linux-sg2042/drivers/usb/musb/musb_gadget.c

2141 lines
56 KiB
C

/*
* MUSB OTG driver peripheral support
*
* Copyright 2005 Mentor Graphics Corporation
* Copyright (C) 2005-2006 by Texas Instruments
* Copyright (C) 2006-2007 Nokia Corporation
* Copyright (C) 2009 MontaVista Software, Inc. <source@mvista.com>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
* 02110-1301 USA
*
* THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
* NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
* USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#include <linux/kernel.h>
#include <linux/list.h>
#include <linux/timer.h>
#include <linux/module.h>
#include <linux/smp.h>
#include <linux/spinlock.h>
#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/slab.h>
#include "musb_core.h"
/* ----------------------------------------------------------------------- */
#define is_buffer_mapped(req) (is_dma_capable() && \
(req->map_state != UN_MAPPED))
/* Maps the buffer to dma */
static inline void map_dma_buffer(struct musb_request *request,
struct musb *musb, struct musb_ep *musb_ep)
{
int compatible = true;
struct dma_controller *dma = musb->dma_controller;
request->map_state = UN_MAPPED;
if (!is_dma_capable() || !musb_ep->dma)
return;
/* Check if DMA engine can handle this request.
* DMA code must reject the USB request explicitly.
* Default behaviour is to map the request.
*/
if (dma->is_compatible)
compatible = dma->is_compatible(musb_ep->dma,
musb_ep->packet_sz, request->request.buf,
request->request.length);
if (!compatible)
return;
if (request->request.dma == DMA_ADDR_INVALID) {
dma_addr_t dma_addr;
int ret;
dma_addr = dma_map_single(
musb->controller,
request->request.buf,
request->request.length,
request->tx
? DMA_TO_DEVICE
: DMA_FROM_DEVICE);
ret = dma_mapping_error(musb->controller, dma_addr);
if (ret)
return;
request->request.dma = dma_addr;
request->map_state = MUSB_MAPPED;
} else {
dma_sync_single_for_device(musb->controller,
request->request.dma,
request->request.length,
request->tx
? DMA_TO_DEVICE
: DMA_FROM_DEVICE);
request->map_state = PRE_MAPPED;
}
}
/* Unmap the buffer from dma and maps it back to cpu */
static inline void unmap_dma_buffer(struct musb_request *request,
struct musb *musb)
{
struct musb_ep *musb_ep = request->ep;
if (!is_buffer_mapped(request) || !musb_ep->dma)
return;
if (request->request.dma == DMA_ADDR_INVALID) {
dev_vdbg(musb->controller,
"not unmapping a never mapped buffer\n");
return;
}
if (request->map_state == MUSB_MAPPED) {
dma_unmap_single(musb->controller,
request->request.dma,
request->request.length,
request->tx
? DMA_TO_DEVICE
: DMA_FROM_DEVICE);
request->request.dma = DMA_ADDR_INVALID;
} else { /* PRE_MAPPED */
dma_sync_single_for_cpu(musb->controller,
request->request.dma,
request->request.length,
request->tx
? DMA_TO_DEVICE
: DMA_FROM_DEVICE);
}
request->map_state = UN_MAPPED;
}
/*
* Immediately complete a request.
*
* @param request the request to complete
* @param status the status to complete the request with
* Context: controller locked, IRQs blocked.
*/
void musb_g_giveback(
struct musb_ep *ep,
struct usb_request *request,
int status)
__releases(ep->musb->lock)
__acquires(ep->musb->lock)
{
struct musb_request *req;
struct musb *musb;
int busy = ep->busy;
req = to_musb_request(request);
list_del(&req->list);
if (req->request.status == -EINPROGRESS)
req->request.status = status;
musb = req->musb;
ep->busy = 1;
spin_unlock(&musb->lock);
if (!dma_mapping_error(&musb->g.dev, request->dma))
unmap_dma_buffer(req, musb);
if (request->status == 0)
dev_dbg(musb->controller, "%s done request %p, %d/%d\n",
ep->end_point.name, request,
req->request.actual, req->request.length);
else
dev_dbg(musb->controller, "%s request %p, %d/%d fault %d\n",
ep->end_point.name, request,
req->request.actual, req->request.length,
request->status);
req->request.complete(&req->ep->end_point, &req->request);
spin_lock(&musb->lock);
ep->busy = busy;
}
/* ----------------------------------------------------------------------- */
/*
* Abort requests queued to an endpoint using the status. Synchronous.
* caller locked controller and blocked irqs, and selected this ep.
*/
static void nuke(struct musb_ep *ep, const int status)
{
struct musb *musb = ep->musb;
struct musb_request *req = NULL;
void __iomem *epio = ep->musb->endpoints[ep->current_epnum].regs;
ep->busy = 1;
if (is_dma_capable() && ep->dma) {
struct dma_controller *c = ep->musb->dma_controller;
int value;
if (ep->is_in) {
/*
* The programming guide says that we must not clear
* the DMAMODE bit before DMAENAB, so we only
* clear it in the second write...
*/
musb_writew(epio, MUSB_TXCSR,
MUSB_TXCSR_DMAMODE | MUSB_TXCSR_FLUSHFIFO);
musb_writew(epio, MUSB_TXCSR,
0 | MUSB_TXCSR_FLUSHFIFO);
} else {
musb_writew(epio, MUSB_RXCSR,
0 | MUSB_RXCSR_FLUSHFIFO);
musb_writew(epio, MUSB_RXCSR,
0 | MUSB_RXCSR_FLUSHFIFO);
}
value = c->channel_abort(ep->dma);
dev_dbg(musb->controller, "%s: abort DMA --> %d\n",
ep->name, value);
c->channel_release(ep->dma);
ep->dma = NULL;
}
while (!list_empty(&ep->req_list)) {
req = list_first_entry(&ep->req_list, struct musb_request, list);
musb_g_giveback(ep, &req->request, status);
}
}
/* ----------------------------------------------------------------------- */
/* Data transfers - pure PIO, pure DMA, or mixed mode */
/*
* This assumes the separate CPPI engine is responding to DMA requests
* from the usb core ... sequenced a bit differently from mentor dma.
*/
static inline int max_ep_writesize(struct musb *musb, struct musb_ep *ep)
{
if (can_bulk_split(musb, ep->type))
return ep->hw_ep->max_packet_sz_tx;
else
return ep->packet_sz;
}
/*
* An endpoint is transmitting data. This can be called either from
* the IRQ routine or from ep.queue() to kickstart a request on an
* endpoint.
*
* Context: controller locked, IRQs blocked, endpoint selected
*/
static void txstate(struct musb *musb, struct musb_request *req)
{
u8 epnum = req->epnum;
struct musb_ep *musb_ep;
void __iomem *epio = musb->endpoints[epnum].regs;
struct usb_request *request;
u16 fifo_count = 0, csr;
int use_dma = 0;
musb_ep = req->ep;
/* Check if EP is disabled */
if (!musb_ep->desc) {
dev_dbg(musb->controller, "ep:%s disabled - ignore request\n",
musb_ep->end_point.name);
return;
}
/* we shouldn't get here while DMA is active ... but we do ... */
if (dma_channel_status(musb_ep->dma) == MUSB_DMA_STATUS_BUSY) {
dev_dbg(musb->controller, "dma pending...\n");
return;
}
/* read TXCSR before */
csr = musb_readw(epio, MUSB_TXCSR);
request = &req->request;
fifo_count = min(max_ep_writesize(musb, musb_ep),
(int)(request->length - request->actual));
if (csr & MUSB_TXCSR_TXPKTRDY) {
dev_dbg(musb->controller, "%s old packet still ready , txcsr %03x\n",
musb_ep->end_point.name, csr);
return;
}
if (csr & MUSB_TXCSR_P_SENDSTALL) {
dev_dbg(musb->controller, "%s stalling, txcsr %03x\n",
musb_ep->end_point.name, csr);
return;
}
dev_dbg(musb->controller, "hw_ep%d, maxpacket %d, fifo count %d, txcsr %03x\n",
epnum, musb_ep->packet_sz, fifo_count,
csr);
#ifndef CONFIG_MUSB_PIO_ONLY
if (is_buffer_mapped(req)) {
struct dma_controller *c = musb->dma_controller;
size_t request_size;
/* setup DMA, then program endpoint CSR */
request_size = min_t(size_t, request->length - request->actual,
musb_ep->dma->max_len);
use_dma = (request->dma != DMA_ADDR_INVALID && request_size);
/* MUSB_TXCSR_P_ISO is still set correctly */
#if defined(CONFIG_USB_INVENTRA_DMA) || defined(CONFIG_USB_UX500_DMA)
{
if (request_size < musb_ep->packet_sz)
musb_ep->dma->desired_mode = 0;
else
musb_ep->dma->desired_mode = 1;
use_dma = use_dma && c->channel_program(
musb_ep->dma, musb_ep->packet_sz,
musb_ep->dma->desired_mode,
request->dma + request->actual, request_size);
if (use_dma) {
if (musb_ep->dma->desired_mode == 0) {
/*
* We must not clear the DMAMODE bit
* before the DMAENAB bit -- and the
* latter doesn't always get cleared
* before we get here...
*/
csr &= ~(MUSB_TXCSR_AUTOSET
| MUSB_TXCSR_DMAENAB);
musb_writew(epio, MUSB_TXCSR, csr
| MUSB_TXCSR_P_WZC_BITS);
csr &= ~MUSB_TXCSR_DMAMODE;
csr |= (MUSB_TXCSR_DMAENAB |
MUSB_TXCSR_MODE);
/* against programming guide */
} else {
csr |= (MUSB_TXCSR_DMAENAB
| MUSB_TXCSR_DMAMODE
| MUSB_TXCSR_MODE);
/*
* Enable Autoset according to table
* below
* bulk_split hb_mult Autoset_Enable
* 0 0 Yes(Normal)
* 0 >0 No(High BW ISO)
* 1 0 Yes(HS bulk)
* 1 >0 Yes(FS bulk)
*/
if (!musb_ep->hb_mult ||
(musb_ep->hb_mult &&
can_bulk_split(musb,
musb_ep->type)))
csr |= MUSB_TXCSR_AUTOSET;
}
csr &= ~MUSB_TXCSR_P_UNDERRUN;
musb_writew(epio, MUSB_TXCSR, csr);
}
}
#endif
if (is_cppi_enabled()) {
/* program endpoint CSR first, then setup DMA */
csr &= ~(MUSB_TXCSR_P_UNDERRUN | MUSB_TXCSR_TXPKTRDY);
csr |= MUSB_TXCSR_DMAENAB | MUSB_TXCSR_DMAMODE |
MUSB_TXCSR_MODE;
musb_writew(epio, MUSB_TXCSR, (MUSB_TXCSR_P_WZC_BITS &
~MUSB_TXCSR_P_UNDERRUN) | csr);
/* ensure writebuffer is empty */
csr = musb_readw(epio, MUSB_TXCSR);
/*
* NOTE host side sets DMAENAB later than this; both are
* OK since the transfer dma glue (between CPPI and
* Mentor fifos) just tells CPPI it could start. Data
* only moves to the USB TX fifo when both fifos are
* ready.
*/
/*
* "mode" is irrelevant here; handle terminating ZLPs
* like PIO does, since the hardware RNDIS mode seems
* unreliable except for the
* last-packet-is-already-short case.
*/
use_dma = use_dma && c->channel_program(
musb_ep->dma, musb_ep->packet_sz,
0,
request->dma + request->actual,
request_size);
if (!use_dma) {
c->channel_release(musb_ep->dma);
musb_ep->dma = NULL;
csr &= ~MUSB_TXCSR_DMAENAB;
musb_writew(epio, MUSB_TXCSR, csr);
/* invariant: prequest->buf is non-null */
}
} else if (tusb_dma_omap())
use_dma = use_dma && c->channel_program(
musb_ep->dma, musb_ep->packet_sz,
request->zero,
request->dma + request->actual,
request_size);
}
#endif
if (!use_dma) {
/*
* Unmap the dma buffer back to cpu if dma channel
* programming fails
*/
unmap_dma_buffer(req, musb);
musb_write_fifo(musb_ep->hw_ep, fifo_count,
(u8 *) (request->buf + request->actual));
request->actual += fifo_count;
csr |= MUSB_TXCSR_TXPKTRDY;
csr &= ~MUSB_TXCSR_P_UNDERRUN;
musb_writew(epio, MUSB_TXCSR, csr);
}
/* host may already have the data when this message shows... */
dev_dbg(musb->controller, "%s TX/IN %s len %d/%d, txcsr %04x, fifo %d/%d\n",
musb_ep->end_point.name, use_dma ? "dma" : "pio",
request->actual, request->length,
musb_readw(epio, MUSB_TXCSR),
fifo_count,
musb_readw(epio, MUSB_TXMAXP));
}
/*
* FIFO state update (e.g. data ready).
* Called from IRQ, with controller locked.
*/
void musb_g_tx(struct musb *musb, u8 epnum)
{
u16 csr;
struct musb_request *req;
struct usb_request *request;
u8 __iomem *mbase = musb->mregs;
struct musb_ep *musb_ep = &musb->endpoints[epnum].ep_in;
void __iomem *epio = musb->endpoints[epnum].regs;
struct dma_channel *dma;
musb_ep_select(mbase, epnum);
req = next_request(musb_ep);
request = &req->request;
csr = musb_readw(epio, MUSB_TXCSR);
dev_dbg(musb->controller, "<== %s, txcsr %04x\n", musb_ep->end_point.name, csr);
dma = is_dma_capable() ? musb_ep->dma : NULL;
/*
* REVISIT: for high bandwidth, MUSB_TXCSR_P_INCOMPTX
* probably rates reporting as a host error.
*/
if (csr & MUSB_TXCSR_P_SENTSTALL) {
csr |= MUSB_TXCSR_P_WZC_BITS;
csr &= ~MUSB_TXCSR_P_SENTSTALL;
musb_writew(epio, MUSB_TXCSR, csr);
return;
}
if (csr & MUSB_TXCSR_P_UNDERRUN) {
/* We NAKed, no big deal... little reason to care. */
csr |= MUSB_TXCSR_P_WZC_BITS;
csr &= ~(MUSB_TXCSR_P_UNDERRUN | MUSB_TXCSR_TXPKTRDY);
musb_writew(epio, MUSB_TXCSR, csr);
dev_vdbg(musb->controller, "underrun on ep%d, req %p\n",
epnum, request);
}
if (dma_channel_status(dma) == MUSB_DMA_STATUS_BUSY) {
/*
* SHOULD NOT HAPPEN... has with CPPI though, after
* changing SENDSTALL (and other cases); harmless?
*/
dev_dbg(musb->controller, "%s dma still busy?\n", musb_ep->end_point.name);
return;
}
if (request) {
u8 is_dma = 0;
if (dma && (csr & MUSB_TXCSR_DMAENAB)) {
is_dma = 1;
csr |= MUSB_TXCSR_P_WZC_BITS;
csr &= ~(MUSB_TXCSR_DMAENAB | MUSB_TXCSR_P_UNDERRUN |
MUSB_TXCSR_TXPKTRDY | MUSB_TXCSR_AUTOSET);
musb_writew(epio, MUSB_TXCSR, csr);
/* Ensure writebuffer is empty. */
csr = musb_readw(epio, MUSB_TXCSR);
request->actual += musb_ep->dma->actual_len;
dev_dbg(musb->controller, "TXCSR%d %04x, DMA off, len %zu, req %p\n",
epnum, csr, musb_ep->dma->actual_len, request);
}
/*
* First, maybe a terminating short packet. Some DMA
* engines might handle this by themselves.
*/
if ((request->zero && request->length
&& (request->length % musb_ep->packet_sz == 0)
&& (request->actual == request->length))
#if defined(CONFIG_USB_INVENTRA_DMA) || defined(CONFIG_USB_UX500_DMA)
|| (is_dma && (!dma->desired_mode ||
(request->actual &
(musb_ep->packet_sz - 1))))
#endif
) {
/*
* On DMA completion, FIFO may not be
* available yet...
*/
if (csr & MUSB_TXCSR_TXPKTRDY)
return;
dev_dbg(musb->controller, "sending zero pkt\n");
musb_writew(epio, MUSB_TXCSR, MUSB_TXCSR_MODE
| MUSB_TXCSR_TXPKTRDY);
request->zero = 0;
}
if (request->actual == request->length) {
musb_g_giveback(musb_ep, request, 0);
/*
* In the giveback function the MUSB lock is
* released and acquired after sometime. During
* this time period the INDEX register could get
* changed by the gadget_queue function especially
* on SMP systems. Reselect the INDEX to be sure
* we are reading/modifying the right registers
*/
musb_ep_select(mbase, epnum);
req = musb_ep->desc ? next_request(musb_ep) : NULL;
if (!req) {
dev_dbg(musb->controller, "%s idle now\n",
musb_ep->end_point.name);
return;
}
}
txstate(musb, req);
}
}
/* ------------------------------------------------------------ */
/*
* Context: controller locked, IRQs blocked, endpoint selected
*/
static void rxstate(struct musb *musb, struct musb_request *req)
{
const u8 epnum = req->epnum;
struct usb_request *request = &req->request;
struct musb_ep *musb_ep;
void __iomem *epio = musb->endpoints[epnum].regs;
unsigned len = 0;
u16 fifo_count;
u16 csr = musb_readw(epio, MUSB_RXCSR);
struct musb_hw_ep *hw_ep = &musb->endpoints[epnum];
u8 use_mode_1;
if (hw_ep->is_shared_fifo)
musb_ep = &hw_ep->ep_in;
else
musb_ep = &hw_ep->ep_out;
fifo_count = musb_ep->packet_sz;
/* Check if EP is disabled */
if (!musb_ep->desc) {
dev_dbg(musb->controller, "ep:%s disabled - ignore request\n",
musb_ep->end_point.name);
return;
}
/* We shouldn't get here while DMA is active, but we do... */
if (dma_channel_status(musb_ep->dma) == MUSB_DMA_STATUS_BUSY) {
dev_dbg(musb->controller, "DMA pending...\n");
return;
}
if (csr & MUSB_RXCSR_P_SENDSTALL) {
dev_dbg(musb->controller, "%s stalling, RXCSR %04x\n",
musb_ep->end_point.name, csr);
return;
}
if (is_cppi_enabled() && is_buffer_mapped(req)) {
struct dma_controller *c = musb->dma_controller;
struct dma_channel *channel = musb_ep->dma;
/* NOTE: CPPI won't actually stop advancing the DMA
* queue after short packet transfers, so this is almost
* always going to run as IRQ-per-packet DMA so that
* faults will be handled correctly.
*/
if (c->channel_program(channel,
musb_ep->packet_sz,
!request->short_not_ok,
request->dma + request->actual,
request->length - request->actual)) {
/* make sure that if an rxpkt arrived after the irq,
* the cppi engine will be ready to take it as soon
* as DMA is enabled
*/
csr &= ~(MUSB_RXCSR_AUTOCLEAR
| MUSB_RXCSR_DMAMODE);
csr |= MUSB_RXCSR_DMAENAB | MUSB_RXCSR_P_WZC_BITS;
musb_writew(epio, MUSB_RXCSR, csr);
return;
}
}
if (csr & MUSB_RXCSR_RXPKTRDY) {
fifo_count = musb_readw(epio, MUSB_RXCOUNT);
/*
* Enable Mode 1 on RX transfers only when short_not_ok flag
* is set. Currently short_not_ok flag is set only from
* file_storage and f_mass_storage drivers
*/
if (request->short_not_ok && fifo_count == musb_ep->packet_sz)
use_mode_1 = 1;
else
use_mode_1 = 0;
if (request->actual < request->length) {
#ifdef CONFIG_USB_INVENTRA_DMA
if (is_buffer_mapped(req)) {
struct dma_controller *c;
struct dma_channel *channel;
int use_dma = 0;
unsigned int transfer_size;
c = musb->dma_controller;
channel = musb_ep->dma;
/* We use DMA Req mode 0 in rx_csr, and DMA controller operates in
* mode 0 only. So we do not get endpoint interrupts due to DMA
* completion. We only get interrupts from DMA controller.
*
* We could operate in DMA mode 1 if we knew the size of the tranfer
* in advance. For mass storage class, request->length = what the host
* sends, so that'd work. But for pretty much everything else,
* request->length is routinely more than what the host sends. For
* most these gadgets, end of is signified either by a short packet,
* or filling the last byte of the buffer. (Sending extra data in
* that last pckate should trigger an overflow fault.) But in mode 1,
* we don't get DMA completion interrupt for short packets.
*
* Theoretically, we could enable DMAReq irq (MUSB_RXCSR_DMAMODE = 1),
* to get endpoint interrupt on every DMA req, but that didn't seem
* to work reliably.
*
* REVISIT an updated g_file_storage can set req->short_not_ok, which
* then becomes usable as a runtime "use mode 1" hint...
*/
/* Experimental: Mode1 works with mass storage use cases */
if (use_mode_1) {
csr |= MUSB_RXCSR_AUTOCLEAR;
musb_writew(epio, MUSB_RXCSR, csr);
csr |= MUSB_RXCSR_DMAENAB;
musb_writew(epio, MUSB_RXCSR, csr);
/*
* this special sequence (enabling and then
* disabling MUSB_RXCSR_DMAMODE) is required
* to get DMAReq to activate
*/
musb_writew(epio, MUSB_RXCSR,
csr | MUSB_RXCSR_DMAMODE);
musb_writew(epio, MUSB_RXCSR, csr);
transfer_size = min_t(unsigned int,
request->length -
request->actual,
channel->max_len);
musb_ep->dma->desired_mode = 1;
} else {
if (!musb_ep->hb_mult &&
musb_ep->hw_ep->rx_double_buffered)
csr |= MUSB_RXCSR_AUTOCLEAR;
csr |= MUSB_RXCSR_DMAENAB;
musb_writew(epio, MUSB_RXCSR, csr);
transfer_size = min(request->length - request->actual,
(unsigned)fifo_count);
musb_ep->dma->desired_mode = 0;
}
use_dma = c->channel_program(
channel,
musb_ep->packet_sz,
channel->desired_mode,
request->dma
+ request->actual,
transfer_size);
if (use_dma)
return;
}
#elif defined(CONFIG_USB_UX500_DMA)
if ((is_buffer_mapped(req)) &&
(request->actual < request->length)) {
struct dma_controller *c;
struct dma_channel *channel;
unsigned int transfer_size = 0;
c = musb->dma_controller;
channel = musb_ep->dma;
/* In case first packet is short */
if (fifo_count < musb_ep->packet_sz)
transfer_size = fifo_count;
else if (request->short_not_ok)
transfer_size = min_t(unsigned int,
request->length -
request->actual,
channel->max_len);
else
transfer_size = min_t(unsigned int,
request->length -
request->actual,
(unsigned)fifo_count);
csr &= ~MUSB_RXCSR_DMAMODE;
csr |= (MUSB_RXCSR_DMAENAB |
MUSB_RXCSR_AUTOCLEAR);
musb_writew(epio, MUSB_RXCSR, csr);
if (transfer_size <= musb_ep->packet_sz) {
musb_ep->dma->desired_mode = 0;
} else {
musb_ep->dma->desired_mode = 1;
/* Mode must be set after DMAENAB */
csr |= MUSB_RXCSR_DMAMODE;
musb_writew(epio, MUSB_RXCSR, csr);
}
if (c->channel_program(channel,
musb_ep->packet_sz,
channel->desired_mode,
request->dma
+ request->actual,
transfer_size))
return;
}
#endif /* Mentor's DMA */
len = request->length - request->actual;
dev_dbg(musb->controller, "%s OUT/RX pio fifo %d/%d, maxpacket %d\n",
musb_ep->end_point.name,
fifo_count, len,
musb_ep->packet_sz);
fifo_count = min_t(unsigned, len, fifo_count);
#ifdef CONFIG_USB_TUSB_OMAP_DMA
if (tusb_dma_omap() && is_buffer_mapped(req)) {
struct dma_controller *c = musb->dma_controller;
struct dma_channel *channel = musb_ep->dma;
u32 dma_addr = request->dma + request->actual;
int ret;
ret = c->channel_program(channel,
musb_ep->packet_sz,
channel->desired_mode,
dma_addr,
fifo_count);
if (ret)
return;
}
#endif
/*
* Unmap the dma buffer back to cpu if dma channel
* programming fails. This buffer is mapped if the
* channel allocation is successful
*/
if (is_buffer_mapped(req)) {
unmap_dma_buffer(req, musb);
/*
* Clear DMAENAB and AUTOCLEAR for the
* PIO mode transfer
*/
csr &= ~(MUSB_RXCSR_DMAENAB | MUSB_RXCSR_AUTOCLEAR);
musb_writew(epio, MUSB_RXCSR, csr);
}
musb_read_fifo(musb_ep->hw_ep, fifo_count, (u8 *)
(request->buf + request->actual));
request->actual += fifo_count;
/* REVISIT if we left anything in the fifo, flush
* it and report -EOVERFLOW
*/
/* ack the read! */
csr |= MUSB_RXCSR_P_WZC_BITS;
csr &= ~MUSB_RXCSR_RXPKTRDY;
musb_writew(epio, MUSB_RXCSR, csr);
}
}
/* reach the end or short packet detected */
if (request->actual == request->length ||
fifo_count < musb_ep->packet_sz)
musb_g_giveback(musb_ep, request, 0);
}
/*
* Data ready for a request; called from IRQ
*/
void musb_g_rx(struct musb *musb, u8 epnum)
{
u16 csr;
struct musb_request *req;
struct usb_request *request;
void __iomem *mbase = musb->mregs;
struct musb_ep *musb_ep;
void __iomem *epio = musb->endpoints[epnum].regs;
struct dma_channel *dma;
struct musb_hw_ep *hw_ep = &musb->endpoints[epnum];
if (hw_ep->is_shared_fifo)
musb_ep = &hw_ep->ep_in;
else
musb_ep = &hw_ep->ep_out;
musb_ep_select(mbase, epnum);
req = next_request(musb_ep);
if (!req)
return;
request = &req->request;
csr = musb_readw(epio, MUSB_RXCSR);
dma = is_dma_capable() ? musb_ep->dma : NULL;
dev_dbg(musb->controller, "<== %s, rxcsr %04x%s %p\n", musb_ep->end_point.name,
csr, dma ? " (dma)" : "", request);
if (csr & MUSB_RXCSR_P_SENTSTALL) {
csr |= MUSB_RXCSR_P_WZC_BITS;
csr &= ~MUSB_RXCSR_P_SENTSTALL;
musb_writew(epio, MUSB_RXCSR, csr);
return;
}
if (csr & MUSB_RXCSR_P_OVERRUN) {
/* csr |= MUSB_RXCSR_P_WZC_BITS; */
csr &= ~MUSB_RXCSR_P_OVERRUN;
musb_writew(epio, MUSB_RXCSR, csr);
dev_dbg(musb->controller, "%s iso overrun on %p\n", musb_ep->name, request);
if (request->status == -EINPROGRESS)
request->status = -EOVERFLOW;
}
if (csr & MUSB_RXCSR_INCOMPRX) {
/* REVISIT not necessarily an error */
dev_dbg(musb->controller, "%s, incomprx\n", musb_ep->end_point.name);
}
if (dma_channel_status(dma) == MUSB_DMA_STATUS_BUSY) {
/* "should not happen"; likely RXPKTRDY pending for DMA */
dev_dbg(musb->controller, "%s busy, csr %04x\n",
musb_ep->end_point.name, csr);
return;
}
if (dma && (csr & MUSB_RXCSR_DMAENAB)) {
csr &= ~(MUSB_RXCSR_AUTOCLEAR
| MUSB_RXCSR_DMAENAB
| MUSB_RXCSR_DMAMODE);
musb_writew(epio, MUSB_RXCSR,
MUSB_RXCSR_P_WZC_BITS | csr);
request->actual += musb_ep->dma->actual_len;
dev_dbg(musb->controller, "RXCSR%d %04x, dma off, %04x, len %zu, req %p\n",
epnum, csr,
musb_readw(epio, MUSB_RXCSR),
musb_ep->dma->actual_len, request);
#if defined(CONFIG_USB_INVENTRA_DMA) || defined(CONFIG_USB_TUSB_OMAP_DMA) || \
defined(CONFIG_USB_UX500_DMA)
/* Autoclear doesn't clear RxPktRdy for short packets */
if ((dma->desired_mode == 0 && !hw_ep->rx_double_buffered)
|| (dma->actual_len
& (musb_ep->packet_sz - 1))) {
/* ack the read! */
csr &= ~MUSB_RXCSR_RXPKTRDY;
musb_writew(epio, MUSB_RXCSR, csr);
}
/* incomplete, and not short? wait for next IN packet */
if ((request->actual < request->length)
&& (musb_ep->dma->actual_len
== musb_ep->packet_sz)) {
/* In double buffer case, continue to unload fifo if
* there is Rx packet in FIFO.
**/
csr = musb_readw(epio, MUSB_RXCSR);
if ((csr & MUSB_RXCSR_RXPKTRDY) &&
hw_ep->rx_double_buffered)
goto exit;
return;
}
#endif
musb_g_giveback(musb_ep, request, 0);
/*
* In the giveback function the MUSB lock is
* released and acquired after sometime. During
* this time period the INDEX register could get
* changed by the gadget_queue function especially
* on SMP systems. Reselect the INDEX to be sure
* we are reading/modifying the right registers
*/
musb_ep_select(mbase, epnum);
req = next_request(musb_ep);
if (!req)
return;
}
#if defined(CONFIG_USB_INVENTRA_DMA) || defined(CONFIG_USB_TUSB_OMAP_DMA) || \
defined(CONFIG_USB_UX500_DMA)
exit:
#endif
/* Analyze request */
rxstate(musb, req);
}
/* ------------------------------------------------------------ */
static int musb_gadget_enable(struct usb_ep *ep,
const struct usb_endpoint_descriptor *desc)
{
unsigned long flags;
struct musb_ep *musb_ep;
struct musb_hw_ep *hw_ep;
void __iomem *regs;
struct musb *musb;
void __iomem *mbase;
u8 epnum;
u16 csr;
unsigned tmp;
int status = -EINVAL;
if (!ep || !desc)
return -EINVAL;
musb_ep = to_musb_ep(ep);
hw_ep = musb_ep->hw_ep;
regs = hw_ep->regs;
musb = musb_ep->musb;
mbase = musb->mregs;
epnum = musb_ep->current_epnum;
spin_lock_irqsave(&musb->lock, flags);
if (musb_ep->desc) {
status = -EBUSY;
goto fail;
}
musb_ep->type = usb_endpoint_type(desc);
/* check direction and (later) maxpacket size against endpoint */
if (usb_endpoint_num(desc) != epnum)
goto fail;
/* REVISIT this rules out high bandwidth periodic transfers */
tmp = usb_endpoint_maxp(desc);
if (tmp & ~0x07ff) {
int ok;
if (usb_endpoint_dir_in(desc))
ok = musb->hb_iso_tx;
else
ok = musb->hb_iso_rx;
if (!ok) {
dev_dbg(musb->controller, "no support for high bandwidth ISO\n");
goto fail;
}
musb_ep->hb_mult = (tmp >> 11) & 3;
} else {
musb_ep->hb_mult = 0;
}
musb_ep->packet_sz = tmp & 0x7ff;
tmp = musb_ep->packet_sz * (musb_ep->hb_mult + 1);
/* enable the interrupts for the endpoint, set the endpoint
* packet size (or fail), set the mode, clear the fifo
*/
musb_ep_select(mbase, epnum);
if (usb_endpoint_dir_in(desc)) {
if (hw_ep->is_shared_fifo)
musb_ep->is_in = 1;
if (!musb_ep->is_in)
goto fail;
if (tmp > hw_ep->max_packet_sz_tx) {
dev_dbg(musb->controller, "packet size beyond hardware FIFO size\n");
goto fail;
}
musb->intrtxe |= (1 << epnum);
musb_writew(mbase, MUSB_INTRTXE, musb->intrtxe);
/* REVISIT if can_bulk_split(), use by updating "tmp";
* likewise high bandwidth periodic tx
*/
/* Set TXMAXP with the FIFO size of the endpoint
* to disable double buffering mode.
*/
if (musb->double_buffer_not_ok) {
musb_writew(regs, MUSB_TXMAXP, hw_ep->max_packet_sz_tx);
} else {
if (can_bulk_split(musb, musb_ep->type))
musb_ep->hb_mult = (hw_ep->max_packet_sz_tx /
musb_ep->packet_sz) - 1;
musb_writew(regs, MUSB_TXMAXP, musb_ep->packet_sz
| (musb_ep->hb_mult << 11));
}
csr = MUSB_TXCSR_MODE | MUSB_TXCSR_CLRDATATOG;
if (musb_readw(regs, MUSB_TXCSR)
& MUSB_TXCSR_FIFONOTEMPTY)
csr |= MUSB_TXCSR_FLUSHFIFO;
if (musb_ep->type == USB_ENDPOINT_XFER_ISOC)
csr |= MUSB_TXCSR_P_ISO;
/* set twice in case of double buffering */
musb_writew(regs, MUSB_TXCSR, csr);
/* REVISIT may be inappropriate w/o FIFONOTEMPTY ... */
musb_writew(regs, MUSB_TXCSR, csr);
} else {
if (hw_ep->is_shared_fifo)
musb_ep->is_in = 0;
if (musb_ep->is_in)
goto fail;
if (tmp > hw_ep->max_packet_sz_rx) {
dev_dbg(musb->controller, "packet size beyond hardware FIFO size\n");
goto fail;
}
musb->intrrxe |= (1 << epnum);
musb_writew(mbase, MUSB_INTRRXE, musb->intrrxe);
/* REVISIT if can_bulk_combine() use by updating "tmp"
* likewise high bandwidth periodic rx
*/
/* Set RXMAXP with the FIFO size of the endpoint
* to disable double buffering mode.
*/
if (musb->double_buffer_not_ok)
musb_writew(regs, MUSB_RXMAXP, hw_ep->max_packet_sz_tx);
else
musb_writew(regs, MUSB_RXMAXP, musb_ep->packet_sz
| (musb_ep->hb_mult << 11));
/* force shared fifo to OUT-only mode */
if (hw_ep->is_shared_fifo) {
csr = musb_readw(regs, MUSB_TXCSR);
csr &= ~(MUSB_TXCSR_MODE | MUSB_TXCSR_TXPKTRDY);
musb_writew(regs, MUSB_TXCSR, csr);
}
csr = MUSB_RXCSR_FLUSHFIFO | MUSB_RXCSR_CLRDATATOG;
if (musb_ep->type == USB_ENDPOINT_XFER_ISOC)
csr |= MUSB_RXCSR_P_ISO;
else if (musb_ep->type == USB_ENDPOINT_XFER_INT)
csr |= MUSB_RXCSR_DISNYET;
/* set twice in case of double buffering */
musb_writew(regs, MUSB_RXCSR, csr);
musb_writew(regs, MUSB_RXCSR, csr);
}
/* NOTE: all the I/O code _should_ work fine without DMA, in case
* for some reason you run out of channels here.
*/
if (is_dma_capable() && musb->dma_controller) {
struct dma_controller *c = musb->dma_controller;
musb_ep->dma = c->channel_alloc(c, hw_ep,
(desc->bEndpointAddress & USB_DIR_IN));
} else
musb_ep->dma = NULL;
musb_ep->desc = desc;
musb_ep->busy = 0;
musb_ep->wedged = 0;
status = 0;
pr_debug("%s periph: enabled %s for %s %s, %smaxpacket %d\n",
musb_driver_name, musb_ep->end_point.name,
({ char *s; switch (musb_ep->type) {
case USB_ENDPOINT_XFER_BULK: s = "bulk"; break;
case USB_ENDPOINT_XFER_INT: s = "int"; break;
default: s = "iso"; break;
} s; }),
musb_ep->is_in ? "IN" : "OUT",
musb_ep->dma ? "dma, " : "",
musb_ep->packet_sz);
schedule_work(&musb->irq_work);
fail:
spin_unlock_irqrestore(&musb->lock, flags);
return status;
}
/*
* Disable an endpoint flushing all requests queued.
*/
static int musb_gadget_disable(struct usb_ep *ep)
{
unsigned long flags;
struct musb *musb;
u8 epnum;
struct musb_ep *musb_ep;
void __iomem *epio;
int status = 0;
musb_ep = to_musb_ep(ep);
musb = musb_ep->musb;
epnum = musb_ep->current_epnum;
epio = musb->endpoints[epnum].regs;
spin_lock_irqsave(&musb->lock, flags);
musb_ep_select(musb->mregs, epnum);
/* zero the endpoint sizes */
if (musb_ep->is_in) {
musb->intrtxe &= ~(1 << epnum);
musb_writew(musb->mregs, MUSB_INTRTXE, musb->intrtxe);
musb_writew(epio, MUSB_TXMAXP, 0);
} else {
musb->intrrxe &= ~(1 << epnum);
musb_writew(musb->mregs, MUSB_INTRRXE, musb->intrrxe);
musb_writew(epio, MUSB_RXMAXP, 0);
}
musb_ep->desc = NULL;
musb_ep->end_point.desc = NULL;
/* abort all pending DMA and requests */
nuke(musb_ep, -ESHUTDOWN);
schedule_work(&musb->irq_work);
spin_unlock_irqrestore(&(musb->lock), flags);
dev_dbg(musb->controller, "%s\n", musb_ep->end_point.name);
return status;
}
/*
* Allocate a request for an endpoint.
* Reused by ep0 code.
*/
struct usb_request *musb_alloc_request(struct usb_ep *ep, gfp_t gfp_flags)
{
struct musb_ep *musb_ep = to_musb_ep(ep);
struct musb *musb = musb_ep->musb;
struct musb_request *request = NULL;
request = kzalloc(sizeof *request, gfp_flags);
if (!request) {
dev_dbg(musb->controller, "not enough memory\n");
return NULL;
}
request->request.dma = DMA_ADDR_INVALID;
request->epnum = musb_ep->current_epnum;
request->ep = musb_ep;
return &request->request;
}
/*
* Free a request
* Reused by ep0 code.
*/
void musb_free_request(struct usb_ep *ep, struct usb_request *req)
{
kfree(to_musb_request(req));
}
static LIST_HEAD(buffers);
struct free_record {
struct list_head list;
struct device *dev;
unsigned bytes;
dma_addr_t dma;
};
/*
* Context: controller locked, IRQs blocked.
*/
void musb_ep_restart(struct musb *musb, struct musb_request *req)
{
dev_dbg(musb->controller, "<== %s request %p len %u on hw_ep%d\n",
req->tx ? "TX/IN" : "RX/OUT",
&req->request, req->request.length, req->epnum);
musb_ep_select(musb->mregs, req->epnum);
if (req->tx)
txstate(musb, req);
else
rxstate(musb, req);
}
static int musb_gadget_queue(struct usb_ep *ep, struct usb_request *req,
gfp_t gfp_flags)
{
struct musb_ep *musb_ep;
struct musb_request *request;
struct musb *musb;
int status = 0;
unsigned long lockflags;
if (!ep || !req)
return -EINVAL;
if (!req->buf)
return -ENODATA;
musb_ep = to_musb_ep(ep);
musb = musb_ep->musb;
request = to_musb_request(req);
request->musb = musb;
if (request->ep != musb_ep)
return -EINVAL;
dev_dbg(musb->controller, "<== to %s request=%p\n", ep->name, req);
/* request is mine now... */
request->request.actual = 0;
request->request.status = -EINPROGRESS;
request->epnum = musb_ep->current_epnum;
request->tx = musb_ep->is_in;
map_dma_buffer(request, musb, musb_ep);
spin_lock_irqsave(&musb->lock, lockflags);
/* don't queue if the ep is down */
if (!musb_ep->desc) {
dev_dbg(musb->controller, "req %p queued to %s while ep %s\n",
req, ep->name, "disabled");
status = -ESHUTDOWN;
unmap_dma_buffer(request, musb);
goto unlock;
}
/* add request to the list */
list_add_tail(&request->list, &musb_ep->req_list);
/* it this is the head of the queue, start i/o ... */
if (!musb_ep->busy && &request->list == musb_ep->req_list.next)
musb_ep_restart(musb, request);
unlock:
spin_unlock_irqrestore(&musb->lock, lockflags);
return status;
}
static int musb_gadget_dequeue(struct usb_ep *ep, struct usb_request *request)
{
struct musb_ep *musb_ep = to_musb_ep(ep);
struct musb_request *req = to_musb_request(request);
struct musb_request *r;
unsigned long flags;
int status = 0;
struct musb *musb = musb_ep->musb;
if (!ep || !request || to_musb_request(request)->ep != musb_ep)
return -EINVAL;
spin_lock_irqsave(&musb->lock, flags);
list_for_each_entry(r, &musb_ep->req_list, list) {
if (r == req)
break;
}
if (r != req) {
dev_dbg(musb->controller, "request %p not queued to %s\n", request, ep->name);
status = -EINVAL;
goto done;
}
/* if the hardware doesn't have the request, easy ... */
if (musb_ep->req_list.next != &req->list || musb_ep->busy)
musb_g_giveback(musb_ep, request, -ECONNRESET);
/* ... else abort the dma transfer ... */
else if (is_dma_capable() && musb_ep->dma) {
struct dma_controller *c = musb->dma_controller;
musb_ep_select(musb->mregs, musb_ep->current_epnum);
if (c->channel_abort)
status = c->channel_abort(musb_ep->dma);
else
status = -EBUSY;
if (status == 0)
musb_g_giveback(musb_ep, request, -ECONNRESET);
} else {
/* NOTE: by sticking to easily tested hardware/driver states,
* we leave counting of in-flight packets imprecise.
*/
musb_g_giveback(musb_ep, request, -ECONNRESET);
}
done:
spin_unlock_irqrestore(&musb->lock, flags);
return status;
}
/*
* Set or clear the halt bit of an endpoint. A halted enpoint won't tx/rx any
* data but will queue requests.
*
* exported to ep0 code
*/
static int musb_gadget_set_halt(struct usb_ep *ep, int value)
{
struct musb_ep *musb_ep = to_musb_ep(ep);
u8 epnum = musb_ep->current_epnum;
struct musb *musb = musb_ep->musb;
void __iomem *epio = musb->endpoints[epnum].regs;
void __iomem *mbase;
unsigned long flags;
u16 csr;
struct musb_request *request;
int status = 0;
if (!ep)
return -EINVAL;
mbase = musb->mregs;
spin_lock_irqsave(&musb->lock, flags);
if ((USB_ENDPOINT_XFER_ISOC == musb_ep->type)) {
status = -EINVAL;
goto done;
}
musb_ep_select(mbase, epnum);
request = next_request(musb_ep);
if (value) {
if (request) {
dev_dbg(musb->controller, "request in progress, cannot halt %s\n",
ep->name);
status = -EAGAIN;
goto done;
}
/* Cannot portably stall with non-empty FIFO */
if (musb_ep->is_in) {
csr = musb_readw(epio, MUSB_TXCSR);
if (csr & MUSB_TXCSR_FIFONOTEMPTY) {
dev_dbg(musb->controller, "FIFO busy, cannot halt %s\n", ep->name);
status = -EAGAIN;
goto done;
}
}
} else
musb_ep->wedged = 0;
/* set/clear the stall and toggle bits */
dev_dbg(musb->controller, "%s: %s stall\n", ep->name, value ? "set" : "clear");
if (musb_ep->is_in) {
csr = musb_readw(epio, MUSB_TXCSR);
csr |= MUSB_TXCSR_P_WZC_BITS
| MUSB_TXCSR_CLRDATATOG;
if (value)
csr |= MUSB_TXCSR_P_SENDSTALL;
else
csr &= ~(MUSB_TXCSR_P_SENDSTALL
| MUSB_TXCSR_P_SENTSTALL);
csr &= ~MUSB_TXCSR_TXPKTRDY;
musb_writew(epio, MUSB_TXCSR, csr);
} else {
csr = musb_readw(epio, MUSB_RXCSR);
csr |= MUSB_RXCSR_P_WZC_BITS
| MUSB_RXCSR_FLUSHFIFO
| MUSB_RXCSR_CLRDATATOG;
if (value)
csr |= MUSB_RXCSR_P_SENDSTALL;
else
csr &= ~(MUSB_RXCSR_P_SENDSTALL
| MUSB_RXCSR_P_SENTSTALL);
musb_writew(epio, MUSB_RXCSR, csr);
}
/* maybe start the first request in the queue */
if (!musb_ep->busy && !value && request) {
dev_dbg(musb->controller, "restarting the request\n");
musb_ep_restart(musb, request);
}
done:
spin_unlock_irqrestore(&musb->lock, flags);
return status;
}
/*
* Sets the halt feature with the clear requests ignored
*/
static int musb_gadget_set_wedge(struct usb_ep *ep)
{
struct musb_ep *musb_ep = to_musb_ep(ep);
if (!ep)
return -EINVAL;
musb_ep->wedged = 1;
return usb_ep_set_halt(ep);
}
static int musb_gadget_fifo_status(struct usb_ep *ep)
{
struct musb_ep *musb_ep = to_musb_ep(ep);
void __iomem *epio = musb_ep->hw_ep->regs;
int retval = -EINVAL;
if (musb_ep->desc && !musb_ep->is_in) {
struct musb *musb = musb_ep->musb;
int epnum = musb_ep->current_epnum;
void __iomem *mbase = musb->mregs;
unsigned long flags;
spin_lock_irqsave(&musb->lock, flags);
musb_ep_select(mbase, epnum);
/* FIXME return zero unless RXPKTRDY is set */
retval = musb_readw(epio, MUSB_RXCOUNT);
spin_unlock_irqrestore(&musb->lock, flags);
}
return retval;
}
static void musb_gadget_fifo_flush(struct usb_ep *ep)
{
struct musb_ep *musb_ep = to_musb_ep(ep);
struct musb *musb = musb_ep->musb;
u8 epnum = musb_ep->current_epnum;
void __iomem *epio = musb->endpoints[epnum].regs;
void __iomem *mbase;
unsigned long flags;
u16 csr;
mbase = musb->mregs;
spin_lock_irqsave(&musb->lock, flags);
musb_ep_select(mbase, (u8) epnum);
/* disable interrupts */
musb_writew(mbase, MUSB_INTRTXE, musb->intrtxe & ~(1 << epnum));
if (musb_ep->is_in) {
csr = musb_readw(epio, MUSB_TXCSR);
if (csr & MUSB_TXCSR_FIFONOTEMPTY) {
csr |= MUSB_TXCSR_FLUSHFIFO | MUSB_TXCSR_P_WZC_BITS;
/*
* Setting both TXPKTRDY and FLUSHFIFO makes controller
* to interrupt current FIFO loading, but not flushing
* the already loaded ones.
*/
csr &= ~MUSB_TXCSR_TXPKTRDY;
musb_writew(epio, MUSB_TXCSR, csr);
/* REVISIT may be inappropriate w/o FIFONOTEMPTY ... */
musb_writew(epio, MUSB_TXCSR, csr);
}
} else {
csr = musb_readw(epio, MUSB_RXCSR);
csr |= MUSB_RXCSR_FLUSHFIFO | MUSB_RXCSR_P_WZC_BITS;
musb_writew(epio, MUSB_RXCSR, csr);
musb_writew(epio, MUSB_RXCSR, csr);
}
/* re-enable interrupt */
musb_writew(mbase, MUSB_INTRTXE, musb->intrtxe);
spin_unlock_irqrestore(&musb->lock, flags);
}
static const struct usb_ep_ops musb_ep_ops = {
.enable = musb_gadget_enable,
.disable = musb_gadget_disable,
.alloc_request = musb_alloc_request,
.free_request = musb_free_request,
.queue = musb_gadget_queue,
.dequeue = musb_gadget_dequeue,
.set_halt = musb_gadget_set_halt,
.set_wedge = musb_gadget_set_wedge,
.fifo_status = musb_gadget_fifo_status,
.fifo_flush = musb_gadget_fifo_flush
};
/* ----------------------------------------------------------------------- */
static int musb_gadget_get_frame(struct usb_gadget *gadget)
{
struct musb *musb = gadget_to_musb(gadget);
return (int)musb_readw(musb->mregs, MUSB_FRAME);
}
static int musb_gadget_wakeup(struct usb_gadget *gadget)
{
struct musb *musb = gadget_to_musb(gadget);
void __iomem *mregs = musb->mregs;
unsigned long flags;
int status = -EINVAL;
u8 power, devctl;
int retries;
spin_lock_irqsave(&musb->lock, flags);
switch (musb->xceiv->state) {
case OTG_STATE_B_PERIPHERAL:
/* NOTE: OTG state machine doesn't include B_SUSPENDED;
* that's part of the standard usb 1.1 state machine, and
* doesn't affect OTG transitions.
*/
if (musb->may_wakeup && musb->is_suspended)
break;
goto done;
case OTG_STATE_B_IDLE:
/* Start SRP ... OTG not required. */
devctl = musb_readb(mregs, MUSB_DEVCTL);
dev_dbg(musb->controller, "Sending SRP: devctl: %02x\n", devctl);
devctl |= MUSB_DEVCTL_SESSION;
musb_writeb(mregs, MUSB_DEVCTL, devctl);
devctl = musb_readb(mregs, MUSB_DEVCTL);
retries = 100;
while (!(devctl & MUSB_DEVCTL_SESSION)) {
devctl = musb_readb(mregs, MUSB_DEVCTL);
if (retries-- < 1)
break;
}
retries = 10000;
while (devctl & MUSB_DEVCTL_SESSION) {
devctl = musb_readb(mregs, MUSB_DEVCTL);
if (retries-- < 1)
break;
}
spin_unlock_irqrestore(&musb->lock, flags);
otg_start_srp(musb->xceiv->otg);
spin_lock_irqsave(&musb->lock, flags);
/* Block idling for at least 1s */
musb_platform_try_idle(musb,
jiffies + msecs_to_jiffies(1 * HZ));
status = 0;
goto done;
default:
dev_dbg(musb->controller, "Unhandled wake: %s\n",
usb_otg_state_string(musb->xceiv->state));
goto done;
}
status = 0;
power = musb_readb(mregs, MUSB_POWER);
power |= MUSB_POWER_RESUME;
musb_writeb(mregs, MUSB_POWER, power);
dev_dbg(musb->controller, "issue wakeup\n");
/* FIXME do this next chunk in a timer callback, no udelay */
mdelay(2);
power = musb_readb(mregs, MUSB_POWER);
power &= ~MUSB_POWER_RESUME;
musb_writeb(mregs, MUSB_POWER, power);
done:
spin_unlock_irqrestore(&musb->lock, flags);
return status;
}
static int
musb_gadget_set_self_powered(struct usb_gadget *gadget, int is_selfpowered)
{
struct musb *musb = gadget_to_musb(gadget);
musb->is_self_powered = !!is_selfpowered;
return 0;
}
static void musb_pullup(struct musb *musb, int is_on)
{
u8 power;
power = musb_readb(musb->mregs, MUSB_POWER);
if (is_on)
power |= MUSB_POWER_SOFTCONN;
else
power &= ~MUSB_POWER_SOFTCONN;
/* FIXME if on, HdrcStart; if off, HdrcStop */
dev_dbg(musb->controller, "gadget D+ pullup %s\n",
is_on ? "on" : "off");
musb_writeb(musb->mregs, MUSB_POWER, power);
}
#if 0
static int musb_gadget_vbus_session(struct usb_gadget *gadget, int is_active)
{
dev_dbg(musb->controller, "<= %s =>\n", __func__);
/*
* FIXME iff driver's softconnect flag is set (as it is during probe,
* though that can clear it), just musb_pullup().
*/
return -EINVAL;
}
#endif
static int musb_gadget_vbus_draw(struct usb_gadget *gadget, unsigned mA)
{
struct musb *musb = gadget_to_musb(gadget);
if (!musb->xceiv->set_power)
return -EOPNOTSUPP;
return usb_phy_set_power(musb->xceiv, mA);
}
static int musb_gadget_pullup(struct usb_gadget *gadget, int is_on)
{
struct musb *musb = gadget_to_musb(gadget);
unsigned long flags;
is_on = !!is_on;
pm_runtime_get_sync(musb->controller);
/* NOTE: this assumes we are sensing vbus; we'd rather
* not pullup unless the B-session is active.
*/
spin_lock_irqsave(&musb->lock, flags);
if (is_on != musb->softconnect) {
musb->softconnect = is_on;
musb_pullup(musb, is_on);
}
spin_unlock_irqrestore(&musb->lock, flags);
pm_runtime_put(musb->controller);
return 0;
}
static int musb_gadget_start(struct usb_gadget *g,
struct usb_gadget_driver *driver);
static int musb_gadget_stop(struct usb_gadget *g,
struct usb_gadget_driver *driver);
static const struct usb_gadget_ops musb_gadget_operations = {
.get_frame = musb_gadget_get_frame,
.wakeup = musb_gadget_wakeup,
.set_selfpowered = musb_gadget_set_self_powered,
/* .vbus_session = musb_gadget_vbus_session, */
.vbus_draw = musb_gadget_vbus_draw,
.pullup = musb_gadget_pullup,
.udc_start = musb_gadget_start,
.udc_stop = musb_gadget_stop,
};
/* ----------------------------------------------------------------------- */
/* Registration */
/* Only this registration code "knows" the rule (from USB standards)
* about there being only one external upstream port. It assumes
* all peripheral ports are external...
*/
static void
init_peripheral_ep(struct musb *musb, struct musb_ep *ep, u8 epnum, int is_in)
{
struct musb_hw_ep *hw_ep = musb->endpoints + epnum;
memset(ep, 0, sizeof *ep);
ep->current_epnum = epnum;
ep->musb = musb;
ep->hw_ep = hw_ep;
ep->is_in = is_in;
INIT_LIST_HEAD(&ep->req_list);
sprintf(ep->name, "ep%d%s", epnum,
(!epnum || hw_ep->is_shared_fifo) ? "" : (
is_in ? "in" : "out"));
ep->end_point.name = ep->name;
INIT_LIST_HEAD(&ep->end_point.ep_list);
if (!epnum) {
usb_ep_set_maxpacket_limit(&ep->end_point, 64);
ep->end_point.ops = &musb_g_ep0_ops;
musb->g.ep0 = &ep->end_point;
} else {
if (is_in)
usb_ep_set_maxpacket_limit(&ep->end_point, hw_ep->max_packet_sz_tx);
else
usb_ep_set_maxpacket_limit(&ep->end_point, hw_ep->max_packet_sz_rx);
ep->end_point.ops = &musb_ep_ops;
list_add_tail(&ep->end_point.ep_list, &musb->g.ep_list);
}
}
/*
* Initialize the endpoints exposed to peripheral drivers, with backlinks
* to the rest of the driver state.
*/
static inline void musb_g_init_endpoints(struct musb *musb)
{
u8 epnum;
struct musb_hw_ep *hw_ep;
unsigned count = 0;
/* initialize endpoint list just once */
INIT_LIST_HEAD(&(musb->g.ep_list));
for (epnum = 0, hw_ep = musb->endpoints;
epnum < musb->nr_endpoints;
epnum++, hw_ep++) {
if (hw_ep->is_shared_fifo /* || !epnum */) {
init_peripheral_ep(musb, &hw_ep->ep_in, epnum, 0);
count++;
} else {
if (hw_ep->max_packet_sz_tx) {
init_peripheral_ep(musb, &hw_ep->ep_in,
epnum, 1);
count++;
}
if (hw_ep->max_packet_sz_rx) {
init_peripheral_ep(musb, &hw_ep->ep_out,
epnum, 0);
count++;
}
}
}
}
/* called once during driver setup to initialize and link into
* the driver model; memory is zeroed.
*/
int musb_gadget_setup(struct musb *musb)
{
int status;
/* REVISIT minor race: if (erroneously) setting up two
* musb peripherals at the same time, only the bus lock
* is probably held.
*/
musb->g.ops = &musb_gadget_operations;
musb->g.max_speed = USB_SPEED_HIGH;
musb->g.speed = USB_SPEED_UNKNOWN;
MUSB_DEV_MODE(musb);
musb->xceiv->otg->default_a = 0;
musb->xceiv->state = OTG_STATE_B_IDLE;
/* this "gadget" abstracts/virtualizes the controller */
musb->g.name = musb_driver_name;
#if IS_ENABLED(CONFIG_USB_MUSB_DUAL_ROLE)
musb->g.is_otg = 1;
#elif IS_ENABLED(CONFIG_USB_MUSB_GADGET)
musb->g.is_otg = 0;
#endif
musb_g_init_endpoints(musb);
musb->is_active = 0;
musb_platform_try_idle(musb, 0);
status = usb_add_gadget_udc(musb->controller, &musb->g);
if (status)
goto err;
return 0;
err:
musb->g.dev.parent = NULL;
device_unregister(&musb->g.dev);
return status;
}
void musb_gadget_cleanup(struct musb *musb)
{
if (musb->port_mode == MUSB_PORT_MODE_HOST)
return;
usb_del_gadget_udc(&musb->g);
}
/*
* Register the gadget driver. Used by gadget drivers when
* registering themselves with the controller.
*
* -EINVAL something went wrong (not driver)
* -EBUSY another gadget is already using the controller
* -ENOMEM no memory to perform the operation
*
* @param driver the gadget driver
* @return <0 if error, 0 if everything is fine
*/
static int musb_gadget_start(struct usb_gadget *g,
struct usb_gadget_driver *driver)
{
struct musb *musb = gadget_to_musb(g);
struct usb_otg *otg = musb->xceiv->otg;
unsigned long flags;
int retval = 0;
if (driver->max_speed < USB_SPEED_HIGH) {
retval = -EINVAL;
goto err;
}
pm_runtime_get_sync(musb->controller);
dev_dbg(musb->controller, "registering driver %s\n", driver->function);
musb->softconnect = 0;
musb->gadget_driver = driver;
spin_lock_irqsave(&musb->lock, flags);
musb->is_active = 1;
otg_set_peripheral(otg, &musb->g);
musb->xceiv->state = OTG_STATE_B_IDLE;
spin_unlock_irqrestore(&musb->lock, flags);
musb_start(musb);
/* REVISIT: funcall to other code, which also
* handles power budgeting ... this way also
* ensures HdrcStart is indirectly called.
*/
if (musb->xceiv->last_event == USB_EVENT_ID)
musb_platform_set_vbus(musb, 1);
if (musb->xceiv->last_event == USB_EVENT_NONE)
pm_runtime_put(musb->controller);
return 0;
err:
return retval;
}
static void stop_activity(struct musb *musb, struct usb_gadget_driver *driver)
{
int i;
struct musb_hw_ep *hw_ep;
/* don't disconnect if it's not connected */
if (musb->g.speed == USB_SPEED_UNKNOWN)
driver = NULL;
else
musb->g.speed = USB_SPEED_UNKNOWN;
/* deactivate the hardware */
if (musb->softconnect) {
musb->softconnect = 0;
musb_pullup(musb, 0);
}
musb_stop(musb);
/* killing any outstanding requests will quiesce the driver;
* then report disconnect
*/
if (driver) {
for (i = 0, hw_ep = musb->endpoints;
i < musb->nr_endpoints;
i++, hw_ep++) {
musb_ep_select(musb->mregs, i);
if (hw_ep->is_shared_fifo /* || !epnum */) {
nuke(&hw_ep->ep_in, -ESHUTDOWN);
} else {
if (hw_ep->max_packet_sz_tx)
nuke(&hw_ep->ep_in, -ESHUTDOWN);
if (hw_ep->max_packet_sz_rx)
nuke(&hw_ep->ep_out, -ESHUTDOWN);
}
}
}
}
/*
* Unregister the gadget driver. Used by gadget drivers when
* unregistering themselves from the controller.
*
* @param driver the gadget driver to unregister
*/
static int musb_gadget_stop(struct usb_gadget *g,
struct usb_gadget_driver *driver)
{
struct musb *musb = gadget_to_musb(g);
unsigned long flags;
if (musb->xceiv->last_event == USB_EVENT_NONE)
pm_runtime_get_sync(musb->controller);
/*
* REVISIT always use otg_set_peripheral() here too;
* this needs to shut down the OTG engine.
*/
spin_lock_irqsave(&musb->lock, flags);
musb_hnp_stop(musb);
(void) musb_gadget_vbus_draw(&musb->g, 0);
musb->xceiv->state = OTG_STATE_UNDEFINED;
stop_activity(musb, driver);
otg_set_peripheral(musb->xceiv->otg, NULL);
dev_dbg(musb->controller, "unregistering driver %s\n",
driver ? driver->function : "(removed)");
musb->is_active = 0;
musb->gadget_driver = NULL;
musb_platform_try_idle(musb, 0);
spin_unlock_irqrestore(&musb->lock, flags);
/*
* FIXME we need to be able to register another
* gadget driver here and have everything work;
* that currently misbehaves.
*/
pm_runtime_put(musb->controller);
return 0;
}
/* ----------------------------------------------------------------------- */
/* lifecycle operations called through plat_uds.c */
void musb_g_resume(struct musb *musb)
{
musb->is_suspended = 0;
switch (musb->xceiv->state) {
case OTG_STATE_B_IDLE:
break;
case OTG_STATE_B_WAIT_ACON:
case OTG_STATE_B_PERIPHERAL:
musb->is_active = 1;
if (musb->gadget_driver && musb->gadget_driver->resume) {
spin_unlock(&musb->lock);
musb->gadget_driver->resume(&musb->g);
spin_lock(&musb->lock);
}
break;
default:
WARNING("unhandled RESUME transition (%s)\n",
usb_otg_state_string(musb->xceiv->state));
}
}
/* called when SOF packets stop for 3+ msec */
void musb_g_suspend(struct musb *musb)
{
u8 devctl;
devctl = musb_readb(musb->mregs, MUSB_DEVCTL);
dev_dbg(musb->controller, "devctl %02x\n", devctl);
switch (musb->xceiv->state) {
case OTG_STATE_B_IDLE:
if ((devctl & MUSB_DEVCTL_VBUS) == MUSB_DEVCTL_VBUS)
musb->xceiv->state = OTG_STATE_B_PERIPHERAL;
break;
case OTG_STATE_B_PERIPHERAL:
musb->is_suspended = 1;
if (musb->gadget_driver && musb->gadget_driver->suspend) {
spin_unlock(&musb->lock);
musb->gadget_driver->suspend(&musb->g);
spin_lock(&musb->lock);
}
break;
default:
/* REVISIT if B_HOST, clear DEVCTL.HOSTREQ;
* A_PERIPHERAL may need care too
*/
WARNING("unhandled SUSPEND transition (%s)\n",
usb_otg_state_string(musb->xceiv->state));
}
}
/* Called during SRP */
void musb_g_wakeup(struct musb *musb)
{
musb_gadget_wakeup(&musb->g);
}
/* called when VBUS drops below session threshold, and in other cases */
void musb_g_disconnect(struct musb *musb)
{
void __iomem *mregs = musb->mregs;
u8 devctl = musb_readb(mregs, MUSB_DEVCTL);
dev_dbg(musb->controller, "devctl %02x\n", devctl);
/* clear HR */
musb_writeb(mregs, MUSB_DEVCTL, devctl & MUSB_DEVCTL_SESSION);
/* don't draw vbus until new b-default session */
(void) musb_gadget_vbus_draw(&musb->g, 0);
musb->g.speed = USB_SPEED_UNKNOWN;
if (musb->gadget_driver && musb->gadget_driver->disconnect) {
spin_unlock(&musb->lock);
musb->gadget_driver->disconnect(&musb->g);
spin_lock(&musb->lock);
}
switch (musb->xceiv->state) {
default:
dev_dbg(musb->controller, "Unhandled disconnect %s, setting a_idle\n",
usb_otg_state_string(musb->xceiv->state));
musb->xceiv->state = OTG_STATE_A_IDLE;
MUSB_HST_MODE(musb);
break;
case OTG_STATE_A_PERIPHERAL:
musb->xceiv->state = OTG_STATE_A_WAIT_BCON;
MUSB_HST_MODE(musb);
break;
case OTG_STATE_B_WAIT_ACON:
case OTG_STATE_B_HOST:
case OTG_STATE_B_PERIPHERAL:
case OTG_STATE_B_IDLE:
musb->xceiv->state = OTG_STATE_B_IDLE;
break;
case OTG_STATE_B_SRP_INIT:
break;
}
musb->is_active = 0;
}
void musb_g_reset(struct musb *musb)
__releases(musb->lock)
__acquires(musb->lock)
{
void __iomem *mbase = musb->mregs;
u8 devctl = musb_readb(mbase, MUSB_DEVCTL);
u8 power;
dev_dbg(musb->controller, "<== %s driver '%s'\n",
(devctl & MUSB_DEVCTL_BDEVICE)
? "B-Device" : "A-Device",
musb->gadget_driver
? musb->gadget_driver->driver.name
: NULL
);
/* report disconnect, if we didn't already (flushing EP state) */
if (musb->g.speed != USB_SPEED_UNKNOWN)
musb_g_disconnect(musb);
/* clear HR */
else if (devctl & MUSB_DEVCTL_HR)
musb_writeb(mbase, MUSB_DEVCTL, MUSB_DEVCTL_SESSION);
/* what speed did we negotiate? */
power = musb_readb(mbase, MUSB_POWER);
musb->g.speed = (power & MUSB_POWER_HSMODE)
? USB_SPEED_HIGH : USB_SPEED_FULL;
/* start in USB_STATE_DEFAULT */
musb->is_active = 1;
musb->is_suspended = 0;
MUSB_DEV_MODE(musb);
musb->address = 0;
musb->ep0_state = MUSB_EP0_STAGE_SETUP;
musb->may_wakeup = 0;
musb->g.b_hnp_enable = 0;
musb->g.a_alt_hnp_support = 0;
musb->g.a_hnp_support = 0;
/* Normal reset, as B-Device;
* or else after HNP, as A-Device
*/
if (!musb->g.is_otg) {
/* USB device controllers that are not OTG compatible
* may not have DEVCTL register in silicon.
* In that case, do not rely on devctl for setting
* peripheral mode.
*/
musb->xceiv->state = OTG_STATE_B_PERIPHERAL;
musb->g.is_a_peripheral = 0;
} else if (devctl & MUSB_DEVCTL_BDEVICE) {
musb->xceiv->state = OTG_STATE_B_PERIPHERAL;
musb->g.is_a_peripheral = 0;
} else {
musb->xceiv->state = OTG_STATE_A_PERIPHERAL;
musb->g.is_a_peripheral = 1;
}
/* start with default limits on VBUS power draw */
(void) musb_gadget_vbus_draw(&musb->g, 8);
}