
|
|
BUG_ON(!cpu);
|
|
nid = of_node_to_nid_single(cpu);
|
|
of_node_put(cpu);
|
|
|
|
/*
|
|
* Don't fall back to default_nid yet -- we will plug
|
|
* cpus into nodes once the memory scan has discovered
|
|
* the topology.
|
|
*/
|
|
if (nid < 0)
|
|
continue;
|
|
node_set_online(nid);
|
|
}
|
|
|
|
get_n_mem_cells(&n_mem_addr_cells, &n_mem_size_cells);
|
|
memory = NULL;
|
|
while ((memory = of_find_node_by_type(memory, "memory")) != NULL) {
|
|
unsigned long start;
|
|
unsigned long size;
|
|
int nid;
|
|
int ranges;
|
|
const unsigned int *memcell_buf;
|
|
unsigned int len;
|
|
|
|
memcell_buf = of_get_property(memory,
|
|
"linux,usable-memory", &len);
|
|
if (!memcell_buf || len <= 0)
|
|
memcell_buf = of_get_property(memory, "reg", &len);
|
|
if (!memcell_buf || len <= 0)
|
|
continue;
|
|
|
|
/* ranges in cell */
|
|
ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
|
|
new_range:
|
|
/* these are order-sensitive, and modify the buffer pointer */
|
|
start = read_n_cells(n_mem_addr_cells, &memcell_buf);
|
|
size = read_n_cells(n_mem_size_cells, &memcell_buf);
|
|
|
|
/*
|
|
* Assumption: either all memory nodes or none will
|
|
* have associativity properties. If none, then
|
|
* everything goes to default_nid.
|
|
*/
|
|
nid = of_node_to_nid_single(memory);
|
|
if (nid < 0)
|
|
nid = default_nid;
|
|
|
|
fake_numa_create_new_node(((start + size) >> PAGE_SHIFT), &nid);
|
|
node_set_online(nid);
|
|
|
|
if (!(size = numa_enforce_memory_limit(start, size))) {
|
|
if (--ranges)
|
|
goto new_range;
|
|
else
|
|
continue;
|
|
}
|
|
|
|
add_active_range(nid, start >> PAGE_SHIFT,
|
|
(start >> PAGE_SHIFT) + (size >> PAGE_SHIFT));
|
|
|
|
if (--ranges)
|
|
goto new_range;
|
|
}
|
|
|
|
/*
|
|
* Now do the same thing for each LMB listed in the ibm,dynamic-memory
|
|
* property in the ibm,dynamic-reconfiguration-memory node.
|
|
*/
|
|
memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
|
|
if (memory)
|
|
parse_drconf_memory(memory);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void __init setup_nonnuma(void)
|
|
{
|
|
unsigned long top_of_ram = lmb_end_of_DRAM();
|
|
unsigned long total_ram = lmb_phys_mem_size();
|
|
unsigned long start_pfn, end_pfn;
|
|
unsigned int i, nid = 0;
|
|
|
|
printk(KERN_DEBUG "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
|
|
top_of_ram, total_ram);
|
|
printk(KERN_DEBUG "Memory hole size: %ldMB\n",
|
|
(top_of_ram - total_ram) >> 20);
|
|
|
|
for (i = 0; i < lmb.memory.cnt; ++i) {
|
|
start_pfn = lmb.memory.region[i].base >> PAGE_SHIFT;
|
|
end_pfn = start_pfn + lmb_size_pages(&lmb.memory, i);
|
|
|
|
fake_numa_create_new_node(end_pfn, &nid);
|
|
add_active_range(nid, start_pfn, end_pfn);
|
|
node_set_online(nid);
|
|
}
|
|
}
|
|
|
|
void __init dump_numa_cpu_topology(void)
|
|
{
|
|
unsigned int node;
|
|
unsigned int cpu, count;
|
|
|
|
if (min_common_depth == -1 || !numa_enabled)
|
|
return;
|
|
|
|
for_each_online_node(node) {
|
|
printk(KERN_DEBUG "Node %d CPUs:", node);
|
|
|
|
count = 0;
|
|
/*
|
|
* If we used a CPU iterator here we would miss printing
|
|
* the holes in the cpumap.
|
|
*/
|
|
for (cpu = 0; cpu < NR_CPUS; cpu++) {
|
|
if (cpu_isset(cpu, numa_cpumask_lookup_table[node])) {
|
|
if (count == 0)
|
|
printk(" %u", cpu);
|
|
++count;
|
|
} else {
|
|
if (count > 1)
|
|
printk("-%u", cpu - 1);
|
|
count = 0;
|
|
}
|
|
}
|
|
|
|
if (count > 1)
|
|
printk("-%u", NR_CPUS - 1);
|
|
printk("\n");
|
|
}
|
|
}
|
|
|
|
static void __init dump_numa_memory_topology(void)
|
|
{
|
|
unsigned int node;
|
|
unsigned int count;
|
|
|
|
if (min_common_depth == -1 || !numa_enabled)
|
|
return;
|
|
|
|
for_each_online_node(node) {
|
|
unsigned long i;
|
|
|
|
printk(KERN_DEBUG "Node %d Memory:", node);
|
|
|
|
count = 0;
|
|
|
|
for (i = 0; i < lmb_end_of_DRAM();
|
|
i += (1 << SECTION_SIZE_BITS)) {
|
|
if (early_pfn_to_nid(i >> PAGE_SHIFT) == node) {
|
|
if (count == 0)
|
|
printk(" 0x%lx", i);
|
|
++count;
|
|
} else {
|
|
if (count > 0)
|
|
printk("-0x%lx", i);
|
|
count = 0;
|
|
}
|
|
}
|
|
|
|
if (count > 0)
|
|
printk("-0x%lx", i);
|
|
printk("\n");
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Allocate some memory, satisfying the lmb or bootmem allocator where
|
|
* required. nid is the preferred node and end is the physical address of
|
|
* the highest address in the node.
|
|
*
|
|
* Returns the physical address of the memory.
|
|
*/
|
|
static void __init *careful_allocation(int nid, unsigned long size,
|
|
unsigned long align,
|
|
unsigned long end_pfn)
|
|
{
|
|
int new_nid;
|
|
unsigned long ret = __lmb_alloc_base(size, align, end_pfn << PAGE_SHIFT);
|
|
|
|
/* retry over all memory */
|
|
if (!ret)
|
|
ret = __lmb_alloc_base(size, align, lmb_end_of_DRAM());
|
|
|
|
if (!ret)
|
|
panic("numa.c: cannot allocate %lu bytes on node %d",
|
|
size, nid);
|
|
|
|
/*
|
|
* If the memory came from a previously allocated node, we must
|
|
* retry with the bootmem allocator.
|
|
*/
|
|
new_nid = early_pfn_to_nid(ret >> PAGE_SHIFT);
|
|
if (new_nid < nid) {
|
|
ret = (unsigned long)__alloc_bootmem_node(NODE_DATA(new_nid),
|
|
size, align, 0);
|
|
|
|
if (!ret)
|
|
panic("numa.c: cannot allocate %lu bytes on node %d",
|
|
size, new_nid);
|
|
|
|
ret = __pa(ret);
|
|
|
|
dbg("alloc_bootmem %lx %lx\n", ret, size);
|
|
}
|
|
|
|
return (void *)ret;
|
|
}
|
|
|
|
static struct notifier_block __cpuinitdata ppc64_numa_nb = {
|
|
.notifier_call = cpu_numa_callback,
|
|
.priority = 1 /* Must run before sched domains notifier. */
|
|
};
|
|
|
|
static void mark_reserved_regions_for_nid(int nid)
|
|
{
|
|
struct pglist_data *node = NODE_DATA(nid);
|
|
int i;
|
|
|
|
for (i = 0; i < lmb.reserved.cnt; i++) {
|
|
unsigned long physbase = lmb.reserved.region[i].base;
|
|
unsigned long size = lmb.reserved.region[i].size;
|
|
unsigned long start_pfn = physbase >> PAGE_SHIFT;
|
|
unsigned long end_pfn = ((physbase + size) >> PAGE_SHIFT);
|
|
struct node_active_region node_ar;
|
|
unsigned long node_end_pfn = node->node_start_pfn +
|
|
node->node_spanned_pages;
|
|
|
|
/*
|
|
* Check to make sure that this lmb.reserved area is
|
|
* within the bounds of the node that we care about.
|
|
* Checking the nid of the start and end points is not
|
|
* sufficient because the reserved area could span the
|
|
* entire node.
|
|
*/
|
|
if (end_pfn <= node->node_start_pfn ||
|
|
start_pfn >= node_end_pfn)
|
|
continue;
|
|
|
|
get_node_active_region(start_pfn, &node_ar);
|
|
while (start_pfn < end_pfn &&
|
|
node_ar.start_pfn < node_ar.end_pfn) {
|
|
unsigned long reserve_size = size;
|
|
/*
|
|
* if reserved region extends past active region
|
|
* then trim size to active region
|
|
*/
|
|
if (end_pfn > node_ar.end_pfn)
|
|
reserve_size = (node_ar.end_pfn << PAGE_SHIFT)
|
|
- (start_pfn << PAGE_SHIFT);
|
|
dbg("reserve_bootmem %lx %lx nid=%d\n", physbase,
|
|
reserve_size, node_ar.nid);
|
|
reserve_bootmem_node(NODE_DATA(node_ar.nid), physbase,
|
|
reserve_size, BOOTMEM_DEFAULT);
|
|
/*
|
|
* if reserved region is contained in the active region
|
|
* then done.
|
|
*/
|
|
if (end_pfn <= node_ar.end_pfn)
|
|
break;
|
|
|
|
/*
|
|
* reserved region extends past the active region
|
|
* get next active region that contains this
|
|
* reserved region
|
|
*/
|
|
start_pfn = node_ar.end_pfn;
|
|
physbase = start_pfn << PAGE_SHIFT;
|
|
size = size - reserve_size;
|
|
get_node_active_region(start_pfn, &node_ar);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void __init do_init_bootmem(void)
|
|
{
|
|
int nid;
|
|
unsigned int i;
|
|
|
|
min_low_pfn = 0;
|
|
max_low_pfn = lmb_end_of_DRAM() >> PAGE_SHIFT;
|
|
max_pfn = max_low_pfn;
|
|
|
|
if (parse_numa_properties())
|
|
setup_nonnuma();
|
|
else
|
|
dump_numa_memory_topology();
|
|
|
|
register_cpu_notifier(&ppc64_numa_nb);
|
|
cpu_numa_callback(&ppc64_numa_nb, CPU_UP_PREPARE,
|
|
(void *)(unsigned long)boot_cpuid);
|
|
|
|
for_each_online_node(nid) {
|
|
unsigned long start_pfn, end_pfn;
|
|
unsigned long bootmem_paddr;
|
|
unsigned long bootmap_pages;
|
|
|
|
get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
|
|
|
|
/*
|
|
* Allocate the node structure node local if possible
|
|
*
|
|
* Be careful moving this around, as it relies on all
|
|
* previous nodes' bootmem to be initialized and have
|
|
* all reserved areas marked.
|
|
*/
|
|
NODE_DATA(nid) = careful_allocation(nid,
|
|
sizeof(struct pglist_data),
|
|
SMP_CACHE_BYTES, end_pfn);
|
|
NODE_DATA(nid) = __va(NODE_DATA(nid));
|
|
memset(NODE_DATA(nid), 0, sizeof(struct pglist_data));
|
|
|
|
dbg("node %d\n", nid);
|
|
dbg("NODE_DATA() = %p\n", NODE_DATA(nid));
|
|
|
|
NODE_DATA(nid)->bdata = &bootmem_node_data[nid];
|
|
NODE_DATA(nid)->node_start_pfn = start_pfn;
|
|
NODE_DATA(nid)->node_spanned_pages = end_pfn - start_pfn;
|
|
|
|
if (NODE_DATA(nid)->node_spanned_pages == 0)
|
|
continue;
|
|
|
|
dbg("start_paddr = %lx\n", start_pfn << PAGE_SHIFT);
|
|
dbg("end_paddr = %lx\n", end_pfn << PAGE_SHIFT);
|
|
|
|
bootmap_pages = bootmem_bootmap_pages(end_pfn - start_pfn);
|
|
bootmem_paddr = (unsigned long)careful_allocation(nid,
|
|
bootmap_pages << PAGE_SHIFT,
|
|
PAGE_SIZE, end_pfn);
|
|
memset(__va(bootmem_paddr), 0, bootmap_pages << PAGE_SHIFT);
|
|
|
|
dbg("bootmap_paddr = %lx\n", bootmem_paddr);
|
|
|
|
init_bootmem_node(NODE_DATA(nid), bootmem_paddr >> PAGE_SHIFT,
|
|
start_pfn, end_pfn);
|
|
|
|
free_bootmem_with_active_regions(nid, end_pfn);
|
|
/*
|
|
* Be very careful about moving this around. Future
|
|
* calls to careful_allocation() depend on this getting
|
|
* done correctly.
|
|
*/
|
|
mark_reserved_regions_for_nid(nid);
|
|
sparse_memory_present_with_active_regions(nid);
|
|
}
|
|
}
|
|
|
|
void __init paging_init(void)
|
|
{
|
|
unsigned long max_zone_pfns[MAX_NR_ZONES];
|
|
memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
|
|
max_zone_pfns[ZONE_DMA] = lmb_end_of_DRAM() >> PAGE_SHIFT;
|
|
free_area_init_nodes(max_zone_pfns);
|
|
}
|
|
|
|
static int __init early_numa(char *p)
|
|
{
|
|
if (!p)
|
|
return 0;
|
|
|
|
if (strstr(p, "off"))
|
|
numa_enabled = 0;
|
|
|
|
if (strstr(p, "debug"))
|
|
numa_debug = 1;
|
|
|
|
p = strstr(p, "fake=");
|
|
if (p)
|
|
cmdline = p + strlen("fake=");
|
|
|
|
return 0;
|
|
}
|
|
early_param("numa", early_numa);
|
|
|
|
#ifdef CONFIG_MEMORY_HOTPLUG
|
|
/*
|
|
* Validate the node associated with the memory section we are
|
|
* trying to add.
|
|
*/
|
|
int valid_hot_add_scn(int *nid, unsigned long start, u32 lmb_size,
|
|
unsigned long scn_addr)
|
|
{
|
|
nodemask_t nodes;
|
|
|
|
if (*nid < 0 || !node_online(*nid))
|
|
*nid = any_online_node(NODE_MASK_ALL);
|
|
|
|
if ((scn_addr >= start) && (scn_addr < (start + lmb_size))) {
|
|
nodes_setall(nodes);
|
|
while (NODE_DATA(*nid)->node_spanned_pages == 0) {
|
|
node_clear(*nid, nodes);
|
|
*nid = any_online_node(nodes);
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Find the node associated with a hot added memory section represented
|
|
* by the ibm,dynamic-reconfiguration-memory node.
|
|
*/
|
|
static int hot_add_drconf_scn_to_nid(struct device_node *memory,
|
|
unsigned long scn_addr)
|
|
{
|
|
const u32 *dm;
|
|
unsigned int n, rc;
|
|
unsigned long lmb_size;
|
|
int default_nid = any_online_node(NODE_MASK_ALL);
|
|
int nid;
|
|
struct assoc_arrays aa;
|
|
|
|
n = of_get_drconf_memory(memory, &dm);
|
|
if (!n)
|
|
return default_nid;;
|
|
|
|
lmb_size = of_get_lmb_size(memory);
|
|
if (!lmb_size)
|
|
return default_nid;
|
|
|
|
rc = of_get_assoc_arrays(memory, &aa);
|
|
if (rc)
|
|
return default_nid;
|
|
|
|
for (; n != 0; --n) {
|
|
struct of_drconf_cell drmem;
|
|
|
|
read_drconf_cell(&drmem, &dm);
|
|
|
|
/* skip this block if it is reserved or not assigned to
|
|
* this partition */
|
|
if ((drmem.flags & DRCONF_MEM_RESERVED)
|
|
|| !(drmem.flags & DRCONF_MEM_ASSIGNED))
|
|
continue;
|
|
|
|
nid = of_drconf_to_nid_single(&drmem, &aa);
|
|
|
|
if (valid_hot_add_scn(&nid, drmem.base_addr, lmb_size,
|
|
scn_addr))
|
|
return nid;
|
|
}
|
|
|
|
BUG(); /* section address should be found above */
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Find the node associated with a hot added memory section. Section
|
|
* corresponds to a SPARSEMEM section, not an LMB. It is assumed that
|
|
* sections are fully contained within a single LMB.
|
|
*/
|
|
int hot_add_scn_to_nid(unsigned long scn_addr)
|
|
{
|
|
struct device_node *memory = NULL;
|
|
int nid;
|
|
|
|
if (!numa_enabled || (min_common_depth < 0))
|
|
return any_online_node(NODE_MASK_ALL);
|
|
|
|
memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
|
|
if (memory) {
|
|
nid = hot_add_drconf_scn_to_nid(memory, scn_addr);
|
|
of_node_put(memory);
|
|
return nid;
|
|
}
|
|
|
|
while ((memory = of_find_node_by_type(memory, "memory")) != NULL) {
|
|
unsigned long start, size;
|
|
int ranges;
|
|
const unsigned int *memcell_buf;
|
|
unsigned int len;
|
|
|
|
memcell_buf = of_get_property(memory, "reg", &len);
|
|
if (!memcell_buf || len <= 0)
|
|
continue;
|
|
|
|
/* ranges in cell */
|
|
ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
|
|
ha_new_range:
|
|
start = read_n_cells(n_mem_addr_cells, &memcell_buf);
|
|
size = read_n_cells(n_mem_size_cells, &memcell_buf);
|
|
nid = of_node_to_nid_single(memory);
|
|
|
|
if (valid_hot_add_scn(&nid, start, size, scn_addr)) {
|
|
of_node_put(memory);
|
|
return nid;
|
|
}
|
|
|
|
if (--ranges) /* process all ranges in cell */
|
|
goto ha_new_range;
|
|
}
|
|
BUG(); /* section address should be found above */
|
|
return 0;
|
|
}
|
|
#endif /* CONFIG_MEMORY_HOTPLUG */
|