628 lines
17 KiB
C
628 lines
17 KiB
C
/*
|
|
* Copyright (C) 1995 Linus Torvalds
|
|
*
|
|
* Pentium III FXSR, SSE support
|
|
* Gareth Hughes <gareth@valinux.com>, May 2000
|
|
*
|
|
* X86-64 port
|
|
* Andi Kleen.
|
|
*
|
|
* CPU hotplug support - ashok.raj@intel.com
|
|
*/
|
|
|
|
/*
|
|
* This file handles the architecture-dependent parts of process handling..
|
|
*/
|
|
|
|
#include <linux/cpu.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/elfcore.h>
|
|
#include <linux/smp.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/user.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/module.h>
|
|
#include <linux/ptrace.h>
|
|
#include <linux/notifier.h>
|
|
#include <linux/kprobes.h>
|
|
#include <linux/kdebug.h>
|
|
#include <linux/prctl.h>
|
|
#include <linux/uaccess.h>
|
|
#include <linux/io.h>
|
|
#include <linux/ftrace.h>
|
|
|
|
#include <asm/pgtable.h>
|
|
#include <asm/processor.h>
|
|
#include <asm/fpu/internal.h>
|
|
#include <asm/mmu_context.h>
|
|
#include <asm/prctl.h>
|
|
#include <asm/desc.h>
|
|
#include <asm/proto.h>
|
|
#include <asm/ia32.h>
|
|
#include <asm/idle.h>
|
|
#include <asm/syscalls.h>
|
|
#include <asm/debugreg.h>
|
|
#include <asm/switch_to.h>
|
|
|
|
asmlinkage extern void ret_from_fork(void);
|
|
|
|
__visible DEFINE_PER_CPU(unsigned long, rsp_scratch);
|
|
|
|
/* Prints also some state that isn't saved in the pt_regs */
|
|
void __show_regs(struct pt_regs *regs, int all)
|
|
{
|
|
unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L, fs, gs, shadowgs;
|
|
unsigned long d0, d1, d2, d3, d6, d7;
|
|
unsigned int fsindex, gsindex;
|
|
unsigned int ds, cs, es;
|
|
|
|
printk(KERN_DEFAULT "RIP: %04lx:[<%016lx>] ", regs->cs & 0xffff, regs->ip);
|
|
printk_address(regs->ip);
|
|
printk(KERN_DEFAULT "RSP: %04lx:%016lx EFLAGS: %08lx\n", regs->ss,
|
|
regs->sp, regs->flags);
|
|
printk(KERN_DEFAULT "RAX: %016lx RBX: %016lx RCX: %016lx\n",
|
|
regs->ax, regs->bx, regs->cx);
|
|
printk(KERN_DEFAULT "RDX: %016lx RSI: %016lx RDI: %016lx\n",
|
|
regs->dx, regs->si, regs->di);
|
|
printk(KERN_DEFAULT "RBP: %016lx R08: %016lx R09: %016lx\n",
|
|
regs->bp, regs->r8, regs->r9);
|
|
printk(KERN_DEFAULT "R10: %016lx R11: %016lx R12: %016lx\n",
|
|
regs->r10, regs->r11, regs->r12);
|
|
printk(KERN_DEFAULT "R13: %016lx R14: %016lx R15: %016lx\n",
|
|
regs->r13, regs->r14, regs->r15);
|
|
|
|
asm("movl %%ds,%0" : "=r" (ds));
|
|
asm("movl %%cs,%0" : "=r" (cs));
|
|
asm("movl %%es,%0" : "=r" (es));
|
|
asm("movl %%fs,%0" : "=r" (fsindex));
|
|
asm("movl %%gs,%0" : "=r" (gsindex));
|
|
|
|
rdmsrl(MSR_FS_BASE, fs);
|
|
rdmsrl(MSR_GS_BASE, gs);
|
|
rdmsrl(MSR_KERNEL_GS_BASE, shadowgs);
|
|
|
|
if (!all)
|
|
return;
|
|
|
|
cr0 = read_cr0();
|
|
cr2 = read_cr2();
|
|
cr3 = read_cr3();
|
|
cr4 = __read_cr4();
|
|
|
|
printk(KERN_DEFAULT "FS: %016lx(%04x) GS:%016lx(%04x) knlGS:%016lx\n",
|
|
fs, fsindex, gs, gsindex, shadowgs);
|
|
printk(KERN_DEFAULT "CS: %04x DS: %04x ES: %04x CR0: %016lx\n", cs, ds,
|
|
es, cr0);
|
|
printk(KERN_DEFAULT "CR2: %016lx CR3: %016lx CR4: %016lx\n", cr2, cr3,
|
|
cr4);
|
|
|
|
get_debugreg(d0, 0);
|
|
get_debugreg(d1, 1);
|
|
get_debugreg(d2, 2);
|
|
get_debugreg(d3, 3);
|
|
get_debugreg(d6, 6);
|
|
get_debugreg(d7, 7);
|
|
|
|
/* Only print out debug registers if they are in their non-default state. */
|
|
if ((d0 == 0) && (d1 == 0) && (d2 == 0) && (d3 == 0) &&
|
|
(d6 == DR6_RESERVED) && (d7 == 0x400))
|
|
return;
|
|
|
|
printk(KERN_DEFAULT "DR0: %016lx DR1: %016lx DR2: %016lx\n", d0, d1, d2);
|
|
printk(KERN_DEFAULT "DR3: %016lx DR6: %016lx DR7: %016lx\n", d3, d6, d7);
|
|
|
|
}
|
|
|
|
void release_thread(struct task_struct *dead_task)
|
|
{
|
|
if (dead_task->mm) {
|
|
if (dead_task->mm->context.size) {
|
|
pr_warn("WARNING: dead process %s still has LDT? <%p/%d>\n",
|
|
dead_task->comm,
|
|
dead_task->mm->context.ldt,
|
|
dead_task->mm->context.size);
|
|
BUG();
|
|
}
|
|
}
|
|
}
|
|
|
|
static inline void set_32bit_tls(struct task_struct *t, int tls, u32 addr)
|
|
{
|
|
struct user_desc ud = {
|
|
.base_addr = addr,
|
|
.limit = 0xfffff,
|
|
.seg_32bit = 1,
|
|
.limit_in_pages = 1,
|
|
.useable = 1,
|
|
};
|
|
struct desc_struct *desc = t->thread.tls_array;
|
|
desc += tls;
|
|
fill_ldt(desc, &ud);
|
|
}
|
|
|
|
static inline u32 read_32bit_tls(struct task_struct *t, int tls)
|
|
{
|
|
return get_desc_base(&t->thread.tls_array[tls]);
|
|
}
|
|
|
|
int copy_thread_tls(unsigned long clone_flags, unsigned long sp,
|
|
unsigned long arg, struct task_struct *p, unsigned long tls)
|
|
{
|
|
int err;
|
|
struct pt_regs *childregs;
|
|
struct task_struct *me = current;
|
|
|
|
p->thread.sp0 = (unsigned long)task_stack_page(p) + THREAD_SIZE;
|
|
childregs = task_pt_regs(p);
|
|
p->thread.sp = (unsigned long) childregs;
|
|
set_tsk_thread_flag(p, TIF_FORK);
|
|
p->thread.io_bitmap_ptr = NULL;
|
|
|
|
savesegment(gs, p->thread.gsindex);
|
|
p->thread.gs = p->thread.gsindex ? 0 : me->thread.gs;
|
|
savesegment(fs, p->thread.fsindex);
|
|
p->thread.fs = p->thread.fsindex ? 0 : me->thread.fs;
|
|
savesegment(es, p->thread.es);
|
|
savesegment(ds, p->thread.ds);
|
|
memset(p->thread.ptrace_bps, 0, sizeof(p->thread.ptrace_bps));
|
|
|
|
if (unlikely(p->flags & PF_KTHREAD)) {
|
|
/* kernel thread */
|
|
memset(childregs, 0, sizeof(struct pt_regs));
|
|
childregs->sp = (unsigned long)childregs;
|
|
childregs->ss = __KERNEL_DS;
|
|
childregs->bx = sp; /* function */
|
|
childregs->bp = arg;
|
|
childregs->orig_ax = -1;
|
|
childregs->cs = __KERNEL_CS | get_kernel_rpl();
|
|
childregs->flags = X86_EFLAGS_IF | X86_EFLAGS_FIXED;
|
|
return 0;
|
|
}
|
|
*childregs = *current_pt_regs();
|
|
|
|
childregs->ax = 0;
|
|
if (sp)
|
|
childregs->sp = sp;
|
|
|
|
err = -ENOMEM;
|
|
if (unlikely(test_tsk_thread_flag(me, TIF_IO_BITMAP))) {
|
|
p->thread.io_bitmap_ptr = kmemdup(me->thread.io_bitmap_ptr,
|
|
IO_BITMAP_BYTES, GFP_KERNEL);
|
|
if (!p->thread.io_bitmap_ptr) {
|
|
p->thread.io_bitmap_max = 0;
|
|
return -ENOMEM;
|
|
}
|
|
set_tsk_thread_flag(p, TIF_IO_BITMAP);
|
|
}
|
|
|
|
/*
|
|
* Set a new TLS for the child thread?
|
|
*/
|
|
if (clone_flags & CLONE_SETTLS) {
|
|
#ifdef CONFIG_IA32_EMULATION
|
|
if (is_ia32_task())
|
|
err = do_set_thread_area(p, -1,
|
|
(struct user_desc __user *)tls, 0);
|
|
else
|
|
#endif
|
|
err = do_arch_prctl(p, ARCH_SET_FS, tls);
|
|
if (err)
|
|
goto out;
|
|
}
|
|
err = 0;
|
|
out:
|
|
if (err && p->thread.io_bitmap_ptr) {
|
|
kfree(p->thread.io_bitmap_ptr);
|
|
p->thread.io_bitmap_max = 0;
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
static void
|
|
start_thread_common(struct pt_regs *regs, unsigned long new_ip,
|
|
unsigned long new_sp,
|
|
unsigned int _cs, unsigned int _ss, unsigned int _ds)
|
|
{
|
|
loadsegment(fs, 0);
|
|
loadsegment(es, _ds);
|
|
loadsegment(ds, _ds);
|
|
load_gs_index(0);
|
|
regs->ip = new_ip;
|
|
regs->sp = new_sp;
|
|
regs->cs = _cs;
|
|
regs->ss = _ss;
|
|
regs->flags = X86_EFLAGS_IF;
|
|
force_iret();
|
|
}
|
|
|
|
void
|
|
start_thread(struct pt_regs *regs, unsigned long new_ip, unsigned long new_sp)
|
|
{
|
|
start_thread_common(regs, new_ip, new_sp,
|
|
__USER_CS, __USER_DS, 0);
|
|
}
|
|
|
|
#ifdef CONFIG_IA32_EMULATION
|
|
void start_thread_ia32(struct pt_regs *regs, u32 new_ip, u32 new_sp)
|
|
{
|
|
start_thread_common(regs, new_ip, new_sp,
|
|
test_thread_flag(TIF_X32)
|
|
? __USER_CS : __USER32_CS,
|
|
__USER_DS, __USER_DS);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* switch_to(x,y) should switch tasks from x to y.
|
|
*
|
|
* This could still be optimized:
|
|
* - fold all the options into a flag word and test it with a single test.
|
|
* - could test fs/gs bitsliced
|
|
*
|
|
* Kprobes not supported here. Set the probe on schedule instead.
|
|
* Function graph tracer not supported too.
|
|
*/
|
|
__visible __notrace_funcgraph struct task_struct *
|
|
__switch_to(struct task_struct *prev_p, struct task_struct *next_p)
|
|
{
|
|
struct thread_struct *prev = &prev_p->thread;
|
|
struct thread_struct *next = &next_p->thread;
|
|
struct fpu *prev_fpu = &prev->fpu;
|
|
struct fpu *next_fpu = &next->fpu;
|
|
int cpu = smp_processor_id();
|
|
struct tss_struct *tss = &per_cpu(cpu_tss, cpu);
|
|
unsigned fsindex, gsindex;
|
|
fpu_switch_t fpu_switch;
|
|
|
|
fpu_switch = switch_fpu_prepare(prev_fpu, next_fpu, cpu);
|
|
|
|
/* We must save %fs and %gs before load_TLS() because
|
|
* %fs and %gs may be cleared by load_TLS().
|
|
*
|
|
* (e.g. xen_load_tls())
|
|
*/
|
|
savesegment(fs, fsindex);
|
|
savesegment(gs, gsindex);
|
|
|
|
/*
|
|
* Load TLS before restoring any segments so that segment loads
|
|
* reference the correct GDT entries.
|
|
*/
|
|
load_TLS(next, cpu);
|
|
|
|
/*
|
|
* Leave lazy mode, flushing any hypercalls made here. This
|
|
* must be done after loading TLS entries in the GDT but before
|
|
* loading segments that might reference them, and and it must
|
|
* be done before fpu__restore(), so the TS bit is up to
|
|
* date.
|
|
*/
|
|
arch_end_context_switch(next_p);
|
|
|
|
/* Switch DS and ES.
|
|
*
|
|
* Reading them only returns the selectors, but writing them (if
|
|
* nonzero) loads the full descriptor from the GDT or LDT. The
|
|
* LDT for next is loaded in switch_mm, and the GDT is loaded
|
|
* above.
|
|
*
|
|
* We therefore need to write new values to the segment
|
|
* registers on every context switch unless both the new and old
|
|
* values are zero.
|
|
*
|
|
* Note that we don't need to do anything for CS and SS, as
|
|
* those are saved and restored as part of pt_regs.
|
|
*/
|
|
savesegment(es, prev->es);
|
|
if (unlikely(next->es | prev->es))
|
|
loadsegment(es, next->es);
|
|
|
|
savesegment(ds, prev->ds);
|
|
if (unlikely(next->ds | prev->ds))
|
|
loadsegment(ds, next->ds);
|
|
|
|
/*
|
|
* Switch FS and GS.
|
|
*
|
|
* These are even more complicated than FS and GS: they have
|
|
* 64-bit bases are that controlled by arch_prctl. Those bases
|
|
* only differ from the values in the GDT or LDT if the selector
|
|
* is 0.
|
|
*
|
|
* Loading the segment register resets the hidden base part of
|
|
* the register to 0 or the value from the GDT / LDT. If the
|
|
* next base address zero, writing 0 to the segment register is
|
|
* much faster than using wrmsr to explicitly zero the base.
|
|
*
|
|
* The thread_struct.fs and thread_struct.gs values are 0
|
|
* if the fs and gs bases respectively are not overridden
|
|
* from the values implied by fsindex and gsindex. They
|
|
* are nonzero, and store the nonzero base addresses, if
|
|
* the bases are overridden.
|
|
*
|
|
* (fs != 0 && fsindex != 0) || (gs != 0 && gsindex != 0) should
|
|
* be impossible.
|
|
*
|
|
* Therefore we need to reload the segment registers if either
|
|
* the old or new selector is nonzero, and we need to override
|
|
* the base address if next thread expects it to be overridden.
|
|
*
|
|
* This code is unnecessarily slow in the case where the old and
|
|
* new indexes are zero and the new base is nonzero -- it will
|
|
* unnecessarily write 0 to the selector before writing the new
|
|
* base address.
|
|
*
|
|
* Note: This all depends on arch_prctl being the only way that
|
|
* user code can override the segment base. Once wrfsbase and
|
|
* wrgsbase are enabled, most of this code will need to change.
|
|
*/
|
|
if (unlikely(fsindex | next->fsindex | prev->fs)) {
|
|
loadsegment(fs, next->fsindex);
|
|
|
|
/*
|
|
* If user code wrote a nonzero value to FS, then it also
|
|
* cleared the overridden base address.
|
|
*
|
|
* XXX: if user code wrote 0 to FS and cleared the base
|
|
* address itself, we won't notice and we'll incorrectly
|
|
* restore the prior base address next time we reschdule
|
|
* the process.
|
|
*/
|
|
if (fsindex)
|
|
prev->fs = 0;
|
|
}
|
|
if (next->fs)
|
|
wrmsrl(MSR_FS_BASE, next->fs);
|
|
prev->fsindex = fsindex;
|
|
|
|
if (unlikely(gsindex | next->gsindex | prev->gs)) {
|
|
load_gs_index(next->gsindex);
|
|
|
|
/* This works (and fails) the same way as fsindex above. */
|
|
if (gsindex)
|
|
prev->gs = 0;
|
|
}
|
|
if (next->gs)
|
|
wrmsrl(MSR_KERNEL_GS_BASE, next->gs);
|
|
prev->gsindex = gsindex;
|
|
|
|
switch_fpu_finish(next_fpu, fpu_switch);
|
|
|
|
/*
|
|
* Switch the PDA and FPU contexts.
|
|
*/
|
|
this_cpu_write(current_task, next_p);
|
|
|
|
/*
|
|
* If it were not for PREEMPT_ACTIVE we could guarantee that the
|
|
* preempt_count of all tasks was equal here and this would not be
|
|
* needed.
|
|
*/
|
|
task_thread_info(prev_p)->saved_preempt_count = this_cpu_read(__preempt_count);
|
|
this_cpu_write(__preempt_count, task_thread_info(next_p)->saved_preempt_count);
|
|
|
|
/* Reload esp0 and ss1. This changes current_thread_info(). */
|
|
load_sp0(tss, next);
|
|
|
|
/*
|
|
* Now maybe reload the debug registers and handle I/O bitmaps
|
|
*/
|
|
if (unlikely(task_thread_info(next_p)->flags & _TIF_WORK_CTXSW_NEXT ||
|
|
task_thread_info(prev_p)->flags & _TIF_WORK_CTXSW_PREV))
|
|
__switch_to_xtra(prev_p, next_p, tss);
|
|
|
|
if (static_cpu_has_bug(X86_BUG_SYSRET_SS_ATTRS)) {
|
|
/*
|
|
* AMD CPUs have a misfeature: SYSRET sets the SS selector but
|
|
* does not update the cached descriptor. As a result, if we
|
|
* do SYSRET while SS is NULL, we'll end up in user mode with
|
|
* SS apparently equal to __USER_DS but actually unusable.
|
|
*
|
|
* The straightforward workaround would be to fix it up just
|
|
* before SYSRET, but that would slow down the system call
|
|
* fast paths. Instead, we ensure that SS is never NULL in
|
|
* system call context. We do this by replacing NULL SS
|
|
* selectors at every context switch. SYSCALL sets up a valid
|
|
* SS, so the only way to get NULL is to re-enter the kernel
|
|
* from CPL 3 through an interrupt. Since that can't happen
|
|
* in the same task as a running syscall, we are guaranteed to
|
|
* context switch between every interrupt vector entry and a
|
|
* subsequent SYSRET.
|
|
*
|
|
* We read SS first because SS reads are much faster than
|
|
* writes. Out of caution, we force SS to __KERNEL_DS even if
|
|
* it previously had a different non-NULL value.
|
|
*/
|
|
unsigned short ss_sel;
|
|
savesegment(ss, ss_sel);
|
|
if (ss_sel != __KERNEL_DS)
|
|
loadsegment(ss, __KERNEL_DS);
|
|
}
|
|
|
|
return prev_p;
|
|
}
|
|
|
|
void set_personality_64bit(void)
|
|
{
|
|
/* inherit personality from parent */
|
|
|
|
/* Make sure to be in 64bit mode */
|
|
clear_thread_flag(TIF_IA32);
|
|
clear_thread_flag(TIF_ADDR32);
|
|
clear_thread_flag(TIF_X32);
|
|
|
|
/* Ensure the corresponding mm is not marked. */
|
|
if (current->mm)
|
|
current->mm->context.ia32_compat = 0;
|
|
|
|
/* TBD: overwrites user setup. Should have two bits.
|
|
But 64bit processes have always behaved this way,
|
|
so it's not too bad. The main problem is just that
|
|
32bit childs are affected again. */
|
|
current->personality &= ~READ_IMPLIES_EXEC;
|
|
}
|
|
|
|
void set_personality_ia32(bool x32)
|
|
{
|
|
/* inherit personality from parent */
|
|
|
|
/* Make sure to be in 32bit mode */
|
|
set_thread_flag(TIF_ADDR32);
|
|
|
|
/* Mark the associated mm as containing 32-bit tasks. */
|
|
if (x32) {
|
|
clear_thread_flag(TIF_IA32);
|
|
set_thread_flag(TIF_X32);
|
|
if (current->mm)
|
|
current->mm->context.ia32_compat = TIF_X32;
|
|
current->personality &= ~READ_IMPLIES_EXEC;
|
|
/* is_compat_task() uses the presence of the x32
|
|
syscall bit flag to determine compat status */
|
|
current_thread_info()->status &= ~TS_COMPAT;
|
|
} else {
|
|
set_thread_flag(TIF_IA32);
|
|
clear_thread_flag(TIF_X32);
|
|
if (current->mm)
|
|
current->mm->context.ia32_compat = TIF_IA32;
|
|
current->personality |= force_personality32;
|
|
/* Prepare the first "return" to user space */
|
|
current_thread_info()->status |= TS_COMPAT;
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(set_personality_ia32);
|
|
|
|
unsigned long get_wchan(struct task_struct *p)
|
|
{
|
|
unsigned long stack;
|
|
u64 fp, ip;
|
|
int count = 0;
|
|
|
|
if (!p || p == current || p->state == TASK_RUNNING)
|
|
return 0;
|
|
stack = (unsigned long)task_stack_page(p);
|
|
if (p->thread.sp < stack || p->thread.sp >= stack+THREAD_SIZE)
|
|
return 0;
|
|
fp = *(u64 *)(p->thread.sp);
|
|
do {
|
|
if (fp < (unsigned long)stack ||
|
|
fp >= (unsigned long)stack+THREAD_SIZE)
|
|
return 0;
|
|
ip = *(u64 *)(fp+8);
|
|
if (!in_sched_functions(ip))
|
|
return ip;
|
|
fp = *(u64 *)fp;
|
|
} while (count++ < 16);
|
|
return 0;
|
|
}
|
|
|
|
long do_arch_prctl(struct task_struct *task, int code, unsigned long addr)
|
|
{
|
|
int ret = 0;
|
|
int doit = task == current;
|
|
int cpu;
|
|
|
|
switch (code) {
|
|
case ARCH_SET_GS:
|
|
if (addr >= TASK_SIZE_OF(task))
|
|
return -EPERM;
|
|
cpu = get_cpu();
|
|
/* handle small bases via the GDT because that's faster to
|
|
switch. */
|
|
if (addr <= 0xffffffff) {
|
|
set_32bit_tls(task, GS_TLS, addr);
|
|
if (doit) {
|
|
load_TLS(&task->thread, cpu);
|
|
load_gs_index(GS_TLS_SEL);
|
|
}
|
|
task->thread.gsindex = GS_TLS_SEL;
|
|
task->thread.gs = 0;
|
|
} else {
|
|
task->thread.gsindex = 0;
|
|
task->thread.gs = addr;
|
|
if (doit) {
|
|
load_gs_index(0);
|
|
ret = wrmsrl_safe(MSR_KERNEL_GS_BASE, addr);
|
|
}
|
|
}
|
|
put_cpu();
|
|
break;
|
|
case ARCH_SET_FS:
|
|
/* Not strictly needed for fs, but do it for symmetry
|
|
with gs */
|
|
if (addr >= TASK_SIZE_OF(task))
|
|
return -EPERM;
|
|
cpu = get_cpu();
|
|
/* handle small bases via the GDT because that's faster to
|
|
switch. */
|
|
if (addr <= 0xffffffff) {
|
|
set_32bit_tls(task, FS_TLS, addr);
|
|
if (doit) {
|
|
load_TLS(&task->thread, cpu);
|
|
loadsegment(fs, FS_TLS_SEL);
|
|
}
|
|
task->thread.fsindex = FS_TLS_SEL;
|
|
task->thread.fs = 0;
|
|
} else {
|
|
task->thread.fsindex = 0;
|
|
task->thread.fs = addr;
|
|
if (doit) {
|
|
/* set the selector to 0 to not confuse
|
|
__switch_to */
|
|
loadsegment(fs, 0);
|
|
ret = wrmsrl_safe(MSR_FS_BASE, addr);
|
|
}
|
|
}
|
|
put_cpu();
|
|
break;
|
|
case ARCH_GET_FS: {
|
|
unsigned long base;
|
|
if (task->thread.fsindex == FS_TLS_SEL)
|
|
base = read_32bit_tls(task, FS_TLS);
|
|
else if (doit)
|
|
rdmsrl(MSR_FS_BASE, base);
|
|
else
|
|
base = task->thread.fs;
|
|
ret = put_user(base, (unsigned long __user *)addr);
|
|
break;
|
|
}
|
|
case ARCH_GET_GS: {
|
|
unsigned long base;
|
|
unsigned gsindex;
|
|
if (task->thread.gsindex == GS_TLS_SEL)
|
|
base = read_32bit_tls(task, GS_TLS);
|
|
else if (doit) {
|
|
savesegment(gs, gsindex);
|
|
if (gsindex)
|
|
rdmsrl(MSR_KERNEL_GS_BASE, base);
|
|
else
|
|
base = task->thread.gs;
|
|
} else
|
|
base = task->thread.gs;
|
|
ret = put_user(base, (unsigned long __user *)addr);
|
|
break;
|
|
}
|
|
|
|
default:
|
|
ret = -EINVAL;
|
|
break;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
long sys_arch_prctl(int code, unsigned long addr)
|
|
{
|
|
return do_arch_prctl(current, code, addr);
|
|
}
|
|
|
|
unsigned long KSTK_ESP(struct task_struct *task)
|
|
{
|
|
return task_pt_regs(task)->sp;
|
|
}
|