linux-sg2042/drivers/scsi/aacraid/commsup.c

2606 lines
68 KiB
C

/*
* Adaptec AAC series RAID controller driver
* (c) Copyright 2001 Red Hat Inc.
*
* based on the old aacraid driver that is..
* Adaptec aacraid device driver for Linux.
*
* Copyright (c) 2000-2010 Adaptec, Inc.
* 2010-2015 PMC-Sierra, Inc. (aacraid@pmc-sierra.com)
* 2016-2017 Microsemi Corp. (aacraid@microsemi.com)
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; see the file COPYING. If not, write to
* the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
*
* Module Name:
* commsup.c
*
* Abstract: Contain all routines that are required for FSA host/adapter
* communication.
*
*/
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/crash_dump.h>
#include <linux/types.h>
#include <linux/sched.h>
#include <linux/pci.h>
#include <linux/spinlock.h>
#include <linux/slab.h>
#include <linux/completion.h>
#include <linux/blkdev.h>
#include <linux/delay.h>
#include <linux/kthread.h>
#include <linux/interrupt.h>
#include <linux/semaphore.h>
#include <linux/bcd.h>
#include <scsi/scsi.h>
#include <scsi/scsi_host.h>
#include <scsi/scsi_device.h>
#include <scsi/scsi_cmnd.h>
#include "aacraid.h"
/**
* fib_map_alloc - allocate the fib objects
* @dev: Adapter to allocate for
*
* Allocate and map the shared PCI space for the FIB blocks used to
* talk to the Adaptec firmware.
*/
static int fib_map_alloc(struct aac_dev *dev)
{
if (dev->max_fib_size > AAC_MAX_NATIVE_SIZE)
dev->max_cmd_size = AAC_MAX_NATIVE_SIZE;
else
dev->max_cmd_size = dev->max_fib_size;
if (dev->max_fib_size < AAC_MAX_NATIVE_SIZE) {
dev->max_cmd_size = AAC_MAX_NATIVE_SIZE;
} else {
dev->max_cmd_size = dev->max_fib_size;
}
dprintk((KERN_INFO
"allocate hardware fibs dma_alloc_coherent(%p, %d * (%d + %d), %p)\n",
&dev->pdev->dev, dev->max_cmd_size, dev->scsi_host_ptr->can_queue,
AAC_NUM_MGT_FIB, &dev->hw_fib_pa));
dev->hw_fib_va = dma_alloc_coherent(&dev->pdev->dev,
(dev->max_cmd_size + sizeof(struct aac_fib_xporthdr))
* (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB) + (ALIGN32 - 1),
&dev->hw_fib_pa, GFP_KERNEL);
if (dev->hw_fib_va == NULL)
return -ENOMEM;
return 0;
}
/**
* aac_fib_map_free - free the fib objects
* @dev: Adapter to free
*
* Free the PCI mappings and the memory allocated for FIB blocks
* on this adapter.
*/
void aac_fib_map_free(struct aac_dev *dev)
{
size_t alloc_size;
size_t fib_size;
int num_fibs;
if(!dev->hw_fib_va || !dev->max_cmd_size)
return;
num_fibs = dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB;
fib_size = dev->max_fib_size + sizeof(struct aac_fib_xporthdr);
alloc_size = fib_size * num_fibs + ALIGN32 - 1;
dma_free_coherent(&dev->pdev->dev, alloc_size, dev->hw_fib_va,
dev->hw_fib_pa);
dev->hw_fib_va = NULL;
dev->hw_fib_pa = 0;
}
void aac_fib_vector_assign(struct aac_dev *dev)
{
u32 i = 0;
u32 vector = 1;
struct fib *fibptr = NULL;
for (i = 0, fibptr = &dev->fibs[i];
i < (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB);
i++, fibptr++) {
if ((dev->max_msix == 1) ||
(i > ((dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB - 1)
- dev->vector_cap))) {
fibptr->vector_no = 0;
} else {
fibptr->vector_no = vector;
vector++;
if (vector == dev->max_msix)
vector = 1;
}
}
}
/**
* aac_fib_setup - setup the fibs
* @dev: Adapter to set up
*
* Allocate the PCI space for the fibs, map it and then initialise the
* fib area, the unmapped fib data and also the free list
*/
int aac_fib_setup(struct aac_dev * dev)
{
struct fib *fibptr;
struct hw_fib *hw_fib;
dma_addr_t hw_fib_pa;
int i;
u32 max_cmds;
while (((i = fib_map_alloc(dev)) == -ENOMEM)
&& (dev->scsi_host_ptr->can_queue > (64 - AAC_NUM_MGT_FIB))) {
max_cmds = (dev->scsi_host_ptr->can_queue+AAC_NUM_MGT_FIB) >> 1;
dev->scsi_host_ptr->can_queue = max_cmds - AAC_NUM_MGT_FIB;
if (dev->comm_interface != AAC_COMM_MESSAGE_TYPE3)
dev->init->r7.max_io_commands = cpu_to_le32(max_cmds);
}
if (i<0)
return -ENOMEM;
memset(dev->hw_fib_va, 0,
(dev->max_cmd_size + sizeof(struct aac_fib_xporthdr)) *
(dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB));
/* 32 byte alignment for PMC */
hw_fib_pa = (dev->hw_fib_pa + (ALIGN32 - 1)) & ~(ALIGN32 - 1);
hw_fib = (struct hw_fib *)((unsigned char *)dev->hw_fib_va +
(hw_fib_pa - dev->hw_fib_pa));
/* add Xport header */
hw_fib = (struct hw_fib *)((unsigned char *)hw_fib +
sizeof(struct aac_fib_xporthdr));
hw_fib_pa += sizeof(struct aac_fib_xporthdr);
/*
* Initialise the fibs
*/
for (i = 0, fibptr = &dev->fibs[i];
i < (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB);
i++, fibptr++)
{
fibptr->flags = 0;
fibptr->size = sizeof(struct fib);
fibptr->dev = dev;
fibptr->hw_fib_va = hw_fib;
fibptr->data = (void *) fibptr->hw_fib_va->data;
fibptr->next = fibptr+1; /* Forward chain the fibs */
sema_init(&fibptr->event_wait, 0);
spin_lock_init(&fibptr->event_lock);
hw_fib->header.XferState = cpu_to_le32(0xffffffff);
hw_fib->header.SenderSize =
cpu_to_le16(dev->max_fib_size); /* ?? max_cmd_size */
fibptr->hw_fib_pa = hw_fib_pa;
fibptr->hw_sgl_pa = hw_fib_pa +
offsetof(struct aac_hba_cmd_req, sge[2]);
/*
* one element is for the ptr to the separate sg list,
* second element for 32 byte alignment
*/
fibptr->hw_error_pa = hw_fib_pa +
offsetof(struct aac_native_hba, resp.resp_bytes[0]);
hw_fib = (struct hw_fib *)((unsigned char *)hw_fib +
dev->max_cmd_size + sizeof(struct aac_fib_xporthdr));
hw_fib_pa = hw_fib_pa +
dev->max_cmd_size + sizeof(struct aac_fib_xporthdr);
}
/*
*Assign vector numbers to fibs
*/
aac_fib_vector_assign(dev);
/*
* Add the fib chain to the free list
*/
dev->fibs[dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB - 1].next = NULL;
/*
* Set 8 fibs aside for management tools
*/
dev->free_fib = &dev->fibs[dev->scsi_host_ptr->can_queue];
return 0;
}
/**
* aac_fib_alloc_tag-allocate a fib using tags
* @dev: Adapter to allocate the fib for
*
* Allocate a fib from the adapter fib pool using tags
* from the blk layer.
*/
struct fib *aac_fib_alloc_tag(struct aac_dev *dev, struct scsi_cmnd *scmd)
{
struct fib *fibptr;
fibptr = &dev->fibs[scmd->request->tag];
/*
* Null out fields that depend on being zero at the start of
* each I/O
*/
fibptr->hw_fib_va->header.XferState = 0;
fibptr->type = FSAFS_NTC_FIB_CONTEXT;
fibptr->callback_data = NULL;
fibptr->callback = NULL;
return fibptr;
}
/**
* aac_fib_alloc - allocate a fib
* @dev: Adapter to allocate the fib for
*
* Allocate a fib from the adapter fib pool. If the pool is empty we
* return NULL.
*/
struct fib *aac_fib_alloc(struct aac_dev *dev)
{
struct fib * fibptr;
unsigned long flags;
spin_lock_irqsave(&dev->fib_lock, flags);
fibptr = dev->free_fib;
if(!fibptr){
spin_unlock_irqrestore(&dev->fib_lock, flags);
return fibptr;
}
dev->free_fib = fibptr->next;
spin_unlock_irqrestore(&dev->fib_lock, flags);
/*
* Set the proper node type code and node byte size
*/
fibptr->type = FSAFS_NTC_FIB_CONTEXT;
fibptr->size = sizeof(struct fib);
/*
* Null out fields that depend on being zero at the start of
* each I/O
*/
fibptr->hw_fib_va->header.XferState = 0;
fibptr->flags = 0;
fibptr->callback = NULL;
fibptr->callback_data = NULL;
return fibptr;
}
/**
* aac_fib_free - free a fib
* @fibptr: fib to free up
*
* Frees up a fib and places it on the appropriate queue
*/
void aac_fib_free(struct fib *fibptr)
{
unsigned long flags;
if (fibptr->done == 2)
return;
spin_lock_irqsave(&fibptr->dev->fib_lock, flags);
if (unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT))
aac_config.fib_timeouts++;
if (!(fibptr->flags & FIB_CONTEXT_FLAG_NATIVE_HBA) &&
fibptr->hw_fib_va->header.XferState != 0) {
printk(KERN_WARNING "aac_fib_free, XferState != 0, fibptr = 0x%p, XferState = 0x%x\n",
(void*)fibptr,
le32_to_cpu(fibptr->hw_fib_va->header.XferState));
}
fibptr->next = fibptr->dev->free_fib;
fibptr->dev->free_fib = fibptr;
spin_unlock_irqrestore(&fibptr->dev->fib_lock, flags);
}
/**
* aac_fib_init - initialise a fib
* @fibptr: The fib to initialize
*
* Set up the generic fib fields ready for use
*/
void aac_fib_init(struct fib *fibptr)
{
struct hw_fib *hw_fib = fibptr->hw_fib_va;
memset(&hw_fib->header, 0, sizeof(struct aac_fibhdr));
hw_fib->header.StructType = FIB_MAGIC;
hw_fib->header.Size = cpu_to_le16(fibptr->dev->max_fib_size);
hw_fib->header.XferState = cpu_to_le32(HostOwned | FibInitialized | FibEmpty | FastResponseCapable);
hw_fib->header.u.ReceiverFibAddress = cpu_to_le32(fibptr->hw_fib_pa);
hw_fib->header.SenderSize = cpu_to_le16(fibptr->dev->max_fib_size);
}
/**
* fib_deallocate - deallocate a fib
* @fibptr: fib to deallocate
*
* Will deallocate and return to the free pool the FIB pointed to by the
* caller.
*/
static void fib_dealloc(struct fib * fibptr)
{
struct hw_fib *hw_fib = fibptr->hw_fib_va;
hw_fib->header.XferState = 0;
}
/*
* Commuication primitives define and support the queuing method we use to
* support host to adapter commuication. All queue accesses happen through
* these routines and are the only routines which have a knowledge of the
* how these queues are implemented.
*/
/**
* aac_get_entry - get a queue entry
* @dev: Adapter
* @qid: Queue Number
* @entry: Entry return
* @index: Index return
* @nonotify: notification control
*
* With a priority the routine returns a queue entry if the queue has free entries. If the queue
* is full(no free entries) than no entry is returned and the function returns 0 otherwise 1 is
* returned.
*/
static int aac_get_entry (struct aac_dev * dev, u32 qid, struct aac_entry **entry, u32 * index, unsigned long *nonotify)
{
struct aac_queue * q;
unsigned long idx;
/*
* All of the queues wrap when they reach the end, so we check
* to see if they have reached the end and if they have we just
* set the index back to zero. This is a wrap. You could or off
* the high bits in all updates but this is a bit faster I think.
*/
q = &dev->queues->queue[qid];
idx = *index = le32_to_cpu(*(q->headers.producer));
/* Interrupt Moderation, only interrupt for first two entries */
if (idx != le32_to_cpu(*(q->headers.consumer))) {
if (--idx == 0) {
if (qid == AdapNormCmdQueue)
idx = ADAP_NORM_CMD_ENTRIES;
else
idx = ADAP_NORM_RESP_ENTRIES;
}
if (idx != le32_to_cpu(*(q->headers.consumer)))
*nonotify = 1;
}
if (qid == AdapNormCmdQueue) {
if (*index >= ADAP_NORM_CMD_ENTRIES)
*index = 0; /* Wrap to front of the Producer Queue. */
} else {
if (*index >= ADAP_NORM_RESP_ENTRIES)
*index = 0; /* Wrap to front of the Producer Queue. */
}
/* Queue is full */
if ((*index + 1) == le32_to_cpu(*(q->headers.consumer))) {
printk(KERN_WARNING "Queue %d full, %u outstanding.\n",
qid, atomic_read(&q->numpending));
return 0;
} else {
*entry = q->base + *index;
return 1;
}
}
/**
* aac_queue_get - get the next free QE
* @dev: Adapter
* @index: Returned index
* @priority: Priority of fib
* @fib: Fib to associate with the queue entry
* @wait: Wait if queue full
* @fibptr: Driver fib object to go with fib
* @nonotify: Don't notify the adapter
*
* Gets the next free QE off the requested priorty adapter command
* queue and associates the Fib with the QE. The QE represented by
* index is ready to insert on the queue when this routine returns
* success.
*/
int aac_queue_get(struct aac_dev * dev, u32 * index, u32 qid, struct hw_fib * hw_fib, int wait, struct fib * fibptr, unsigned long *nonotify)
{
struct aac_entry * entry = NULL;
int map = 0;
if (qid == AdapNormCmdQueue) {
/* if no entries wait for some if caller wants to */
while (!aac_get_entry(dev, qid, &entry, index, nonotify)) {
printk(KERN_ERR "GetEntries failed\n");
}
/*
* Setup queue entry with a command, status and fib mapped
*/
entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
map = 1;
} else {
while (!aac_get_entry(dev, qid, &entry, index, nonotify)) {
/* if no entries wait for some if caller wants to */
}
/*
* Setup queue entry with command, status and fib mapped
*/
entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
entry->addr = hw_fib->header.SenderFibAddress;
/* Restore adapters pointer to the FIB */
hw_fib->header.u.ReceiverFibAddress = hw_fib->header.SenderFibAddress; /* Let the adapter now where to find its data */
map = 0;
}
/*
* If MapFib is true than we need to map the Fib and put pointers
* in the queue entry.
*/
if (map)
entry->addr = cpu_to_le32(fibptr->hw_fib_pa);
return 0;
}
/*
* Define the highest level of host to adapter communication routines.
* These routines will support host to adapter FS commuication. These
* routines have no knowledge of the commuication method used. This level
* sends and receives FIBs. This level has no knowledge of how these FIBs
* get passed back and forth.
*/
/**
* aac_fib_send - send a fib to the adapter
* @command: Command to send
* @fibptr: The fib
* @size: Size of fib data area
* @priority: Priority of Fib
* @wait: Async/sync select
* @reply: True if a reply is wanted
* @callback: Called with reply
* @callback_data: Passed to callback
*
* Sends the requested FIB to the adapter and optionally will wait for a
* response FIB. If the caller does not wish to wait for a response than
* an event to wait on must be supplied. This event will be set when a
* response FIB is received from the adapter.
*/
int aac_fib_send(u16 command, struct fib *fibptr, unsigned long size,
int priority, int wait, int reply, fib_callback callback,
void *callback_data)
{
struct aac_dev * dev = fibptr->dev;
struct hw_fib * hw_fib = fibptr->hw_fib_va;
unsigned long flags = 0;
unsigned long mflags = 0;
unsigned long sflags = 0;
if (!(hw_fib->header.XferState & cpu_to_le32(HostOwned)))
return -EBUSY;
if (hw_fib->header.XferState & cpu_to_le32(AdapterProcessed))
return -EINVAL;
/*
* There are 5 cases with the wait and response requested flags.
* The only invalid cases are if the caller requests to wait and
* does not request a response and if the caller does not want a
* response and the Fib is not allocated from pool. If a response
* is not requested the Fib will just be deallocaed by the DPC
* routine when the response comes back from the adapter. No
* further processing will be done besides deleting the Fib. We
* will have a debug mode where the adapter can notify the host
* it had a problem and the host can log that fact.
*/
fibptr->flags = 0;
if (wait && !reply) {
return -EINVAL;
} else if (!wait && reply) {
hw_fib->header.XferState |= cpu_to_le32(Async | ResponseExpected);
FIB_COUNTER_INCREMENT(aac_config.AsyncSent);
} else if (!wait && !reply) {
hw_fib->header.XferState |= cpu_to_le32(NoResponseExpected);
FIB_COUNTER_INCREMENT(aac_config.NoResponseSent);
} else if (wait && reply) {
hw_fib->header.XferState |= cpu_to_le32(ResponseExpected);
FIB_COUNTER_INCREMENT(aac_config.NormalSent);
}
/*
* Map the fib into 32bits by using the fib number
*/
hw_fib->header.SenderFibAddress =
cpu_to_le32(((u32)(fibptr - dev->fibs)) << 2);
/* use the same shifted value for handle to be compatible
* with the new native hba command handle
*/
hw_fib->header.Handle =
cpu_to_le32((((u32)(fibptr - dev->fibs)) << 2) + 1);
/*
* Set FIB state to indicate where it came from and if we want a
* response from the adapter. Also load the command from the
* caller.
*
* Map the hw fib pointer as a 32bit value
*/
hw_fib->header.Command = cpu_to_le16(command);
hw_fib->header.XferState |= cpu_to_le32(SentFromHost);
/*
* Set the size of the Fib we want to send to the adapter
*/
hw_fib->header.Size = cpu_to_le16(sizeof(struct aac_fibhdr) + size);
if (le16_to_cpu(hw_fib->header.Size) > le16_to_cpu(hw_fib->header.SenderSize)) {
return -EMSGSIZE;
}
/*
* Get a queue entry connect the FIB to it and send an notify
* the adapter a command is ready.
*/
hw_fib->header.XferState |= cpu_to_le32(NormalPriority);
/*
* Fill in the Callback and CallbackContext if we are not
* going to wait.
*/
if (!wait) {
fibptr->callback = callback;
fibptr->callback_data = callback_data;
fibptr->flags = FIB_CONTEXT_FLAG;
}
fibptr->done = 0;
FIB_COUNTER_INCREMENT(aac_config.FibsSent);
dprintk((KERN_DEBUG "Fib contents:.\n"));
dprintk((KERN_DEBUG " Command = %d.\n", le32_to_cpu(hw_fib->header.Command)));
dprintk((KERN_DEBUG " SubCommand = %d.\n", le32_to_cpu(((struct aac_query_mount *)fib_data(fibptr))->command)));
dprintk((KERN_DEBUG " XferState = %x.\n", le32_to_cpu(hw_fib->header.XferState)));
dprintk((KERN_DEBUG " hw_fib va being sent=%p\n",fibptr->hw_fib_va));
dprintk((KERN_DEBUG " hw_fib pa being sent=%lx\n",(ulong)fibptr->hw_fib_pa));
dprintk((KERN_DEBUG " fib being sent=%p\n",fibptr));
if (!dev->queues)
return -EBUSY;
if (wait) {
spin_lock_irqsave(&dev->manage_lock, mflags);
if (dev->management_fib_count >= AAC_NUM_MGT_FIB) {
printk(KERN_INFO "No management Fibs Available:%d\n",
dev->management_fib_count);
spin_unlock_irqrestore(&dev->manage_lock, mflags);
return -EBUSY;
}
dev->management_fib_count++;
spin_unlock_irqrestore(&dev->manage_lock, mflags);
spin_lock_irqsave(&fibptr->event_lock, flags);
}
if (dev->sync_mode) {
if (wait)
spin_unlock_irqrestore(&fibptr->event_lock, flags);
spin_lock_irqsave(&dev->sync_lock, sflags);
if (dev->sync_fib) {
list_add_tail(&fibptr->fiblink, &dev->sync_fib_list);
spin_unlock_irqrestore(&dev->sync_lock, sflags);
} else {
dev->sync_fib = fibptr;
spin_unlock_irqrestore(&dev->sync_lock, sflags);
aac_adapter_sync_cmd(dev, SEND_SYNCHRONOUS_FIB,
(u32)fibptr->hw_fib_pa, 0, 0, 0, 0, 0,
NULL, NULL, NULL, NULL, NULL);
}
if (wait) {
fibptr->flags |= FIB_CONTEXT_FLAG_WAIT;
if (down_interruptible(&fibptr->event_wait)) {
fibptr->flags &= ~FIB_CONTEXT_FLAG_WAIT;
return -EFAULT;
}
return 0;
}
return -EINPROGRESS;
}
if (aac_adapter_deliver(fibptr) != 0) {
printk(KERN_ERR "aac_fib_send: returned -EBUSY\n");
if (wait) {
spin_unlock_irqrestore(&fibptr->event_lock, flags);
spin_lock_irqsave(&dev->manage_lock, mflags);
dev->management_fib_count--;
spin_unlock_irqrestore(&dev->manage_lock, mflags);
}
return -EBUSY;
}
/*
* If the caller wanted us to wait for response wait now.
*/
if (wait) {
spin_unlock_irqrestore(&fibptr->event_lock, flags);
/* Only set for first known interruptable command */
if (wait < 0) {
/*
* *VERY* Dangerous to time out a command, the
* assumption is made that we have no hope of
* functioning because an interrupt routing or other
* hardware failure has occurred.
*/
unsigned long timeout = jiffies + (180 * HZ); /* 3 minutes */
while (down_trylock(&fibptr->event_wait)) {
int blink;
if (time_is_before_eq_jiffies(timeout)) {
struct aac_queue * q = &dev->queues->queue[AdapNormCmdQueue];
atomic_dec(&q->numpending);
if (wait == -1) {
printk(KERN_ERR "aacraid: aac_fib_send: first asynchronous command timed out.\n"
"Usually a result of a PCI interrupt routing problem;\n"
"update mother board BIOS or consider utilizing one of\n"
"the SAFE mode kernel options (acpi, apic etc)\n");
}
return -ETIMEDOUT;
}
if (unlikely(pci_channel_offline(dev->pdev)))
return -EFAULT;
if ((blink = aac_adapter_check_health(dev)) > 0) {
if (wait == -1) {
printk(KERN_ERR "aacraid: aac_fib_send: adapter blinkLED 0x%x.\n"
"Usually a result of a serious unrecoverable hardware problem\n",
blink);
}
return -EFAULT;
}
/*
* Allow other processes / CPUS to use core
*/
schedule();
}
} else if (down_interruptible(&fibptr->event_wait)) {
/* Do nothing ... satisfy
* down_interruptible must_check */
}
spin_lock_irqsave(&fibptr->event_lock, flags);
if (fibptr->done == 0) {
fibptr->done = 2; /* Tell interrupt we aborted */
spin_unlock_irqrestore(&fibptr->event_lock, flags);
return -ERESTARTSYS;
}
spin_unlock_irqrestore(&fibptr->event_lock, flags);
BUG_ON(fibptr->done == 0);
if(unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT))
return -ETIMEDOUT;
return 0;
}
/*
* If the user does not want a response than return success otherwise
* return pending
*/
if (reply)
return -EINPROGRESS;
else
return 0;
}
int aac_hba_send(u8 command, struct fib *fibptr, fib_callback callback,
void *callback_data)
{
struct aac_dev *dev = fibptr->dev;
int wait;
unsigned long flags = 0;
unsigned long mflags = 0;
struct aac_hba_cmd_req *hbacmd = (struct aac_hba_cmd_req *)
fibptr->hw_fib_va;
fibptr->flags = (FIB_CONTEXT_FLAG | FIB_CONTEXT_FLAG_NATIVE_HBA);
if (callback) {
wait = 0;
fibptr->callback = callback;
fibptr->callback_data = callback_data;
} else
wait = 1;
hbacmd->iu_type = command;
if (command == HBA_IU_TYPE_SCSI_CMD_REQ) {
/* bit1 of request_id must be 0 */
hbacmd->request_id =
cpu_to_le32((((u32)(fibptr - dev->fibs)) << 2) + 1);
fibptr->flags |= FIB_CONTEXT_FLAG_SCSI_CMD;
} else if (command != HBA_IU_TYPE_SCSI_TM_REQ)
return -EINVAL;
if (wait) {
spin_lock_irqsave(&dev->manage_lock, mflags);
if (dev->management_fib_count >= AAC_NUM_MGT_FIB) {
spin_unlock_irqrestore(&dev->manage_lock, mflags);
return -EBUSY;
}
dev->management_fib_count++;
spin_unlock_irqrestore(&dev->manage_lock, mflags);
spin_lock_irqsave(&fibptr->event_lock, flags);
}
if (aac_adapter_deliver(fibptr) != 0) {
if (wait) {
spin_unlock_irqrestore(&fibptr->event_lock, flags);
spin_lock_irqsave(&dev->manage_lock, mflags);
dev->management_fib_count--;
spin_unlock_irqrestore(&dev->manage_lock, mflags);
}
return -EBUSY;
}
FIB_COUNTER_INCREMENT(aac_config.NativeSent);
if (wait) {
spin_unlock_irqrestore(&fibptr->event_lock, flags);
if (unlikely(pci_channel_offline(dev->pdev)))
return -EFAULT;
fibptr->flags |= FIB_CONTEXT_FLAG_WAIT;
if (down_interruptible(&fibptr->event_wait))
fibptr->done = 2;
fibptr->flags &= ~(FIB_CONTEXT_FLAG_WAIT);
spin_lock_irqsave(&fibptr->event_lock, flags);
if ((fibptr->done == 0) || (fibptr->done == 2)) {
fibptr->done = 2; /* Tell interrupt we aborted */
spin_unlock_irqrestore(&fibptr->event_lock, flags);
return -ERESTARTSYS;
}
spin_unlock_irqrestore(&fibptr->event_lock, flags);
WARN_ON(fibptr->done == 0);
if (unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT))
return -ETIMEDOUT;
return 0;
}
return -EINPROGRESS;
}
/**
* aac_consumer_get - get the top of the queue
* @dev: Adapter
* @q: Queue
* @entry: Return entry
*
* Will return a pointer to the entry on the top of the queue requested that
* we are a consumer of, and return the address of the queue entry. It does
* not change the state of the queue.
*/
int aac_consumer_get(struct aac_dev * dev, struct aac_queue * q, struct aac_entry **entry)
{
u32 index;
int status;
if (le32_to_cpu(*q->headers.producer) == le32_to_cpu(*q->headers.consumer)) {
status = 0;
} else {
/*
* The consumer index must be wrapped if we have reached
* the end of the queue, else we just use the entry
* pointed to by the header index
*/
if (le32_to_cpu(*q->headers.consumer) >= q->entries)
index = 0;
else
index = le32_to_cpu(*q->headers.consumer);
*entry = q->base + index;
status = 1;
}
return(status);
}
/**
* aac_consumer_free - free consumer entry
* @dev: Adapter
* @q: Queue
* @qid: Queue ident
*
* Frees up the current top of the queue we are a consumer of. If the
* queue was full notify the producer that the queue is no longer full.
*/
void aac_consumer_free(struct aac_dev * dev, struct aac_queue *q, u32 qid)
{
int wasfull = 0;
u32 notify;
if ((le32_to_cpu(*q->headers.producer)+1) == le32_to_cpu(*q->headers.consumer))
wasfull = 1;
if (le32_to_cpu(*q->headers.consumer) >= q->entries)
*q->headers.consumer = cpu_to_le32(1);
else
le32_add_cpu(q->headers.consumer, 1);
if (wasfull) {
switch (qid) {
case HostNormCmdQueue:
notify = HostNormCmdNotFull;
break;
case HostNormRespQueue:
notify = HostNormRespNotFull;
break;
default:
BUG();
return;
}
aac_adapter_notify(dev, notify);
}
}
/**
* aac_fib_adapter_complete - complete adapter issued fib
* @fibptr: fib to complete
* @size: size of fib
*
* Will do all necessary work to complete a FIB that was sent from
* the adapter.
*/
int aac_fib_adapter_complete(struct fib *fibptr, unsigned short size)
{
struct hw_fib * hw_fib = fibptr->hw_fib_va;
struct aac_dev * dev = fibptr->dev;
struct aac_queue * q;
unsigned long nointr = 0;
unsigned long qflags;
if (dev->comm_interface == AAC_COMM_MESSAGE_TYPE1 ||
dev->comm_interface == AAC_COMM_MESSAGE_TYPE2 ||
dev->comm_interface == AAC_COMM_MESSAGE_TYPE3) {
kfree(hw_fib);
return 0;
}
if (hw_fib->header.XferState == 0) {
if (dev->comm_interface == AAC_COMM_MESSAGE)
kfree(hw_fib);
return 0;
}
/*
* If we plan to do anything check the structure type first.
*/
if (hw_fib->header.StructType != FIB_MAGIC &&
hw_fib->header.StructType != FIB_MAGIC2 &&
hw_fib->header.StructType != FIB_MAGIC2_64) {
if (dev->comm_interface == AAC_COMM_MESSAGE)
kfree(hw_fib);
return -EINVAL;
}
/*
* This block handles the case where the adapter had sent us a
* command and we have finished processing the command. We
* call completeFib when we are done processing the command
* and want to send a response back to the adapter. This will
* send the completed cdb to the adapter.
*/
if (hw_fib->header.XferState & cpu_to_le32(SentFromAdapter)) {
if (dev->comm_interface == AAC_COMM_MESSAGE) {
kfree (hw_fib);
} else {
u32 index;
hw_fib->header.XferState |= cpu_to_le32(HostProcessed);
if (size) {
size += sizeof(struct aac_fibhdr);
if (size > le16_to_cpu(hw_fib->header.SenderSize))
return -EMSGSIZE;
hw_fib->header.Size = cpu_to_le16(size);
}
q = &dev->queues->queue[AdapNormRespQueue];
spin_lock_irqsave(q->lock, qflags);
aac_queue_get(dev, &index, AdapNormRespQueue, hw_fib, 1, NULL, &nointr);
*(q->headers.producer) = cpu_to_le32(index + 1);
spin_unlock_irqrestore(q->lock, qflags);
if (!(nointr & (int)aac_config.irq_mod))
aac_adapter_notify(dev, AdapNormRespQueue);
}
} else {
printk(KERN_WARNING "aac_fib_adapter_complete: "
"Unknown xferstate detected.\n");
BUG();
}
return 0;
}
/**
* aac_fib_complete - fib completion handler
* @fib: FIB to complete
*
* Will do all necessary work to complete a FIB.
*/
int aac_fib_complete(struct fib *fibptr)
{
struct hw_fib * hw_fib = fibptr->hw_fib_va;
if (fibptr->flags & FIB_CONTEXT_FLAG_NATIVE_HBA) {
fib_dealloc(fibptr);
return 0;
}
/*
* Check for a fib which has already been completed or with a
* status wait timeout
*/
if (hw_fib->header.XferState == 0 || fibptr->done == 2)
return 0;
/*
* If we plan to do anything check the structure type first.
*/
if (hw_fib->header.StructType != FIB_MAGIC &&
hw_fib->header.StructType != FIB_MAGIC2 &&
hw_fib->header.StructType != FIB_MAGIC2_64)
return -EINVAL;
/*
* This block completes a cdb which orginated on the host and we
* just need to deallocate the cdb or reinit it. At this point the
* command is complete that we had sent to the adapter and this
* cdb could be reused.
*/
if((hw_fib->header.XferState & cpu_to_le32(SentFromHost)) &&
(hw_fib->header.XferState & cpu_to_le32(AdapterProcessed)))
{
fib_dealloc(fibptr);
}
else if(hw_fib->header.XferState & cpu_to_le32(SentFromHost))
{
/*
* This handles the case when the host has aborted the I/O
* to the adapter because the adapter is not responding
*/
fib_dealloc(fibptr);
} else if(hw_fib->header.XferState & cpu_to_le32(HostOwned)) {
fib_dealloc(fibptr);
} else {
BUG();
}
return 0;
}
/**
* aac_printf - handle printf from firmware
* @dev: Adapter
* @val: Message info
*
* Print a message passed to us by the controller firmware on the
* Adaptec board
*/
void aac_printf(struct aac_dev *dev, u32 val)
{
char *cp = dev->printfbuf;
if (dev->printf_enabled)
{
int length = val & 0xffff;
int level = (val >> 16) & 0xffff;
/*
* The size of the printfbuf is set in port.c
* There is no variable or define for it
*/
if (length > 255)
length = 255;
if (cp[length] != 0)
cp[length] = 0;
if (level == LOG_AAC_HIGH_ERROR)
printk(KERN_WARNING "%s:%s", dev->name, cp);
else
printk(KERN_INFO "%s:%s", dev->name, cp);
}
memset(cp, 0, 256);
}
static inline int aac_aif_data(struct aac_aifcmd *aifcmd, uint32_t index)
{
return le32_to_cpu(((__le32 *)aifcmd->data)[index]);
}
static void aac_handle_aif_bu(struct aac_dev *dev, struct aac_aifcmd *aifcmd)
{
switch (aac_aif_data(aifcmd, 1)) {
case AifBuCacheDataLoss:
if (aac_aif_data(aifcmd, 2))
dev_info(&dev->pdev->dev, "Backup unit had cache data loss - [%d]\n",
aac_aif_data(aifcmd, 2));
else
dev_info(&dev->pdev->dev, "Backup Unit had cache data loss\n");
break;
case AifBuCacheDataRecover:
if (aac_aif_data(aifcmd, 2))
dev_info(&dev->pdev->dev, "DDR cache data recovered successfully - [%d]\n",
aac_aif_data(aifcmd, 2));
else
dev_info(&dev->pdev->dev, "DDR cache data recovered successfully\n");
break;
}
}
/**
* aac_handle_aif - Handle a message from the firmware
* @dev: Which adapter this fib is from
* @fibptr: Pointer to fibptr from adapter
*
* This routine handles a driver notify fib from the adapter and
* dispatches it to the appropriate routine for handling.
*/
#define AIF_SNIFF_TIMEOUT (500*HZ)
static void aac_handle_aif(struct aac_dev * dev, struct fib * fibptr)
{
struct hw_fib * hw_fib = fibptr->hw_fib_va;
struct aac_aifcmd * aifcmd = (struct aac_aifcmd *)hw_fib->data;
u32 channel, id, lun, container;
struct scsi_device *device;
enum {
NOTHING,
DELETE,
ADD,
CHANGE
} device_config_needed = NOTHING;
/* Sniff for container changes */
if (!dev || !dev->fsa_dev)
return;
container = channel = id = lun = (u32)-1;
/*
* We have set this up to try and minimize the number of
* re-configures that take place. As a result of this when
* certain AIF's come in we will set a flag waiting for another
* type of AIF before setting the re-config flag.
*/
switch (le32_to_cpu(aifcmd->command)) {
case AifCmdDriverNotify:
switch (le32_to_cpu(((__le32 *)aifcmd->data)[0])) {
case AifRawDeviceRemove:
container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
if ((container >> 28)) {
container = (u32)-1;
break;
}
channel = (container >> 24) & 0xF;
if (channel >= dev->maximum_num_channels) {
container = (u32)-1;
break;
}
id = container & 0xFFFF;
if (id >= dev->maximum_num_physicals) {
container = (u32)-1;
break;
}
lun = (container >> 16) & 0xFF;
container = (u32)-1;
channel = aac_phys_to_logical(channel);
device_config_needed = DELETE;
break;
/*
* Morph or Expand complete
*/
case AifDenMorphComplete:
case AifDenVolumeExtendComplete:
container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
if (container >= dev->maximum_num_containers)
break;
/*
* Find the scsi_device associated with the SCSI
* address. Make sure we have the right array, and if
* so set the flag to initiate a new re-config once we
* see an AifEnConfigChange AIF come through.
*/
if ((dev != NULL) && (dev->scsi_host_ptr != NULL)) {
device = scsi_device_lookup(dev->scsi_host_ptr,
CONTAINER_TO_CHANNEL(container),
CONTAINER_TO_ID(container),
CONTAINER_TO_LUN(container));
if (device) {
dev->fsa_dev[container].config_needed = CHANGE;
dev->fsa_dev[container].config_waiting_on = AifEnConfigChange;
dev->fsa_dev[container].config_waiting_stamp = jiffies;
scsi_device_put(device);
}
}
}
/*
* If we are waiting on something and this happens to be
* that thing then set the re-configure flag.
*/
if (container != (u32)-1) {
if (container >= dev->maximum_num_containers)
break;
if ((dev->fsa_dev[container].config_waiting_on ==
le32_to_cpu(*(__le32 *)aifcmd->data)) &&
time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
dev->fsa_dev[container].config_waiting_on = 0;
} else for (container = 0;
container < dev->maximum_num_containers; ++container) {
if ((dev->fsa_dev[container].config_waiting_on ==
le32_to_cpu(*(__le32 *)aifcmd->data)) &&
time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
dev->fsa_dev[container].config_waiting_on = 0;
}
break;
case AifCmdEventNotify:
switch (le32_to_cpu(((__le32 *)aifcmd->data)[0])) {
case AifEnBatteryEvent:
dev->cache_protected =
(((__le32 *)aifcmd->data)[1] == cpu_to_le32(3));
break;
/*
* Add an Array.
*/
case AifEnAddContainer:
container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
if (container >= dev->maximum_num_containers)
break;
dev->fsa_dev[container].config_needed = ADD;
dev->fsa_dev[container].config_waiting_on =
AifEnConfigChange;
dev->fsa_dev[container].config_waiting_stamp = jiffies;
break;
/*
* Delete an Array.
*/
case AifEnDeleteContainer:
container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
if (container >= dev->maximum_num_containers)
break;
dev->fsa_dev[container].config_needed = DELETE;
dev->fsa_dev[container].config_waiting_on =
AifEnConfigChange;
dev->fsa_dev[container].config_waiting_stamp = jiffies;
break;
/*
* Container change detected. If we currently are not
* waiting on something else, setup to wait on a Config Change.
*/
case AifEnContainerChange:
container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
if (container >= dev->maximum_num_containers)
break;
if (dev->fsa_dev[container].config_waiting_on &&
time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
break;
dev->fsa_dev[container].config_needed = CHANGE;
dev->fsa_dev[container].config_waiting_on =
AifEnConfigChange;
dev->fsa_dev[container].config_waiting_stamp = jiffies;
break;
case AifEnConfigChange:
break;
case AifEnAddJBOD:
case AifEnDeleteJBOD:
container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
if ((container >> 28)) {
container = (u32)-1;
break;
}
channel = (container >> 24) & 0xF;
if (channel >= dev->maximum_num_channels) {
container = (u32)-1;
break;
}
id = container & 0xFFFF;
if (id >= dev->maximum_num_physicals) {
container = (u32)-1;
break;
}
lun = (container >> 16) & 0xFF;
container = (u32)-1;
channel = aac_phys_to_logical(channel);
device_config_needed =
(((__le32 *)aifcmd->data)[0] ==
cpu_to_le32(AifEnAddJBOD)) ? ADD : DELETE;
if (device_config_needed == ADD) {
device = scsi_device_lookup(dev->scsi_host_ptr,
channel,
id,
lun);
if (device) {
scsi_remove_device(device);
scsi_device_put(device);
}
}
break;
case AifEnEnclosureManagement:
/*
* If in JBOD mode, automatic exposure of new
* physical target to be suppressed until configured.
*/
if (dev->jbod)
break;
switch (le32_to_cpu(((__le32 *)aifcmd->data)[3])) {
case EM_DRIVE_INSERTION:
case EM_DRIVE_REMOVAL:
case EM_SES_DRIVE_INSERTION:
case EM_SES_DRIVE_REMOVAL:
container = le32_to_cpu(
((__le32 *)aifcmd->data)[2]);
if ((container >> 28)) {
container = (u32)-1;
break;
}
channel = (container >> 24) & 0xF;
if (channel >= dev->maximum_num_channels) {
container = (u32)-1;
break;
}
id = container & 0xFFFF;
lun = (container >> 16) & 0xFF;
container = (u32)-1;
if (id >= dev->maximum_num_physicals) {
/* legacy dev_t ? */
if ((0x2000 <= id) || lun || channel ||
((channel = (id >> 7) & 0x3F) >=
dev->maximum_num_channels))
break;
lun = (id >> 4) & 7;
id &= 0xF;
}
channel = aac_phys_to_logical(channel);
device_config_needed =
((((__le32 *)aifcmd->data)[3]
== cpu_to_le32(EM_DRIVE_INSERTION)) ||
(((__le32 *)aifcmd->data)[3]
== cpu_to_le32(EM_SES_DRIVE_INSERTION))) ?
ADD : DELETE;
break;
}
case AifBuManagerEvent:
aac_handle_aif_bu(dev, aifcmd);
break;
}
/*
* If we are waiting on something and this happens to be
* that thing then set the re-configure flag.
*/
if (container != (u32)-1) {
if (container >= dev->maximum_num_containers)
break;
if ((dev->fsa_dev[container].config_waiting_on ==
le32_to_cpu(*(__le32 *)aifcmd->data)) &&
time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
dev->fsa_dev[container].config_waiting_on = 0;
} else for (container = 0;
container < dev->maximum_num_containers; ++container) {
if ((dev->fsa_dev[container].config_waiting_on ==
le32_to_cpu(*(__le32 *)aifcmd->data)) &&
time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
dev->fsa_dev[container].config_waiting_on = 0;
}
break;
case AifCmdJobProgress:
/*
* These are job progress AIF's. When a Clear is being
* done on a container it is initially created then hidden from
* the OS. When the clear completes we don't get a config
* change so we monitor the job status complete on a clear then
* wait for a container change.
*/
if (((__le32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero) &&
(((__le32 *)aifcmd->data)[6] == ((__le32 *)aifcmd->data)[5] ||
((__le32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsSuccess))) {
for (container = 0;
container < dev->maximum_num_containers;
++container) {
/*
* Stomp on all config sequencing for all
* containers?
*/
dev->fsa_dev[container].config_waiting_on =
AifEnContainerChange;
dev->fsa_dev[container].config_needed = ADD;
dev->fsa_dev[container].config_waiting_stamp =
jiffies;
}
}
if (((__le32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero) &&
((__le32 *)aifcmd->data)[6] == 0 &&
((__le32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsRunning)) {
for (container = 0;
container < dev->maximum_num_containers;
++container) {
/*
* Stomp on all config sequencing for all
* containers?
*/
dev->fsa_dev[container].config_waiting_on =
AifEnContainerChange;
dev->fsa_dev[container].config_needed = DELETE;
dev->fsa_dev[container].config_waiting_stamp =
jiffies;
}
}
break;
}
container = 0;
retry_next:
if (device_config_needed == NOTHING)
for (; container < dev->maximum_num_containers; ++container) {
if ((dev->fsa_dev[container].config_waiting_on == 0) &&
(dev->fsa_dev[container].config_needed != NOTHING) &&
time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) {
device_config_needed =
dev->fsa_dev[container].config_needed;
dev->fsa_dev[container].config_needed = NOTHING;
channel = CONTAINER_TO_CHANNEL(container);
id = CONTAINER_TO_ID(container);
lun = CONTAINER_TO_LUN(container);
break;
}
}
if (device_config_needed == NOTHING)
return;
/*
* If we decided that a re-configuration needs to be done,
* schedule it here on the way out the door, please close the door
* behind you.
*/
/*
* Find the scsi_device associated with the SCSI address,
* and mark it as changed, invalidating the cache. This deals
* with changes to existing device IDs.
*/
if (!dev || !dev->scsi_host_ptr)
return;
/*
* force reload of disk info via aac_probe_container
*/
if ((channel == CONTAINER_CHANNEL) &&
(device_config_needed != NOTHING)) {
if (dev->fsa_dev[container].valid == 1)
dev->fsa_dev[container].valid = 2;
aac_probe_container(dev, container);
}
device = scsi_device_lookup(dev->scsi_host_ptr, channel, id, lun);
if (device) {
switch (device_config_needed) {
case DELETE:
#if (defined(AAC_DEBUG_INSTRUMENT_AIF_DELETE))
scsi_remove_device(device);
#else
if (scsi_device_online(device)) {
scsi_device_set_state(device, SDEV_OFFLINE);
sdev_printk(KERN_INFO, device,
"Device offlined - %s\n",
(channel == CONTAINER_CHANNEL) ?
"array deleted" :
"enclosure services event");
}
#endif
break;
case ADD:
if (!scsi_device_online(device)) {
sdev_printk(KERN_INFO, device,
"Device online - %s\n",
(channel == CONTAINER_CHANNEL) ?
"array created" :
"enclosure services event");
scsi_device_set_state(device, SDEV_RUNNING);
}
/* FALLTHRU */
case CHANGE:
if ((channel == CONTAINER_CHANNEL)
&& (!dev->fsa_dev[container].valid)) {
#if (defined(AAC_DEBUG_INSTRUMENT_AIF_DELETE))
scsi_remove_device(device);
#else
if (!scsi_device_online(device))
break;
scsi_device_set_state(device, SDEV_OFFLINE);
sdev_printk(KERN_INFO, device,
"Device offlined - %s\n",
"array failed");
#endif
break;
}
scsi_rescan_device(&device->sdev_gendev);
default:
break;
}
scsi_device_put(device);
device_config_needed = NOTHING;
}
if (device_config_needed == ADD)
scsi_add_device(dev->scsi_host_ptr, channel, id, lun);
if (channel == CONTAINER_CHANNEL) {
container++;
device_config_needed = NOTHING;
goto retry_next;
}
}
static int _aac_reset_adapter(struct aac_dev *aac, int forced, u8 reset_type)
{
int index, quirks;
int retval;
struct Scsi_Host *host;
struct scsi_device *dev;
struct scsi_cmnd *command;
struct scsi_cmnd *command_list;
int jafo = 0;
int bled;
u64 dmamask;
int num_of_fibs = 0;
/*
* Assumptions:
* - host is locked, unless called by the aacraid thread.
* (a matter of convenience, due to legacy issues surrounding
* eh_host_adapter_reset).
* - in_reset is asserted, so no new i/o is getting to the
* card.
* - The card is dead, or will be very shortly ;-/ so no new
* commands are completing in the interrupt service.
*/
host = aac->scsi_host_ptr;
scsi_block_requests(host);
aac_adapter_disable_int(aac);
if (aac->thread && aac->thread->pid != current->pid) {
spin_unlock_irq(host->host_lock);
kthread_stop(aac->thread);
aac->thread = NULL;
jafo = 1;
}
/*
* If a positive health, means in a known DEAD PANIC
* state and the adapter could be reset to `try again'.
*/
bled = forced ? 0 : aac_adapter_check_health(aac);
retval = aac_adapter_restart(aac, bled, reset_type);
if (retval)
goto out;
/*
* Loop through the fibs, close the synchronous FIBS
*/
retval = 1;
num_of_fibs = aac->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB;
for (index = 0; index < num_of_fibs; index++) {
struct fib *fib = &aac->fibs[index];
__le32 XferState = fib->hw_fib_va->header.XferState;
bool is_response_expected = false;
if (!(XferState & cpu_to_le32(NoResponseExpected | Async)) &&
(XferState & cpu_to_le32(ResponseExpected)))
is_response_expected = true;
if (is_response_expected
|| fib->flags & FIB_CONTEXT_FLAG_WAIT) {
unsigned long flagv;
spin_lock_irqsave(&fib->event_lock, flagv);
up(&fib->event_wait);
spin_unlock_irqrestore(&fib->event_lock, flagv);
schedule();
retval = 0;
}
}
/* Give some extra time for ioctls to complete. */
if (retval == 0)
ssleep(2);
index = aac->cardtype;
/*
* Re-initialize the adapter, first free resources, then carefully
* apply the initialization sequence to come back again. Only risk
* is a change in Firmware dropping cache, it is assumed the caller
* will ensure that i/o is queisced and the card is flushed in that
* case.
*/
aac_free_irq(aac);
aac_fib_map_free(aac);
dma_free_coherent(&aac->pdev->dev, aac->comm_size, aac->comm_addr,
aac->comm_phys);
aac->comm_addr = NULL;
aac->comm_phys = 0;
kfree(aac->queues);
aac->queues = NULL;
kfree(aac->fsa_dev);
aac->fsa_dev = NULL;
dmamask = DMA_BIT_MASK(32);
quirks = aac_get_driver_ident(index)->quirks;
if (quirks & AAC_QUIRK_31BIT)
retval = pci_set_dma_mask(aac->pdev, dmamask);
else if (!(quirks & AAC_QUIRK_SRC))
retval = pci_set_dma_mask(aac->pdev, dmamask);
else
retval = pci_set_consistent_dma_mask(aac->pdev, dmamask);
if (quirks & AAC_QUIRK_31BIT && !retval) {
dmamask = DMA_BIT_MASK(31);
retval = pci_set_consistent_dma_mask(aac->pdev, dmamask);
}
if (retval)
goto out;
if ((retval = (*(aac_get_driver_ident(index)->init))(aac)))
goto out;
if (jafo) {
aac->thread = kthread_run(aac_command_thread, aac, "%s",
aac->name);
if (IS_ERR(aac->thread)) {
retval = PTR_ERR(aac->thread);
aac->thread = NULL;
goto out;
}
}
(void)aac_get_adapter_info(aac);
if ((quirks & AAC_QUIRK_34SG) && (host->sg_tablesize > 34)) {
host->sg_tablesize = 34;
host->max_sectors = (host->sg_tablesize * 8) + 112;
}
if ((quirks & AAC_QUIRK_17SG) && (host->sg_tablesize > 17)) {
host->sg_tablesize = 17;
host->max_sectors = (host->sg_tablesize * 8) + 112;
}
aac_get_config_status(aac, 1);
aac_get_containers(aac);
/*
* This is where the assumption that the Adapter is quiesced
* is important.
*/
command_list = NULL;
__shost_for_each_device(dev, host) {
unsigned long flags;
spin_lock_irqsave(&dev->list_lock, flags);
list_for_each_entry(command, &dev->cmd_list, list)
if (command->SCp.phase == AAC_OWNER_FIRMWARE) {
command->SCp.buffer = (struct scatterlist *)command_list;
command_list = command;
}
spin_unlock_irqrestore(&dev->list_lock, flags);
}
while ((command = command_list)) {
command_list = (struct scsi_cmnd *)command->SCp.buffer;
command->SCp.buffer = NULL;
command->result = DID_OK << 16
| COMMAND_COMPLETE << 8
| SAM_STAT_TASK_SET_FULL;
command->SCp.phase = AAC_OWNER_ERROR_HANDLER;
command->scsi_done(command);
}
/*
* Any Device that was already marked offline needs to be marked
* running
*/
__shost_for_each_device(dev, host) {
if (!scsi_device_online(dev))
scsi_device_set_state(dev, SDEV_RUNNING);
}
retval = 0;
out:
aac->in_reset = 0;
scsi_unblock_requests(host);
/*
* Issue bus rescan to catch any configuration that might have
* occurred
*/
if (!retval && !is_kdump_kernel()) {
dev_info(&aac->pdev->dev, "Scheduling bus rescan\n");
aac_schedule_safw_scan_worker(aac);
}
if (jafo) {
spin_lock_irq(host->host_lock);
}
return retval;
}
int aac_reset_adapter(struct aac_dev *aac, int forced, u8 reset_type)
{
unsigned long flagv = 0;
int retval;
struct Scsi_Host * host;
int bled;
if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0)
return -EBUSY;
if (aac->in_reset) {
spin_unlock_irqrestore(&aac->fib_lock, flagv);
return -EBUSY;
}
aac->in_reset = 1;
spin_unlock_irqrestore(&aac->fib_lock, flagv);
/*
* Wait for all commands to complete to this specific
* target (block maximum 60 seconds). Although not necessary,
* it does make us a good storage citizen.
*/
host = aac->scsi_host_ptr;
scsi_block_requests(host);
/* Quiesce build, flush cache, write through mode */
if (forced < 2)
aac_send_shutdown(aac);
spin_lock_irqsave(host->host_lock, flagv);
bled = forced ? forced :
(aac_check_reset != 0 && aac_check_reset != 1);
retval = _aac_reset_adapter(aac, bled, reset_type);
spin_unlock_irqrestore(host->host_lock, flagv);
if ((forced < 2) && (retval == -ENODEV)) {
/* Unwind aac_send_shutdown() IOP_RESET unsupported/disabled */
struct fib * fibctx = aac_fib_alloc(aac);
if (fibctx) {
struct aac_pause *cmd;
int status;
aac_fib_init(fibctx);
cmd = (struct aac_pause *) fib_data(fibctx);
cmd->command = cpu_to_le32(VM_ContainerConfig);
cmd->type = cpu_to_le32(CT_PAUSE_IO);
cmd->timeout = cpu_to_le32(1);
cmd->min = cpu_to_le32(1);
cmd->noRescan = cpu_to_le32(1);
cmd->count = cpu_to_le32(0);
status = aac_fib_send(ContainerCommand,
fibctx,
sizeof(struct aac_pause),
FsaNormal,
-2 /* Timeout silently */, 1,
NULL, NULL);
if (status >= 0)
aac_fib_complete(fibctx);
/* FIB should be freed only after getting
* the response from the F/W */
if (status != -ERESTARTSYS)
aac_fib_free(fibctx);
}
}
return retval;
}
int aac_check_health(struct aac_dev * aac)
{
int BlinkLED;
unsigned long time_now, flagv = 0;
struct list_head * entry;
/* Extending the scope of fib_lock slightly to protect aac->in_reset */
if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0)
return 0;
if (aac->in_reset || !(BlinkLED = aac_adapter_check_health(aac))) {
spin_unlock_irqrestore(&aac->fib_lock, flagv);
return 0; /* OK */
}
aac->in_reset = 1;
/* Fake up an AIF:
* aac_aifcmd.command = AifCmdEventNotify = 1
* aac_aifcmd.seqnum = 0xFFFFFFFF
* aac_aifcmd.data[0] = AifEnExpEvent = 23
* aac_aifcmd.data[1] = AifExeFirmwarePanic = 3
* aac.aifcmd.data[2] = AifHighPriority = 3
* aac.aifcmd.data[3] = BlinkLED
*/
time_now = jiffies/HZ;
entry = aac->fib_list.next;
/*
* For each Context that is on the
* fibctxList, make a copy of the
* fib, and then set the event to wake up the
* thread that is waiting for it.
*/
while (entry != &aac->fib_list) {
/*
* Extract the fibctx
*/
struct aac_fib_context *fibctx = list_entry(entry, struct aac_fib_context, next);
struct hw_fib * hw_fib;
struct fib * fib;
/*
* Check if the queue is getting
* backlogged
*/
if (fibctx->count > 20) {
/*
* It's *not* jiffies folks,
* but jiffies / HZ, so do not
* panic ...
*/
u32 time_last = fibctx->jiffies;
/*
* Has it been > 2 minutes
* since the last read off
* the queue?
*/
if ((time_now - time_last) > aif_timeout) {
entry = entry->next;
aac_close_fib_context(aac, fibctx);
continue;
}
}
/*
* Warning: no sleep allowed while
* holding spinlock
*/
hw_fib = kzalloc(sizeof(struct hw_fib), GFP_ATOMIC);
fib = kzalloc(sizeof(struct fib), GFP_ATOMIC);
if (fib && hw_fib) {
struct aac_aifcmd * aif;
fib->hw_fib_va = hw_fib;
fib->dev = aac;
aac_fib_init(fib);
fib->type = FSAFS_NTC_FIB_CONTEXT;
fib->size = sizeof (struct fib);
fib->data = hw_fib->data;
aif = (struct aac_aifcmd *)hw_fib->data;
aif->command = cpu_to_le32(AifCmdEventNotify);
aif->seqnum = cpu_to_le32(0xFFFFFFFF);
((__le32 *)aif->data)[0] = cpu_to_le32(AifEnExpEvent);
((__le32 *)aif->data)[1] = cpu_to_le32(AifExeFirmwarePanic);
((__le32 *)aif->data)[2] = cpu_to_le32(AifHighPriority);
((__le32 *)aif->data)[3] = cpu_to_le32(BlinkLED);
/*
* Put the FIB onto the
* fibctx's fibs
*/
list_add_tail(&fib->fiblink, &fibctx->fib_list);
fibctx->count++;
/*
* Set the event to wake up the
* thread that will waiting.
*/
up(&fibctx->wait_sem);
} else {
printk(KERN_WARNING "aifd: didn't allocate NewFib.\n");
kfree(fib);
kfree(hw_fib);
}
entry = entry->next;
}
spin_unlock_irqrestore(&aac->fib_lock, flagv);
if (BlinkLED < 0) {
printk(KERN_ERR "%s: Host adapter is dead (or got a PCI error) %d\n",
aac->name, BlinkLED);
goto out;
}
printk(KERN_ERR "%s: Host adapter BLINK LED 0x%x\n", aac->name, BlinkLED);
out:
aac->in_reset = 0;
return BlinkLED;
}
static inline int is_safw_raid_volume(struct aac_dev *aac, int bus, int target)
{
return bus == CONTAINER_CHANNEL && target < aac->maximum_num_containers;
}
static struct scsi_device *aac_lookup_safw_scsi_device(struct aac_dev *dev,
int bus,
int target)
{
if (bus != CONTAINER_CHANNEL)
bus = aac_phys_to_logical(bus);
return scsi_device_lookup(dev->scsi_host_ptr, bus, target, 0);
}
static int aac_add_safw_device(struct aac_dev *dev, int bus, int target)
{
if (bus != CONTAINER_CHANNEL)
bus = aac_phys_to_logical(bus);
return scsi_add_device(dev->scsi_host_ptr, bus, target, 0);
}
static void aac_put_safw_scsi_device(struct scsi_device *sdev)
{
if (sdev)
scsi_device_put(sdev);
}
static void aac_remove_safw_device(struct aac_dev *dev, int bus, int target)
{
struct scsi_device *sdev;
sdev = aac_lookup_safw_scsi_device(dev, bus, target);
scsi_remove_device(sdev);
aac_put_safw_scsi_device(sdev);
}
static inline int aac_is_safw_scan_count_equal(struct aac_dev *dev,
int bus, int target)
{
return dev->hba_map[bus][target].scan_counter == dev->scan_counter;
}
static int aac_is_safw_target_valid(struct aac_dev *dev, int bus, int target)
{
if (is_safw_raid_volume(dev, bus, target))
return dev->fsa_dev[target].valid;
else
return aac_is_safw_scan_count_equal(dev, bus, target);
}
static int aac_is_safw_device_exposed(struct aac_dev *dev, int bus, int target)
{
int is_exposed = 0;
struct scsi_device *sdev;
sdev = aac_lookup_safw_scsi_device(dev, bus, target);
if (sdev)
is_exposed = 1;
aac_put_safw_scsi_device(sdev);
return is_exposed;
}
static int aac_update_safw_host_devices(struct aac_dev *dev)
{
int i;
int bus;
int target;
int is_exposed = 0;
int rcode = 0;
rcode = aac_setup_safw_adapter(dev);
if (unlikely(rcode < 0)) {
goto out;
}
for (i = 0; i < AAC_BUS_TARGET_LOOP; i++) {
bus = get_bus_number(i);
target = get_target_number(i);
is_exposed = aac_is_safw_device_exposed(dev, bus, target);
if (aac_is_safw_target_valid(dev, bus, target) && !is_exposed)
aac_add_safw_device(dev, bus, target);
else if (!aac_is_safw_target_valid(dev, bus, target) &&
is_exposed)
aac_remove_safw_device(dev, bus, target);
}
out:
return rcode;
}
static int aac_scan_safw_host(struct aac_dev *dev)
{
int rcode = 0;
rcode = aac_update_safw_host_devices(dev);
if (rcode)
aac_schedule_safw_scan_worker(dev);
return rcode;
}
int aac_scan_host(struct aac_dev *dev)
{
int rcode = 0;
mutex_lock(&dev->scan_mutex);
if (dev->sa_firmware)
rcode = aac_scan_safw_host(dev);
else
scsi_scan_host(dev->scsi_host_ptr);
mutex_unlock(&dev->scan_mutex);
return rcode;
}
/**
* aac_handle_sa_aif Handle a message from the firmware
* @dev: Which adapter this fib is from
* @fibptr: Pointer to fibptr from adapter
*
* This routine handles a driver notify fib from the adapter and
* dispatches it to the appropriate routine for handling.
*/
static void aac_handle_sa_aif(struct aac_dev *dev, struct fib *fibptr)
{
int i;
u32 events = 0;
if (fibptr->hbacmd_size & SA_AIF_HOTPLUG)
events = SA_AIF_HOTPLUG;
else if (fibptr->hbacmd_size & SA_AIF_HARDWARE)
events = SA_AIF_HARDWARE;
else if (fibptr->hbacmd_size & SA_AIF_PDEV_CHANGE)
events = SA_AIF_PDEV_CHANGE;
else if (fibptr->hbacmd_size & SA_AIF_LDEV_CHANGE)
events = SA_AIF_LDEV_CHANGE;
else if (fibptr->hbacmd_size & SA_AIF_BPSTAT_CHANGE)
events = SA_AIF_BPSTAT_CHANGE;
else if (fibptr->hbacmd_size & SA_AIF_BPCFG_CHANGE)
events = SA_AIF_BPCFG_CHANGE;
switch (events) {
case SA_AIF_HOTPLUG:
case SA_AIF_HARDWARE:
case SA_AIF_PDEV_CHANGE:
case SA_AIF_LDEV_CHANGE:
case SA_AIF_BPCFG_CHANGE:
aac_scan_host(dev);
break;
case SA_AIF_BPSTAT_CHANGE:
/* currently do nothing */
break;
}
for (i = 1; i <= 10; ++i) {
events = src_readl(dev, MUnit.IDR);
if (events & (1<<23)) {
pr_warn(" AIF not cleared by firmware - %d/%d)\n",
i, 10);
ssleep(1);
}
}
}
static int get_fib_count(struct aac_dev *dev)
{
unsigned int num = 0;
struct list_head *entry;
unsigned long flagv;
/*
* Warning: no sleep allowed while
* holding spinlock. We take the estimate
* and pre-allocate a set of fibs outside the
* lock.
*/
num = le32_to_cpu(dev->init->r7.adapter_fibs_size)
/ sizeof(struct hw_fib); /* some extra */
spin_lock_irqsave(&dev->fib_lock, flagv);
entry = dev->fib_list.next;
while (entry != &dev->fib_list) {
entry = entry->next;
++num;
}
spin_unlock_irqrestore(&dev->fib_lock, flagv);
return num;
}
static int fillup_pools(struct aac_dev *dev, struct hw_fib **hw_fib_pool,
struct fib **fib_pool,
unsigned int num)
{
struct hw_fib **hw_fib_p;
struct fib **fib_p;
hw_fib_p = hw_fib_pool;
fib_p = fib_pool;
while (hw_fib_p < &hw_fib_pool[num]) {
*(hw_fib_p) = kmalloc(sizeof(struct hw_fib), GFP_KERNEL);
if (!(*(hw_fib_p++))) {
--hw_fib_p;
break;
}
*(fib_p) = kmalloc(sizeof(struct fib), GFP_KERNEL);
if (!(*(fib_p++))) {
kfree(*(--hw_fib_p));
break;
}
}
/*
* Get the actual number of allocated fibs
*/
num = hw_fib_p - hw_fib_pool;
return num;
}
static void wakeup_fibctx_threads(struct aac_dev *dev,
struct hw_fib **hw_fib_pool,
struct fib **fib_pool,
struct fib *fib,
struct hw_fib *hw_fib,
unsigned int num)
{
unsigned long flagv;
struct list_head *entry;
struct hw_fib **hw_fib_p;
struct fib **fib_p;
u32 time_now, time_last;
struct hw_fib *hw_newfib;
struct fib *newfib;
struct aac_fib_context *fibctx;
time_now = jiffies/HZ;
spin_lock_irqsave(&dev->fib_lock, flagv);
entry = dev->fib_list.next;
/*
* For each Context that is on the
* fibctxList, make a copy of the
* fib, and then set the event to wake up the
* thread that is waiting for it.
*/
hw_fib_p = hw_fib_pool;
fib_p = fib_pool;
while (entry != &dev->fib_list) {
/*
* Extract the fibctx
*/
fibctx = list_entry(entry, struct aac_fib_context,
next);
/*
* Check if the queue is getting
* backlogged
*/
if (fibctx->count > 20) {
/*
* It's *not* jiffies folks,
* but jiffies / HZ so do not
* panic ...
*/
time_last = fibctx->jiffies;
/*
* Has it been > 2 minutes
* since the last read off
* the queue?
*/
if ((time_now - time_last) > aif_timeout) {
entry = entry->next;
aac_close_fib_context(dev, fibctx);
continue;
}
}
/*
* Warning: no sleep allowed while
* holding spinlock
*/
if (hw_fib_p >= &hw_fib_pool[num]) {
pr_warn("aifd: didn't allocate NewFib\n");
entry = entry->next;
continue;
}
hw_newfib = *hw_fib_p;
*(hw_fib_p++) = NULL;
newfib = *fib_p;
*(fib_p++) = NULL;
/*
* Make the copy of the FIB
*/
memcpy(hw_newfib, hw_fib, sizeof(struct hw_fib));
memcpy(newfib, fib, sizeof(struct fib));
newfib->hw_fib_va = hw_newfib;
/*
* Put the FIB onto the
* fibctx's fibs
*/
list_add_tail(&newfib->fiblink, &fibctx->fib_list);
fibctx->count++;
/*
* Set the event to wake up the
* thread that is waiting.
*/
up(&fibctx->wait_sem);
entry = entry->next;
}
/*
* Set the status of this FIB
*/
*(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
aac_fib_adapter_complete(fib, sizeof(u32));
spin_unlock_irqrestore(&dev->fib_lock, flagv);
}
static void aac_process_events(struct aac_dev *dev)
{
struct hw_fib *hw_fib;
struct fib *fib;
unsigned long flags;
spinlock_t *t_lock;
t_lock = dev->queues->queue[HostNormCmdQueue].lock;
spin_lock_irqsave(t_lock, flags);
while (!list_empty(&(dev->queues->queue[HostNormCmdQueue].cmdq))) {
struct list_head *entry;
struct aac_aifcmd *aifcmd;
unsigned int num;
struct hw_fib **hw_fib_pool, **hw_fib_p;
struct fib **fib_pool, **fib_p;
set_current_state(TASK_RUNNING);
entry = dev->queues->queue[HostNormCmdQueue].cmdq.next;
list_del(entry);
t_lock = dev->queues->queue[HostNormCmdQueue].lock;
spin_unlock_irqrestore(t_lock, flags);
fib = list_entry(entry, struct fib, fiblink);
hw_fib = fib->hw_fib_va;
if (dev->sa_firmware) {
/* Thor AIF */
aac_handle_sa_aif(dev, fib);
aac_fib_adapter_complete(fib, (u16)sizeof(u32));
goto free_fib;
}
/*
* We will process the FIB here or pass it to a
* worker thread that is TBD. We Really can't
* do anything at this point since we don't have
* anything defined for this thread to do.
*/
memset(fib, 0, sizeof(struct fib));
fib->type = FSAFS_NTC_FIB_CONTEXT;
fib->size = sizeof(struct fib);
fib->hw_fib_va = hw_fib;
fib->data = hw_fib->data;
fib->dev = dev;
/*
* We only handle AifRequest fibs from the adapter.
*/
aifcmd = (struct aac_aifcmd *) hw_fib->data;
if (aifcmd->command == cpu_to_le32(AifCmdDriverNotify)) {
/* Handle Driver Notify Events */
aac_handle_aif(dev, fib);
*(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
aac_fib_adapter_complete(fib, (u16)sizeof(u32));
goto free_fib;
}
/*
* The u32 here is important and intended. We are using
* 32bit wrapping time to fit the adapter field
*/
/* Sniff events */
if (aifcmd->command == cpu_to_le32(AifCmdEventNotify)
|| aifcmd->command == cpu_to_le32(AifCmdJobProgress)) {
aac_handle_aif(dev, fib);
}
/*
* get number of fibs to process
*/
num = get_fib_count(dev);
if (!num)
goto free_fib;
hw_fib_pool = kmalloc_array(num, sizeof(struct hw_fib *),
GFP_KERNEL);
if (!hw_fib_pool)
goto free_fib;
fib_pool = kmalloc_array(num, sizeof(struct fib *), GFP_KERNEL);
if (!fib_pool)
goto free_hw_fib_pool;
/*
* Fill up fib pointer pools with actual fibs
* and hw_fibs
*/
num = fillup_pools(dev, hw_fib_pool, fib_pool, num);
if (!num)
goto free_mem;
/*
* wakeup the thread that is waiting for
* the response from fw (ioctl)
*/
wakeup_fibctx_threads(dev, hw_fib_pool, fib_pool,
fib, hw_fib, num);
free_mem:
/* Free up the remaining resources */
hw_fib_p = hw_fib_pool;
fib_p = fib_pool;
while (hw_fib_p < &hw_fib_pool[num]) {
kfree(*hw_fib_p);
kfree(*fib_p);
++fib_p;
++hw_fib_p;
}
kfree(fib_pool);
free_hw_fib_pool:
kfree(hw_fib_pool);
free_fib:
kfree(fib);
t_lock = dev->queues->queue[HostNormCmdQueue].lock;
spin_lock_irqsave(t_lock, flags);
}
/*
* There are no more AIF's
*/
t_lock = dev->queues->queue[HostNormCmdQueue].lock;
spin_unlock_irqrestore(t_lock, flags);
}
static int aac_send_wellness_command(struct aac_dev *dev, char *wellness_str,
u32 datasize)
{
struct aac_srb *srbcmd;
struct sgmap64 *sg64;
dma_addr_t addr;
char *dma_buf;
struct fib *fibptr;
int ret = -ENOMEM;
u32 vbus, vid;
fibptr = aac_fib_alloc(dev);
if (!fibptr)
goto out;
dma_buf = dma_alloc_coherent(&dev->pdev->dev, datasize, &addr,
GFP_KERNEL);
if (!dma_buf)
goto fib_free_out;
aac_fib_init(fibptr);
vbus = (u32)le16_to_cpu(dev->supplement_adapter_info.virt_device_bus);
vid = (u32)le16_to_cpu(dev->supplement_adapter_info.virt_device_target);
srbcmd = (struct aac_srb *)fib_data(fibptr);
srbcmd->function = cpu_to_le32(SRBF_ExecuteScsi);
srbcmd->channel = cpu_to_le32(vbus);
srbcmd->id = cpu_to_le32(vid);
srbcmd->lun = 0;
srbcmd->flags = cpu_to_le32(SRB_DataOut);
srbcmd->timeout = cpu_to_le32(10);
srbcmd->retry_limit = 0;
srbcmd->cdb_size = cpu_to_le32(12);
srbcmd->count = cpu_to_le32(datasize);
memset(srbcmd->cdb, 0, sizeof(srbcmd->cdb));
srbcmd->cdb[0] = BMIC_OUT;
srbcmd->cdb[6] = WRITE_HOST_WELLNESS;
memcpy(dma_buf, (char *)wellness_str, datasize);
sg64 = (struct sgmap64 *)&srbcmd->sg;
sg64->count = cpu_to_le32(1);
sg64->sg[0].addr[1] = cpu_to_le32((u32)(((addr) >> 16) >> 16));
sg64->sg[0].addr[0] = cpu_to_le32((u32)(addr & 0xffffffff));
sg64->sg[0].count = cpu_to_le32(datasize);
ret = aac_fib_send(ScsiPortCommand64, fibptr, sizeof(struct aac_srb),
FsaNormal, 1, 1, NULL, NULL);
dma_free_coherent(&dev->pdev->dev, datasize, dma_buf, addr);
/*
* Do not set XferState to zero unless
* receives a response from F/W
*/
if (ret >= 0)
aac_fib_complete(fibptr);
/*
* FIB should be freed only after
* getting the response from the F/W
*/
if (ret != -ERESTARTSYS)
goto fib_free_out;
out:
return ret;
fib_free_out:
aac_fib_free(fibptr);
goto out;
}
int aac_send_safw_hostttime(struct aac_dev *dev, struct timespec64 *now)
{
struct tm cur_tm;
char wellness_str[] = "<HW>TD\010\0\0\0\0\0\0\0\0\0DW\0\0ZZ";
u32 datasize = sizeof(wellness_str);
time64_t local_time;
int ret = -ENODEV;
if (!dev->sa_firmware)
goto out;
local_time = (now->tv_sec - (sys_tz.tz_minuteswest * 60));
time64_to_tm(local_time, 0, &cur_tm);
cur_tm.tm_mon += 1;
cur_tm.tm_year += 1900;
wellness_str[8] = bin2bcd(cur_tm.tm_hour);
wellness_str[9] = bin2bcd(cur_tm.tm_min);
wellness_str[10] = bin2bcd(cur_tm.tm_sec);
wellness_str[12] = bin2bcd(cur_tm.tm_mon);
wellness_str[13] = bin2bcd(cur_tm.tm_mday);
wellness_str[14] = bin2bcd(cur_tm.tm_year / 100);
wellness_str[15] = bin2bcd(cur_tm.tm_year % 100);
ret = aac_send_wellness_command(dev, wellness_str, datasize);
out:
return ret;
}
int aac_send_hosttime(struct aac_dev *dev, struct timespec64 *now)
{
int ret = -ENOMEM;
struct fib *fibptr;
__le32 *info;
fibptr = aac_fib_alloc(dev);
if (!fibptr)
goto out;
aac_fib_init(fibptr);
info = (__le32 *)fib_data(fibptr);
*info = cpu_to_le32(now->tv_sec); /* overflow in y2106 */
ret = aac_fib_send(SendHostTime, fibptr, sizeof(*info), FsaNormal,
1, 1, NULL, NULL);
/*
* Do not set XferState to zero unless
* receives a response from F/W
*/
if (ret >= 0)
aac_fib_complete(fibptr);
/*
* FIB should be freed only after
* getting the response from the F/W
*/
if (ret != -ERESTARTSYS)
aac_fib_free(fibptr);
out:
return ret;
}
/**
* aac_command_thread - command processing thread
* @dev: Adapter to monitor
*
* Waits on the commandready event in it's queue. When the event gets set
* it will pull FIBs off it's queue. It will continue to pull FIBs off
* until the queue is empty. When the queue is empty it will wait for
* more FIBs.
*/
int aac_command_thread(void *data)
{
struct aac_dev *dev = data;
DECLARE_WAITQUEUE(wait, current);
unsigned long next_jiffies = jiffies + HZ;
unsigned long next_check_jiffies = next_jiffies;
long difference = HZ;
/*
* We can only have one thread per adapter for AIF's.
*/
if (dev->aif_thread)
return -EINVAL;
/*
* Let the DPC know it has a place to send the AIF's to.
*/
dev->aif_thread = 1;
add_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
set_current_state(TASK_INTERRUPTIBLE);
dprintk ((KERN_INFO "aac_command_thread start\n"));
while (1) {
aac_process_events(dev);
/*
* Background activity
*/
if ((time_before(next_check_jiffies,next_jiffies))
&& ((difference = next_check_jiffies - jiffies) <= 0)) {
next_check_jiffies = next_jiffies;
if (aac_adapter_check_health(dev) == 0) {
difference = ((long)(unsigned)check_interval)
* HZ;
next_check_jiffies = jiffies + difference;
} else if (!dev->queues)
break;
}
if (!time_before(next_check_jiffies,next_jiffies)
&& ((difference = next_jiffies - jiffies) <= 0)) {
struct timespec64 now;
int ret;
/* Don't even try to talk to adapter if its sick */
ret = aac_adapter_check_health(dev);
if (ret || !dev->queues)
break;
next_check_jiffies = jiffies
+ ((long)(unsigned)check_interval)
* HZ;
ktime_get_real_ts64(&now);
/* Synchronize our watches */
if (((NSEC_PER_SEC - (NSEC_PER_SEC / HZ)) > now.tv_nsec)
&& (now.tv_nsec > (NSEC_PER_SEC / HZ)))
difference = HZ + HZ / 2 -
now.tv_nsec / (NSEC_PER_SEC / HZ);
else {
if (now.tv_nsec > NSEC_PER_SEC / 2)
++now.tv_sec;
if (dev->sa_firmware)
ret =
aac_send_safw_hostttime(dev, &now);
else
ret = aac_send_hosttime(dev, &now);
difference = (long)(unsigned)update_interval*HZ;
}
next_jiffies = jiffies + difference;
if (time_before(next_check_jiffies,next_jiffies))
difference = next_check_jiffies - jiffies;
}
if (difference <= 0)
difference = 1;
set_current_state(TASK_INTERRUPTIBLE);
if (kthread_should_stop())
break;
/*
* we probably want usleep_range() here instead of the
* jiffies computation
*/
schedule_timeout(difference);
if (kthread_should_stop())
break;
}
if (dev->queues)
remove_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
dev->aif_thread = 0;
return 0;
}
int aac_acquire_irq(struct aac_dev *dev)
{
int i;
int j;
int ret = 0;
if (!dev->sync_mode && dev->msi_enabled && dev->max_msix > 1) {
for (i = 0; i < dev->max_msix; i++) {
dev->aac_msix[i].vector_no = i;
dev->aac_msix[i].dev = dev;
if (request_irq(pci_irq_vector(dev->pdev, i),
dev->a_ops.adapter_intr,
0, "aacraid", &(dev->aac_msix[i]))) {
printk(KERN_ERR "%s%d: Failed to register IRQ for vector %d.\n",
dev->name, dev->id, i);
for (j = 0 ; j < i ; j++)
free_irq(pci_irq_vector(dev->pdev, j),
&(dev->aac_msix[j]));
pci_disable_msix(dev->pdev);
ret = -1;
}
}
} else {
dev->aac_msix[0].vector_no = 0;
dev->aac_msix[0].dev = dev;
if (request_irq(dev->pdev->irq, dev->a_ops.adapter_intr,
IRQF_SHARED, "aacraid",
&(dev->aac_msix[0])) < 0) {
if (dev->msi)
pci_disable_msi(dev->pdev);
printk(KERN_ERR "%s%d: Interrupt unavailable.\n",
dev->name, dev->id);
ret = -1;
}
}
return ret;
}
void aac_free_irq(struct aac_dev *dev)
{
int i;
if (aac_is_src(dev)) {
if (dev->max_msix > 1) {
for (i = 0; i < dev->max_msix; i++)
free_irq(pci_irq_vector(dev->pdev, i),
&(dev->aac_msix[i]));
} else {
free_irq(dev->pdev->irq, &(dev->aac_msix[0]));
}
} else {
free_irq(dev->pdev->irq, dev);
}
if (dev->msi)
pci_disable_msi(dev->pdev);
else if (dev->max_msix > 1)
pci_disable_msix(dev->pdev);
}