linux-sg2042/net/nfc/nci/rsp.c

227 lines
6.1 KiB
C

/*
* The NFC Controller Interface is the communication protocol between an
* NFC Controller (NFCC) and a Device Host (DH).
*
* Copyright (C) 2011 Texas Instruments, Inc.
*
* Written by Ilan Elias <ilane@ti.com>
*
* Acknowledgements:
* This file is based on hci_event.c, which was written
* by Maxim Krasnyansky.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2
* as published by the Free Software Foundation
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
#include <linux/types.h>
#include <linux/interrupt.h>
#include <linux/bitops.h>
#include <linux/skbuff.h>
#include "../nfc.h"
#include <net/nfc/nci.h>
#include <net/nfc/nci_core.h>
/* Handle NCI Response packets */
static void nci_core_reset_rsp_packet(struct nci_dev *ndev, struct sk_buff *skb)
{
struct nci_core_reset_rsp *rsp = (void *) skb->data;
nfc_dbg("entry, status 0x%x", rsp->status);
if (rsp->status == NCI_STATUS_OK)
ndev->nci_ver = rsp->nci_ver;
nfc_dbg("nci_ver 0x%x", ndev->nci_ver);
nci_req_complete(ndev, rsp->status);
}
static void nci_core_init_rsp_packet(struct nci_dev *ndev, struct sk_buff *skb)
{
struct nci_core_init_rsp_1 *rsp_1 = (void *) skb->data;
struct nci_core_init_rsp_2 *rsp_2;
nfc_dbg("entry, status 0x%x", rsp_1->status);
if (rsp_1->status != NCI_STATUS_OK)
return;
ndev->nfcc_features = __le32_to_cpu(rsp_1->nfcc_features);
ndev->num_supported_rf_interfaces = rsp_1->num_supported_rf_interfaces;
if (ndev->num_supported_rf_interfaces >
NCI_MAX_SUPPORTED_RF_INTERFACES) {
ndev->num_supported_rf_interfaces =
NCI_MAX_SUPPORTED_RF_INTERFACES;
}
memcpy(ndev->supported_rf_interfaces,
rsp_1->supported_rf_interfaces,
ndev->num_supported_rf_interfaces);
rsp_2 = (void *) (skb->data + 6 + ndev->num_supported_rf_interfaces);
ndev->max_logical_connections =
rsp_2->max_logical_connections;
ndev->max_routing_table_size =
__le16_to_cpu(rsp_2->max_routing_table_size);
ndev->max_control_packet_payload_length =
rsp_2->max_control_packet_payload_length;
ndev->rf_sending_buffer_size =
__le16_to_cpu(rsp_2->rf_sending_buffer_size);
ndev->rf_receiving_buffer_size =
__le16_to_cpu(rsp_2->rf_receiving_buffer_size);
ndev->manufacturer_id =
__le16_to_cpu(rsp_2->manufacturer_id);
nfc_dbg("nfcc_features 0x%x",
ndev->nfcc_features);
nfc_dbg("num_supported_rf_interfaces %d",
ndev->num_supported_rf_interfaces);
nfc_dbg("supported_rf_interfaces[0] 0x%x",
ndev->supported_rf_interfaces[0]);
nfc_dbg("supported_rf_interfaces[1] 0x%x",
ndev->supported_rf_interfaces[1]);
nfc_dbg("supported_rf_interfaces[2] 0x%x",
ndev->supported_rf_interfaces[2]);
nfc_dbg("supported_rf_interfaces[3] 0x%x",
ndev->supported_rf_interfaces[3]);
nfc_dbg("max_logical_connections %d",
ndev->max_logical_connections);
nfc_dbg("max_routing_table_size %d",
ndev->max_routing_table_size);
nfc_dbg("max_control_packet_payload_length %d",
ndev->max_control_packet_payload_length);
nfc_dbg("rf_sending_buffer_size %d",
ndev->rf_sending_buffer_size);
nfc_dbg("rf_receiving_buffer_size %d",
ndev->rf_receiving_buffer_size);
nfc_dbg("manufacturer_id 0x%x",
ndev->manufacturer_id);
nci_req_complete(ndev, rsp_1->status);
}
static void nci_core_conn_create_rsp_packet(struct nci_dev *ndev,
struct sk_buff *skb)
{
struct nci_core_conn_create_rsp *rsp = (void *) skb->data;
nfc_dbg("entry, status 0x%x", rsp->status);
if (rsp->status != NCI_STATUS_OK)
return;
ndev->max_pkt_payload_size = rsp->max_pkt_payload_size;
ndev->initial_num_credits = rsp->initial_num_credits;
ndev->conn_id = rsp->conn_id;
atomic_set(&ndev->credits_cnt, ndev->initial_num_credits);
nfc_dbg("max_pkt_payload_size %d", ndev->max_pkt_payload_size);
nfc_dbg("initial_num_credits %d", ndev->initial_num_credits);
nfc_dbg("conn_id %d", ndev->conn_id);
}
static void nci_rf_disc_map_rsp_packet(struct nci_dev *ndev,
struct sk_buff *skb)
{
__u8 status = skb->data[0];
nfc_dbg("entry, status 0x%x", status);
nci_req_complete(ndev, status);
}
static void nci_rf_disc_rsp_packet(struct nci_dev *ndev, struct sk_buff *skb)
{
__u8 status = skb->data[0];
nfc_dbg("entry, status 0x%x", status);
if (status == NCI_STATUS_OK)
set_bit(NCI_DISCOVERY, &ndev->flags);
nci_req_complete(ndev, status);
}
static void nci_rf_deactivate_rsp_packet(struct nci_dev *ndev,
struct sk_buff *skb)
{
__u8 status = skb->data[0];
nfc_dbg("entry, status 0x%x", status);
clear_bit(NCI_DISCOVERY, &ndev->flags);
nci_req_complete(ndev, status);
}
void nci_rsp_packet(struct nci_dev *ndev, struct sk_buff *skb)
{
__u16 rsp_opcode = nci_opcode(skb->data);
/* we got a rsp, stop the cmd timer */
del_timer(&ndev->cmd_timer);
nfc_dbg("NCI RX: MT=rsp, PBF=%d, GID=0x%x, OID=0x%x, plen=%d",
nci_pbf(skb->data),
nci_opcode_gid(rsp_opcode),
nci_opcode_oid(rsp_opcode),
nci_plen(skb->data));
/* strip the nci control header */
skb_pull(skb, NCI_CTRL_HDR_SIZE);
switch (rsp_opcode) {
case NCI_OP_CORE_RESET_RSP:
nci_core_reset_rsp_packet(ndev, skb);
break;
case NCI_OP_CORE_INIT_RSP:
nci_core_init_rsp_packet(ndev, skb);
break;
case NCI_OP_CORE_CONN_CREATE_RSP:
nci_core_conn_create_rsp_packet(ndev, skb);
break;
case NCI_OP_RF_DISCOVER_MAP_RSP:
nci_rf_disc_map_rsp_packet(ndev, skb);
break;
case NCI_OP_RF_DISCOVER_RSP:
nci_rf_disc_rsp_packet(ndev, skb);
break;
case NCI_OP_RF_DEACTIVATE_RSP:
nci_rf_deactivate_rsp_packet(ndev, skb);
break;
default:
nfc_err("unknown rsp opcode 0x%x", rsp_opcode);
break;
}
kfree_skb(skb);
/* trigger the next cmd */
atomic_set(&ndev->cmd_cnt, 1);
if (!skb_queue_empty(&ndev->cmd_q))
queue_work(ndev->cmd_wq, &ndev->cmd_work);
}