linux-sg2042/include/linux/memblock.h

609 lines
20 KiB
C

/* SPDX-License-Identifier: GPL-2.0-or-later */
#ifndef _LINUX_MEMBLOCK_H
#define _LINUX_MEMBLOCK_H
/*
* Logical memory blocks.
*
* Copyright (C) 2001 Peter Bergner, IBM Corp.
*/
#include <linux/init.h>
#include <linux/mm.h>
#include <asm/dma.h>
extern unsigned long max_low_pfn;
extern unsigned long min_low_pfn;
/*
* highest page
*/
extern unsigned long max_pfn;
/*
* highest possible page
*/
extern unsigned long long max_possible_pfn;
/**
* enum memblock_flags - definition of memory region attributes
* @MEMBLOCK_NONE: no special request
* @MEMBLOCK_HOTPLUG: memory region indicated in the firmware-provided memory
* map during early boot as hot(un)pluggable system RAM (e.g., memory range
* that might get hotunplugged later). With "movable_node" set on the kernel
* commandline, try keeping this memory region hotunpluggable. Does not apply
* to memblocks added ("hotplugged") after early boot.
* @MEMBLOCK_MIRROR: mirrored region
* @MEMBLOCK_NOMAP: don't add to kernel direct mapping and treat as
* reserved in the memory map; refer to memblock_mark_nomap() description
* for further details
* @MEMBLOCK_DRIVER_MANAGED: memory region that is always detected and added
* via a driver, and never indicated in the firmware-provided memory map as
* system RAM. This corresponds to IORESOURCE_SYSRAM_DRIVER_MANAGED in the
* kernel resource tree.
*/
enum memblock_flags {
MEMBLOCK_NONE = 0x0, /* No special request */
MEMBLOCK_HOTPLUG = 0x1, /* hotpluggable region */
MEMBLOCK_MIRROR = 0x2, /* mirrored region */
MEMBLOCK_NOMAP = 0x4, /* don't add to kernel direct mapping */
MEMBLOCK_DRIVER_MANAGED = 0x8, /* always detected via a driver */
};
/**
* struct memblock_region - represents a memory region
* @base: base address of the region
* @size: size of the region
* @flags: memory region attributes
* @nid: NUMA node id
*/
struct memblock_region {
phys_addr_t base;
phys_addr_t size;
enum memblock_flags flags;
#ifdef CONFIG_NUMA
int nid;
#endif
};
/**
* struct memblock_type - collection of memory regions of certain type
* @cnt: number of regions
* @max: size of the allocated array
* @total_size: size of all regions
* @regions: array of regions
* @name: the memory type symbolic name
*/
struct memblock_type {
unsigned long cnt;
unsigned long max;
phys_addr_t total_size;
struct memblock_region *regions;
char *name;
};
/**
* struct memblock - memblock allocator metadata
* @bottom_up: is bottom up direction?
* @current_limit: physical address of the current allocation limit
* @memory: usable memory regions
* @reserved: reserved memory regions
*/
struct memblock {
bool bottom_up; /* is bottom up direction? */
phys_addr_t current_limit;
struct memblock_type memory;
struct memblock_type reserved;
};
extern struct memblock memblock;
#ifndef CONFIG_ARCH_KEEP_MEMBLOCK
#define __init_memblock __meminit
#define __initdata_memblock __meminitdata
void memblock_discard(void);
#else
#define __init_memblock
#define __initdata_memblock
static inline void memblock_discard(void) {}
#endif
void memblock_allow_resize(void);
int memblock_add_node(phys_addr_t base, phys_addr_t size, int nid,
enum memblock_flags flags);
int memblock_add(phys_addr_t base, phys_addr_t size);
int memblock_remove(phys_addr_t base, phys_addr_t size);
int memblock_phys_free(phys_addr_t base, phys_addr_t size);
int memblock_reserve(phys_addr_t base, phys_addr_t size);
#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
int memblock_physmem_add(phys_addr_t base, phys_addr_t size);
#endif
void memblock_trim_memory(phys_addr_t align);
bool memblock_overlaps_region(struct memblock_type *type,
phys_addr_t base, phys_addr_t size);
int memblock_mark_hotplug(phys_addr_t base, phys_addr_t size);
int memblock_clear_hotplug(phys_addr_t base, phys_addr_t size);
int memblock_mark_mirror(phys_addr_t base, phys_addr_t size);
int memblock_mark_nomap(phys_addr_t base, phys_addr_t size);
int memblock_clear_nomap(phys_addr_t base, phys_addr_t size);
void memblock_free_all(void);
void memblock_free(void *ptr, size_t size);
void reset_node_managed_pages(pg_data_t *pgdat);
void reset_all_zones_managed_pages(void);
/* Low level functions */
void __next_mem_range(u64 *idx, int nid, enum memblock_flags flags,
struct memblock_type *type_a,
struct memblock_type *type_b, phys_addr_t *out_start,
phys_addr_t *out_end, int *out_nid);
void __next_mem_range_rev(u64 *idx, int nid, enum memblock_flags flags,
struct memblock_type *type_a,
struct memblock_type *type_b, phys_addr_t *out_start,
phys_addr_t *out_end, int *out_nid);
void memblock_free_late(phys_addr_t base, phys_addr_t size);
#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
static inline void __next_physmem_range(u64 *idx, struct memblock_type *type,
phys_addr_t *out_start,
phys_addr_t *out_end)
{
extern struct memblock_type physmem;
__next_mem_range(idx, NUMA_NO_NODE, MEMBLOCK_NONE, &physmem, type,
out_start, out_end, NULL);
}
/**
* for_each_physmem_range - iterate through physmem areas not included in type.
* @i: u64 used as loop variable
* @type: ptr to memblock_type which excludes from the iteration, can be %NULL
* @p_start: ptr to phys_addr_t for start address of the range, can be %NULL
* @p_end: ptr to phys_addr_t for end address of the range, can be %NULL
*/
#define for_each_physmem_range(i, type, p_start, p_end) \
for (i = 0, __next_physmem_range(&i, type, p_start, p_end); \
i != (u64)ULLONG_MAX; \
__next_physmem_range(&i, type, p_start, p_end))
#endif /* CONFIG_HAVE_MEMBLOCK_PHYS_MAP */
/**
* __for_each_mem_range - iterate through memblock areas from type_a and not
* included in type_b. Or just type_a if type_b is NULL.
* @i: u64 used as loop variable
* @type_a: ptr to memblock_type to iterate
* @type_b: ptr to memblock_type which excludes from the iteration
* @nid: node selector, %NUMA_NO_NODE for all nodes
* @flags: pick from blocks based on memory attributes
* @p_start: ptr to phys_addr_t for start address of the range, can be %NULL
* @p_end: ptr to phys_addr_t for end address of the range, can be %NULL
* @p_nid: ptr to int for nid of the range, can be %NULL
*/
#define __for_each_mem_range(i, type_a, type_b, nid, flags, \
p_start, p_end, p_nid) \
for (i = 0, __next_mem_range(&i, nid, flags, type_a, type_b, \
p_start, p_end, p_nid); \
i != (u64)ULLONG_MAX; \
__next_mem_range(&i, nid, flags, type_a, type_b, \
p_start, p_end, p_nid))
/**
* __for_each_mem_range_rev - reverse iterate through memblock areas from
* type_a and not included in type_b. Or just type_a if type_b is NULL.
* @i: u64 used as loop variable
* @type_a: ptr to memblock_type to iterate
* @type_b: ptr to memblock_type which excludes from the iteration
* @nid: node selector, %NUMA_NO_NODE for all nodes
* @flags: pick from blocks based on memory attributes
* @p_start: ptr to phys_addr_t for start address of the range, can be %NULL
* @p_end: ptr to phys_addr_t for end address of the range, can be %NULL
* @p_nid: ptr to int for nid of the range, can be %NULL
*/
#define __for_each_mem_range_rev(i, type_a, type_b, nid, flags, \
p_start, p_end, p_nid) \
for (i = (u64)ULLONG_MAX, \
__next_mem_range_rev(&i, nid, flags, type_a, type_b, \
p_start, p_end, p_nid); \
i != (u64)ULLONG_MAX; \
__next_mem_range_rev(&i, nid, flags, type_a, type_b, \
p_start, p_end, p_nid))
/**
* for_each_mem_range - iterate through memory areas.
* @i: u64 used as loop variable
* @p_start: ptr to phys_addr_t for start address of the range, can be %NULL
* @p_end: ptr to phys_addr_t for end address of the range, can be %NULL
*/
#define for_each_mem_range(i, p_start, p_end) \
__for_each_mem_range(i, &memblock.memory, NULL, NUMA_NO_NODE, \
MEMBLOCK_HOTPLUG | MEMBLOCK_DRIVER_MANAGED, \
p_start, p_end, NULL)
/**
* for_each_mem_range_rev - reverse iterate through memblock areas from
* type_a and not included in type_b. Or just type_a if type_b is NULL.
* @i: u64 used as loop variable
* @p_start: ptr to phys_addr_t for start address of the range, can be %NULL
* @p_end: ptr to phys_addr_t for end address of the range, can be %NULL
*/
#define for_each_mem_range_rev(i, p_start, p_end) \
__for_each_mem_range_rev(i, &memblock.memory, NULL, NUMA_NO_NODE, \
MEMBLOCK_HOTPLUG | MEMBLOCK_DRIVER_MANAGED,\
p_start, p_end, NULL)
/**
* for_each_reserved_mem_range - iterate over all reserved memblock areas
* @i: u64 used as loop variable
* @p_start: ptr to phys_addr_t for start address of the range, can be %NULL
* @p_end: ptr to phys_addr_t for end address of the range, can be %NULL
*
* Walks over reserved areas of memblock. Available as soon as memblock
* is initialized.
*/
#define for_each_reserved_mem_range(i, p_start, p_end) \
__for_each_mem_range(i, &memblock.reserved, NULL, NUMA_NO_NODE, \
MEMBLOCK_NONE, p_start, p_end, NULL)
static inline bool memblock_is_hotpluggable(struct memblock_region *m)
{
return m->flags & MEMBLOCK_HOTPLUG;
}
static inline bool memblock_is_mirror(struct memblock_region *m)
{
return m->flags & MEMBLOCK_MIRROR;
}
static inline bool memblock_is_nomap(struct memblock_region *m)
{
return m->flags & MEMBLOCK_NOMAP;
}
static inline bool memblock_is_driver_managed(struct memblock_region *m)
{
return m->flags & MEMBLOCK_DRIVER_MANAGED;
}
int memblock_search_pfn_nid(unsigned long pfn, unsigned long *start_pfn,
unsigned long *end_pfn);
void __next_mem_pfn_range(int *idx, int nid, unsigned long *out_start_pfn,
unsigned long *out_end_pfn, int *out_nid);
/**
* for_each_mem_pfn_range - early memory pfn range iterator
* @i: an integer used as loop variable
* @nid: node selector, %MAX_NUMNODES for all nodes
* @p_start: ptr to ulong for start pfn of the range, can be %NULL
* @p_end: ptr to ulong for end pfn of the range, can be %NULL
* @p_nid: ptr to int for nid of the range, can be %NULL
*
* Walks over configured memory ranges.
*/
#define for_each_mem_pfn_range(i, nid, p_start, p_end, p_nid) \
for (i = -1, __next_mem_pfn_range(&i, nid, p_start, p_end, p_nid); \
i >= 0; __next_mem_pfn_range(&i, nid, p_start, p_end, p_nid))
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
void __next_mem_pfn_range_in_zone(u64 *idx, struct zone *zone,
unsigned long *out_spfn,
unsigned long *out_epfn);
/**
* for_each_free_mem_pfn_range_in_zone - iterate through zone specific free
* memblock areas
* @i: u64 used as loop variable
* @zone: zone in which all of the memory blocks reside
* @p_start: ptr to phys_addr_t for start address of the range, can be %NULL
* @p_end: ptr to phys_addr_t for end address of the range, can be %NULL
*
* Walks over free (memory && !reserved) areas of memblock in a specific
* zone. Available once memblock and an empty zone is initialized. The main
* assumption is that the zone start, end, and pgdat have been associated.
* This way we can use the zone to determine NUMA node, and if a given part
* of the memblock is valid for the zone.
*/
#define for_each_free_mem_pfn_range_in_zone(i, zone, p_start, p_end) \
for (i = 0, \
__next_mem_pfn_range_in_zone(&i, zone, p_start, p_end); \
i != U64_MAX; \
__next_mem_pfn_range_in_zone(&i, zone, p_start, p_end))
/**
* for_each_free_mem_pfn_range_in_zone_from - iterate through zone specific
* free memblock areas from a given point
* @i: u64 used as loop variable
* @zone: zone in which all of the memory blocks reside
* @p_start: ptr to phys_addr_t for start address of the range, can be %NULL
* @p_end: ptr to phys_addr_t for end address of the range, can be %NULL
*
* Walks over free (memory && !reserved) areas of memblock in a specific
* zone, continuing from current position. Available as soon as memblock is
* initialized.
*/
#define for_each_free_mem_pfn_range_in_zone_from(i, zone, p_start, p_end) \
for (; i != U64_MAX; \
__next_mem_pfn_range_in_zone(&i, zone, p_start, p_end))
int __init deferred_page_init_max_threads(const struct cpumask *node_cpumask);
#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
/**
* for_each_free_mem_range - iterate through free memblock areas
* @i: u64 used as loop variable
* @nid: node selector, %NUMA_NO_NODE for all nodes
* @flags: pick from blocks based on memory attributes
* @p_start: ptr to phys_addr_t for start address of the range, can be %NULL
* @p_end: ptr to phys_addr_t for end address of the range, can be %NULL
* @p_nid: ptr to int for nid of the range, can be %NULL
*
* Walks over free (memory && !reserved) areas of memblock. Available as
* soon as memblock is initialized.
*/
#define for_each_free_mem_range(i, nid, flags, p_start, p_end, p_nid) \
__for_each_mem_range(i, &memblock.memory, &memblock.reserved, \
nid, flags, p_start, p_end, p_nid)
/**
* for_each_free_mem_range_reverse - rev-iterate through free memblock areas
* @i: u64 used as loop variable
* @nid: node selector, %NUMA_NO_NODE for all nodes
* @flags: pick from blocks based on memory attributes
* @p_start: ptr to phys_addr_t for start address of the range, can be %NULL
* @p_end: ptr to phys_addr_t for end address of the range, can be %NULL
* @p_nid: ptr to int for nid of the range, can be %NULL
*
* Walks over free (memory && !reserved) areas of memblock in reverse
* order. Available as soon as memblock is initialized.
*/
#define for_each_free_mem_range_reverse(i, nid, flags, p_start, p_end, \
p_nid) \
__for_each_mem_range_rev(i, &memblock.memory, &memblock.reserved, \
nid, flags, p_start, p_end, p_nid)
int memblock_set_node(phys_addr_t base, phys_addr_t size,
struct memblock_type *type, int nid);
#ifdef CONFIG_NUMA
static inline void memblock_set_region_node(struct memblock_region *r, int nid)
{
r->nid = nid;
}
static inline int memblock_get_region_node(const struct memblock_region *r)
{
return r->nid;
}
#else
static inline void memblock_set_region_node(struct memblock_region *r, int nid)
{
}
static inline int memblock_get_region_node(const struct memblock_region *r)
{
return 0;
}
#endif /* CONFIG_NUMA */
/* Flags for memblock allocation APIs */
#define MEMBLOCK_ALLOC_ANYWHERE (~(phys_addr_t)0)
#define MEMBLOCK_ALLOC_ACCESSIBLE 0
#define MEMBLOCK_ALLOC_NOLEAKTRACE 1
/* We are using top down, so it is safe to use 0 here */
#define MEMBLOCK_LOW_LIMIT 0
#ifndef ARCH_LOW_ADDRESS_LIMIT
#define ARCH_LOW_ADDRESS_LIMIT 0xffffffffUL
#endif
phys_addr_t memblock_phys_alloc_range(phys_addr_t size, phys_addr_t align,
phys_addr_t start, phys_addr_t end);
phys_addr_t memblock_alloc_range_nid(phys_addr_t size,
phys_addr_t align, phys_addr_t start,
phys_addr_t end, int nid, bool exact_nid);
phys_addr_t memblock_phys_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid);
static __always_inline phys_addr_t memblock_phys_alloc(phys_addr_t size,
phys_addr_t align)
{
return memblock_phys_alloc_range(size, align, 0,
MEMBLOCK_ALLOC_ACCESSIBLE);
}
void *memblock_alloc_exact_nid_raw(phys_addr_t size, phys_addr_t align,
phys_addr_t min_addr, phys_addr_t max_addr,
int nid);
void *memblock_alloc_try_nid_raw(phys_addr_t size, phys_addr_t align,
phys_addr_t min_addr, phys_addr_t max_addr,
int nid);
void *memblock_alloc_try_nid(phys_addr_t size, phys_addr_t align,
phys_addr_t min_addr, phys_addr_t max_addr,
int nid);
static __always_inline void *memblock_alloc(phys_addr_t size, phys_addr_t align)
{
return memblock_alloc_try_nid(size, align, MEMBLOCK_LOW_LIMIT,
MEMBLOCK_ALLOC_ACCESSIBLE, NUMA_NO_NODE);
}
static inline void *memblock_alloc_raw(phys_addr_t size,
phys_addr_t align)
{
return memblock_alloc_try_nid_raw(size, align, MEMBLOCK_LOW_LIMIT,
MEMBLOCK_ALLOC_ACCESSIBLE,
NUMA_NO_NODE);
}
static inline void *memblock_alloc_from(phys_addr_t size,
phys_addr_t align,
phys_addr_t min_addr)
{
return memblock_alloc_try_nid(size, align, min_addr,
MEMBLOCK_ALLOC_ACCESSIBLE, NUMA_NO_NODE);
}
static inline void *memblock_alloc_low(phys_addr_t size,
phys_addr_t align)
{
return memblock_alloc_try_nid(size, align, MEMBLOCK_LOW_LIMIT,
ARCH_LOW_ADDRESS_LIMIT, NUMA_NO_NODE);
}
static inline void *memblock_alloc_node(phys_addr_t size,
phys_addr_t align, int nid)
{
return memblock_alloc_try_nid(size, align, MEMBLOCK_LOW_LIMIT,
MEMBLOCK_ALLOC_ACCESSIBLE, nid);
}
/*
* Set the allocation direction to bottom-up or top-down.
*/
static inline __init_memblock void memblock_set_bottom_up(bool enable)
{
memblock.bottom_up = enable;
}
/*
* Check if the allocation direction is bottom-up or not.
* if this is true, that said, memblock will allocate memory
* in bottom-up direction.
*/
static inline __init_memblock bool memblock_bottom_up(void)
{
return memblock.bottom_up;
}
phys_addr_t memblock_phys_mem_size(void);
phys_addr_t memblock_reserved_size(void);
phys_addr_t memblock_start_of_DRAM(void);
phys_addr_t memblock_end_of_DRAM(void);
void memblock_enforce_memory_limit(phys_addr_t memory_limit);
void memblock_cap_memory_range(phys_addr_t base, phys_addr_t size);
void memblock_mem_limit_remove_map(phys_addr_t limit);
bool memblock_is_memory(phys_addr_t addr);
bool memblock_is_map_memory(phys_addr_t addr);
bool memblock_is_region_memory(phys_addr_t base, phys_addr_t size);
bool memblock_is_reserved(phys_addr_t addr);
bool memblock_is_region_reserved(phys_addr_t base, phys_addr_t size);
void memblock_dump_all(void);
/**
* memblock_set_current_limit - Set the current allocation limit to allow
* limiting allocations to what is currently
* accessible during boot
* @limit: New limit value (physical address)
*/
void memblock_set_current_limit(phys_addr_t limit);
phys_addr_t memblock_get_current_limit(void);
/*
* pfn conversion functions
*
* While the memory MEMBLOCKs should always be page aligned, the reserved
* MEMBLOCKs may not be. This accessor attempt to provide a very clear
* idea of what they return for such non aligned MEMBLOCKs.
*/
/**
* memblock_region_memory_base_pfn - get the lowest pfn of the memory region
* @reg: memblock_region structure
*
* Return: the lowest pfn intersecting with the memory region
*/
static inline unsigned long memblock_region_memory_base_pfn(const struct memblock_region *reg)
{
return PFN_UP(reg->base);
}
/**
* memblock_region_memory_end_pfn - get the end pfn of the memory region
* @reg: memblock_region structure
*
* Return: the end_pfn of the reserved region
*/
static inline unsigned long memblock_region_memory_end_pfn(const struct memblock_region *reg)
{
return PFN_DOWN(reg->base + reg->size);
}
/**
* memblock_region_reserved_base_pfn - get the lowest pfn of the reserved region
* @reg: memblock_region structure
*
* Return: the lowest pfn intersecting with the reserved region
*/
static inline unsigned long memblock_region_reserved_base_pfn(const struct memblock_region *reg)
{
return PFN_DOWN(reg->base);
}
/**
* memblock_region_reserved_end_pfn - get the end pfn of the reserved region
* @reg: memblock_region structure
*
* Return: the end_pfn of the reserved region
*/
static inline unsigned long memblock_region_reserved_end_pfn(const struct memblock_region *reg)
{
return PFN_UP(reg->base + reg->size);
}
/**
* for_each_mem_region - itereate over memory regions
* @region: loop variable
*/
#define for_each_mem_region(region) \
for (region = memblock.memory.regions; \
region < (memblock.memory.regions + memblock.memory.cnt); \
region++)
/**
* for_each_reserved_mem_region - itereate over reserved memory regions
* @region: loop variable
*/
#define for_each_reserved_mem_region(region) \
for (region = memblock.reserved.regions; \
region < (memblock.reserved.regions + memblock.reserved.cnt); \
region++)
extern void *alloc_large_system_hash(const char *tablename,
unsigned long bucketsize,
unsigned long numentries,
int scale,
int flags,
unsigned int *_hash_shift,
unsigned int *_hash_mask,
unsigned long low_limit,
unsigned long high_limit);
#define HASH_EARLY 0x00000001 /* Allocating during early boot? */
#define HASH_SMALL 0x00000002 /* sub-page allocation allowed, min
* shift passed via *_hash_shift */
#define HASH_ZERO 0x00000004 /* Zero allocated hash table */
/* Only NUMA needs hash distribution. 64bit NUMA architectures have
* sufficient vmalloc space.
*/
#ifdef CONFIG_NUMA
#define HASHDIST_DEFAULT IS_ENABLED(CONFIG_64BIT)
extern int hashdist; /* Distribute hashes across NUMA nodes? */
#else
#define hashdist (0)
#endif
#ifdef CONFIG_MEMTEST
extern void early_memtest(phys_addr_t start, phys_addr_t end);
#else
static inline void early_memtest(phys_addr_t start, phys_addr_t end)
{
}
#endif
#endif /* _LINUX_MEMBLOCK_H */