842 lines
26 KiB
C
842 lines
26 KiB
C
/*
|
|
* Freescale DMA ALSA SoC PCM driver
|
|
*
|
|
* Author: Timur Tabi <timur@freescale.com>
|
|
*
|
|
* Copyright 2007-2008 Freescale Semiconductor, Inc. This file is licensed
|
|
* under the terms of the GNU General Public License version 2. This
|
|
* program is licensed "as is" without any warranty of any kind, whether
|
|
* express or implied.
|
|
*
|
|
* This driver implements ASoC support for the Elo DMA controller, which is
|
|
* the DMA controller on Freescale 83xx, 85xx, and 86xx SOCs. In ALSA terms,
|
|
* the PCM driver is what handles the DMA buffer.
|
|
*/
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/init.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/dma-mapping.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/delay.h>
|
|
|
|
#include <sound/driver.h>
|
|
#include <sound/core.h>
|
|
#include <sound/pcm.h>
|
|
#include <sound/pcm_params.h>
|
|
#include <sound/soc.h>
|
|
|
|
#include <asm/io.h>
|
|
|
|
#include "fsl_dma.h"
|
|
|
|
/*
|
|
* The formats that the DMA controller supports, which is anything
|
|
* that is 8, 16, or 32 bits.
|
|
*/
|
|
#define FSLDMA_PCM_FORMATS (SNDRV_PCM_FMTBIT_S8 | \
|
|
SNDRV_PCM_FMTBIT_U8 | \
|
|
SNDRV_PCM_FMTBIT_S16_LE | \
|
|
SNDRV_PCM_FMTBIT_S16_BE | \
|
|
SNDRV_PCM_FMTBIT_U16_LE | \
|
|
SNDRV_PCM_FMTBIT_U16_BE | \
|
|
SNDRV_PCM_FMTBIT_S24_LE | \
|
|
SNDRV_PCM_FMTBIT_S24_BE | \
|
|
SNDRV_PCM_FMTBIT_U24_LE | \
|
|
SNDRV_PCM_FMTBIT_U24_BE | \
|
|
SNDRV_PCM_FMTBIT_S32_LE | \
|
|
SNDRV_PCM_FMTBIT_S32_BE | \
|
|
SNDRV_PCM_FMTBIT_U32_LE | \
|
|
SNDRV_PCM_FMTBIT_U32_BE)
|
|
|
|
#define FSLDMA_PCM_RATES (SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_192000 | \
|
|
SNDRV_PCM_RATE_CONTINUOUS)
|
|
|
|
/* DMA global data. This structure is used by fsl_dma_open() to determine
|
|
* which DMA channels to assign to a substream. Unfortunately, ASoC V1 does
|
|
* not allow the machine driver to provide this information to the PCM
|
|
* driver in advance, and there's no way to differentiate between the two
|
|
* DMA controllers. So for now, this driver only supports one SSI device
|
|
* using two DMA channels. We cannot support multiple DMA devices.
|
|
*
|
|
* ssi_stx_phys: bus address of SSI STX register
|
|
* ssi_srx_phys: bus address of SSI SRX register
|
|
* dma_channel: pointer to the DMA channel's registers
|
|
* irq: IRQ for this DMA channel
|
|
* assigned: set to 1 if that DMA channel is assigned to a substream
|
|
*/
|
|
static struct {
|
|
dma_addr_t ssi_stx_phys;
|
|
dma_addr_t ssi_srx_phys;
|
|
struct ccsr_dma_channel __iomem *dma_channel[2];
|
|
unsigned int irq[2];
|
|
unsigned int assigned[2];
|
|
} dma_global_data;
|
|
|
|
/*
|
|
* The number of DMA links to use. Two is the bare minimum, but if you
|
|
* have really small links you might need more.
|
|
*/
|
|
#define NUM_DMA_LINKS 2
|
|
|
|
/** fsl_dma_private: p-substream DMA data
|
|
*
|
|
* Each substream has a 1-to-1 association with a DMA channel.
|
|
*
|
|
* The link[] array is first because it needs to be aligned on a 32-byte
|
|
* boundary, so putting it first will ensure alignment without padding the
|
|
* structure.
|
|
*
|
|
* @link[]: array of link descriptors
|
|
* @controller_id: which DMA controller (0, 1, ...)
|
|
* @channel_id: which DMA channel on the controller (0, 1, 2, ...)
|
|
* @dma_channel: pointer to the DMA channel's registers
|
|
* @irq: IRQ for this DMA channel
|
|
* @substream: pointer to the substream object, needed by the ISR
|
|
* @ssi_sxx_phys: bus address of the STX or SRX register to use
|
|
* @ld_buf_phys: physical address of the LD buffer
|
|
* @current_link: index into link[] of the link currently being processed
|
|
* @dma_buf_phys: physical address of the DMA buffer
|
|
* @dma_buf_next: physical address of the next period to process
|
|
* @dma_buf_end: physical address of the byte after the end of the DMA
|
|
* @buffer period_size: the size of a single period
|
|
* @num_periods: the number of periods in the DMA buffer
|
|
*/
|
|
struct fsl_dma_private {
|
|
struct fsl_dma_link_descriptor link[NUM_DMA_LINKS];
|
|
unsigned int controller_id;
|
|
unsigned int channel_id;
|
|
struct ccsr_dma_channel __iomem *dma_channel;
|
|
unsigned int irq;
|
|
struct snd_pcm_substream *substream;
|
|
dma_addr_t ssi_sxx_phys;
|
|
dma_addr_t ld_buf_phys;
|
|
unsigned int current_link;
|
|
dma_addr_t dma_buf_phys;
|
|
dma_addr_t dma_buf_next;
|
|
dma_addr_t dma_buf_end;
|
|
size_t period_size;
|
|
unsigned int num_periods;
|
|
};
|
|
|
|
/**
|
|
* fsl_dma_hardare: define characteristics of the PCM hardware.
|
|
*
|
|
* The PCM hardware is the Freescale DMA controller. This structure defines
|
|
* the capabilities of that hardware.
|
|
*
|
|
* Since the sampling rate and data format are not controlled by the DMA
|
|
* controller, we specify no limits for those values. The only exception is
|
|
* period_bytes_min, which is set to a reasonably low value to prevent the
|
|
* DMA controller from generating too many interrupts per second.
|
|
*
|
|
* Since each link descriptor has a 32-bit byte count field, we set
|
|
* period_bytes_max to the largest 32-bit number. We also have no maximum
|
|
* number of periods.
|
|
*/
|
|
static const struct snd_pcm_hardware fsl_dma_hardware = {
|
|
|
|
.info = SNDRV_PCM_INFO_INTERLEAVED |
|
|
SNDRV_PCM_INFO_MMAP |
|
|
SNDRV_PCM_INFO_MMAP_VALID,
|
|
.formats = FSLDMA_PCM_FORMATS,
|
|
.rates = FSLDMA_PCM_RATES,
|
|
.rate_min = 5512,
|
|
.rate_max = 192000,
|
|
.period_bytes_min = 512, /* A reasonable limit */
|
|
.period_bytes_max = (u32) -1,
|
|
.periods_min = NUM_DMA_LINKS,
|
|
.periods_max = (unsigned int) -1,
|
|
.buffer_bytes_max = 128 * 1024, /* A reasonable limit */
|
|
};
|
|
|
|
/**
|
|
* fsl_dma_abort_stream: tell ALSA that the DMA transfer has aborted
|
|
*
|
|
* This function should be called by the ISR whenever the DMA controller
|
|
* halts data transfer.
|
|
*/
|
|
static void fsl_dma_abort_stream(struct snd_pcm_substream *substream)
|
|
{
|
|
unsigned long flags;
|
|
|
|
snd_pcm_stream_lock_irqsave(substream, flags);
|
|
|
|
if (snd_pcm_running(substream))
|
|
snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
|
|
|
|
snd_pcm_stream_unlock_irqrestore(substream, flags);
|
|
}
|
|
|
|
/**
|
|
* fsl_dma_update_pointers - update LD pointers to point to the next period
|
|
*
|
|
* As each period is completed, this function changes the the link
|
|
* descriptor pointers for that period to point to the next period.
|
|
*/
|
|
static void fsl_dma_update_pointers(struct fsl_dma_private *dma_private)
|
|
{
|
|
struct fsl_dma_link_descriptor *link =
|
|
&dma_private->link[dma_private->current_link];
|
|
|
|
/* Update our link descriptors to point to the next period */
|
|
if (dma_private->substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
|
|
link->source_addr =
|
|
cpu_to_be32(dma_private->dma_buf_next);
|
|
else
|
|
link->dest_addr =
|
|
cpu_to_be32(dma_private->dma_buf_next);
|
|
|
|
/* Update our variables for next time */
|
|
dma_private->dma_buf_next += dma_private->period_size;
|
|
|
|
if (dma_private->dma_buf_next >= dma_private->dma_buf_end)
|
|
dma_private->dma_buf_next = dma_private->dma_buf_phys;
|
|
|
|
if (++dma_private->current_link >= NUM_DMA_LINKS)
|
|
dma_private->current_link = 0;
|
|
}
|
|
|
|
/**
|
|
* fsl_dma_isr: interrupt handler for the DMA controller
|
|
*
|
|
* @irq: IRQ of the DMA channel
|
|
* @dev_id: pointer to the dma_private structure for this DMA channel
|
|
*/
|
|
static irqreturn_t fsl_dma_isr(int irq, void *dev_id)
|
|
{
|
|
struct fsl_dma_private *dma_private = dev_id;
|
|
struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
|
|
irqreturn_t ret = IRQ_NONE;
|
|
u32 sr, sr2 = 0;
|
|
|
|
/* We got an interrupt, so read the status register to see what we
|
|
were interrupted for.
|
|
*/
|
|
sr = in_be32(&dma_channel->sr);
|
|
|
|
if (sr & CCSR_DMA_SR_TE) {
|
|
dev_err(dma_private->substream->pcm->card->dev,
|
|
"DMA transmit error (controller=%u channel=%u irq=%u\n",
|
|
dma_private->controller_id,
|
|
dma_private->channel_id, irq);
|
|
fsl_dma_abort_stream(dma_private->substream);
|
|
sr2 |= CCSR_DMA_SR_TE;
|
|
ret = IRQ_HANDLED;
|
|
}
|
|
|
|
if (sr & CCSR_DMA_SR_CH)
|
|
ret = IRQ_HANDLED;
|
|
|
|
if (sr & CCSR_DMA_SR_PE) {
|
|
dev_err(dma_private->substream->pcm->card->dev,
|
|
"DMA%u programming error (channel=%u irq=%u)\n",
|
|
dma_private->controller_id,
|
|
dma_private->channel_id, irq);
|
|
fsl_dma_abort_stream(dma_private->substream);
|
|
sr2 |= CCSR_DMA_SR_PE;
|
|
ret = IRQ_HANDLED;
|
|
}
|
|
|
|
if (sr & CCSR_DMA_SR_EOLNI) {
|
|
sr2 |= CCSR_DMA_SR_EOLNI;
|
|
ret = IRQ_HANDLED;
|
|
}
|
|
|
|
if (sr & CCSR_DMA_SR_CB)
|
|
ret = IRQ_HANDLED;
|
|
|
|
if (sr & CCSR_DMA_SR_EOSI) {
|
|
struct snd_pcm_substream *substream = dma_private->substream;
|
|
|
|
/* Tell ALSA we completed a period. */
|
|
snd_pcm_period_elapsed(substream);
|
|
|
|
/*
|
|
* Update our link descriptors to point to the next period. We
|
|
* only need to do this if the number of periods is not equal to
|
|
* the number of links.
|
|
*/
|
|
if (dma_private->num_periods != NUM_DMA_LINKS)
|
|
fsl_dma_update_pointers(dma_private);
|
|
|
|
sr2 |= CCSR_DMA_SR_EOSI;
|
|
ret = IRQ_HANDLED;
|
|
}
|
|
|
|
if (sr & CCSR_DMA_SR_EOLSI) {
|
|
sr2 |= CCSR_DMA_SR_EOLSI;
|
|
ret = IRQ_HANDLED;
|
|
}
|
|
|
|
/* Clear the bits that we set */
|
|
if (sr2)
|
|
out_be32(&dma_channel->sr, sr2);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* fsl_dma_new: initialize this PCM driver.
|
|
*
|
|
* This function is called when the codec driver calls snd_soc_new_pcms(),
|
|
* once for each .dai_link in the machine driver's snd_soc_machine
|
|
* structure.
|
|
*/
|
|
static int fsl_dma_new(struct snd_card *card, struct snd_soc_codec_dai *dai,
|
|
struct snd_pcm *pcm)
|
|
{
|
|
static u64 fsl_dma_dmamask = DMA_BIT_MASK(32);
|
|
int ret;
|
|
|
|
if (!card->dev->dma_mask)
|
|
card->dev->dma_mask = &fsl_dma_dmamask;
|
|
|
|
if (!card->dev->coherent_dma_mask)
|
|
card->dev->coherent_dma_mask = fsl_dma_dmamask;
|
|
|
|
ret = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, pcm->dev,
|
|
fsl_dma_hardware.buffer_bytes_max,
|
|
&pcm->streams[0].substream->dma_buffer);
|
|
if (ret) {
|
|
dev_err(card->dev,
|
|
"Can't allocate playback DMA buffer (size=%u)\n",
|
|
fsl_dma_hardware.buffer_bytes_max);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
ret = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, pcm->dev,
|
|
fsl_dma_hardware.buffer_bytes_max,
|
|
&pcm->streams[1].substream->dma_buffer);
|
|
if (ret) {
|
|
snd_dma_free_pages(&pcm->streams[0].substream->dma_buffer);
|
|
dev_err(card->dev,
|
|
"Can't allocate capture DMA buffer (size=%u)\n",
|
|
fsl_dma_hardware.buffer_bytes_max);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* fsl_dma_open: open a new substream.
|
|
*
|
|
* Each substream has its own DMA buffer.
|
|
*/
|
|
static int fsl_dma_open(struct snd_pcm_substream *substream)
|
|
{
|
|
struct snd_pcm_runtime *runtime = substream->runtime;
|
|
struct fsl_dma_private *dma_private;
|
|
dma_addr_t ld_buf_phys;
|
|
unsigned int channel;
|
|
int ret = 0;
|
|
|
|
/*
|
|
* Reject any DMA buffer whose size is not a multiple of the period
|
|
* size. We need to make sure that the DMA buffer can be evenly divided
|
|
* into periods.
|
|
*/
|
|
ret = snd_pcm_hw_constraint_integer(runtime,
|
|
SNDRV_PCM_HW_PARAM_PERIODS);
|
|
if (ret < 0) {
|
|
dev_err(substream->pcm->card->dev, "invalid buffer size\n");
|
|
return ret;
|
|
}
|
|
|
|
channel = substream->stream == SNDRV_PCM_STREAM_PLAYBACK ? 0 : 1;
|
|
|
|
if (dma_global_data.assigned[channel]) {
|
|
dev_err(substream->pcm->card->dev,
|
|
"DMA channel already assigned\n");
|
|
return -EBUSY;
|
|
}
|
|
|
|
dma_private = dma_alloc_coherent(substream->pcm->dev,
|
|
sizeof(struct fsl_dma_private), &ld_buf_phys, GFP_KERNEL);
|
|
if (!dma_private) {
|
|
dev_err(substream->pcm->card->dev,
|
|
"can't allocate DMA private data\n");
|
|
return -ENOMEM;
|
|
}
|
|
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
|
|
dma_private->ssi_sxx_phys = dma_global_data.ssi_stx_phys;
|
|
else
|
|
dma_private->ssi_sxx_phys = dma_global_data.ssi_srx_phys;
|
|
|
|
dma_private->dma_channel = dma_global_data.dma_channel[channel];
|
|
dma_private->irq = dma_global_data.irq[channel];
|
|
dma_private->substream = substream;
|
|
dma_private->ld_buf_phys = ld_buf_phys;
|
|
dma_private->dma_buf_phys = substream->dma_buffer.addr;
|
|
|
|
/* We only support one DMA controller for now */
|
|
dma_private->controller_id = 0;
|
|
dma_private->channel_id = channel;
|
|
|
|
ret = request_irq(dma_private->irq, fsl_dma_isr, 0, "DMA", dma_private);
|
|
if (ret) {
|
|
dev_err(substream->pcm->card->dev,
|
|
"can't register ISR for IRQ %u (ret=%i)\n",
|
|
dma_private->irq, ret);
|
|
dma_free_coherent(substream->pcm->dev,
|
|
sizeof(struct fsl_dma_private),
|
|
dma_private, dma_private->ld_buf_phys);
|
|
return ret;
|
|
}
|
|
|
|
dma_global_data.assigned[channel] = 1;
|
|
|
|
snd_pcm_set_runtime_buffer(substream, &substream->dma_buffer);
|
|
snd_soc_set_runtime_hwparams(substream, &fsl_dma_hardware);
|
|
runtime->private_data = dma_private;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* fsl_dma_hw_params: allocate the DMA buffer and the DMA link descriptors.
|
|
*
|
|
* ALSA divides the DMA buffer into N periods. We create NUM_DMA_LINKS link
|
|
* descriptors that ping-pong from one period to the next. For example, if
|
|
* there are six periods and two link descriptors, this is how they look
|
|
* before playback starts:
|
|
*
|
|
* The last link descriptor
|
|
* ____________ points back to the first
|
|
* | |
|
|
* V |
|
|
* ___ ___ |
|
|
* | |->| |->|
|
|
* |___| |___|
|
|
* | |
|
|
* | |
|
|
* V V
|
|
* _________________________________________
|
|
* | | | | | | | The DMA buffer is
|
|
* | | | | | | | divided into 6 parts
|
|
* |______|______|______|______|______|______|
|
|
*
|
|
* and here's how they look after the first period is finished playing:
|
|
*
|
|
* ____________
|
|
* | |
|
|
* V |
|
|
* ___ ___ |
|
|
* | |->| |->|
|
|
* |___| |___|
|
|
* | |
|
|
* |______________
|
|
* | |
|
|
* V V
|
|
* _________________________________________
|
|
* | | | | | | |
|
|
* | | | | | | |
|
|
* |______|______|______|______|______|______|
|
|
*
|
|
* The first link descriptor now points to the third period. The DMA
|
|
* controller is currently playing the second period. When it finishes, it
|
|
* will jump back to the first descriptor and play the third period.
|
|
*
|
|
* There are four reasons we do this:
|
|
*
|
|
* 1. The only way to get the DMA controller to automatically restart the
|
|
* transfer when it gets to the end of the buffer is to use chaining
|
|
* mode. Basic direct mode doesn't offer that feature.
|
|
* 2. We need to receive an interrupt at the end of every period. The DMA
|
|
* controller can generate an interrupt at the end of every link transfer
|
|
* (aka segment). Making each period into a DMA segment will give us the
|
|
* interrupts we need.
|
|
* 3. By creating only two link descriptors, regardless of the number of
|
|
* periods, we do not need to reallocate the link descriptors if the
|
|
* number of periods changes.
|
|
* 4. All of the audio data is still stored in a single, contiguous DMA
|
|
* buffer, which is what ALSA expects. We're just dividing it into
|
|
* contiguous parts, and creating a link descriptor for each one.
|
|
*
|
|
* Note that due to a quirk of the SSI's STX register, the target address
|
|
* for the DMA operations depends on the sample size. So we don't program
|
|
* the dest_addr (for playback -- source_addr for capture) fields in the
|
|
* link descriptors here. We do that in fsl_dma_prepare()
|
|
*/
|
|
static int fsl_dma_hw_params(struct snd_pcm_substream *substream,
|
|
struct snd_pcm_hw_params *hw_params)
|
|
{
|
|
struct snd_pcm_runtime *runtime = substream->runtime;
|
|
struct fsl_dma_private *dma_private = runtime->private_data;
|
|
struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
|
|
|
|
dma_addr_t temp_addr; /* Pointer to next period */
|
|
u64 temp_link; /* Pointer to next link descriptor */
|
|
u32 mr; /* Temporary variable for MR register */
|
|
|
|
unsigned int i;
|
|
|
|
/* Get all the parameters we need */
|
|
size_t buffer_size = params_buffer_bytes(hw_params);
|
|
size_t period_size = params_period_bytes(hw_params);
|
|
|
|
/* Initialize our DMA tracking variables */
|
|
dma_private->period_size = period_size;
|
|
dma_private->num_periods = params_periods(hw_params);
|
|
dma_private->dma_buf_end = dma_private->dma_buf_phys + buffer_size;
|
|
dma_private->dma_buf_next = dma_private->dma_buf_phys +
|
|
(NUM_DMA_LINKS * period_size);
|
|
if (dma_private->dma_buf_next >= dma_private->dma_buf_end)
|
|
dma_private->dma_buf_next = dma_private->dma_buf_phys;
|
|
|
|
/*
|
|
* Initialize each link descriptor.
|
|
*
|
|
* The actual address in STX0 (destination for playback, source for
|
|
* capture) is based on the sample size, but we don't know the sample
|
|
* size in this function, so we'll have to adjust that later. See
|
|
* comments in fsl_dma_prepare().
|
|
*
|
|
* The DMA controller does not have a cache, so the CPU does not
|
|
* need to tell it to flush its cache. However, the DMA
|
|
* controller does need to tell the CPU to flush its cache.
|
|
* That's what the SNOOP bit does.
|
|
*
|
|
* Also, even though the DMA controller supports 36-bit addressing, for
|
|
* simplicity we currently support only 32-bit addresses for the audio
|
|
* buffer itself.
|
|
*/
|
|
temp_addr = substream->dma_buffer.addr;
|
|
temp_link = dma_private->ld_buf_phys +
|
|
sizeof(struct fsl_dma_link_descriptor);
|
|
|
|
for (i = 0; i < NUM_DMA_LINKS; i++) {
|
|
struct fsl_dma_link_descriptor *link = &dma_private->link[i];
|
|
|
|
link->count = cpu_to_be32(period_size);
|
|
link->source_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP);
|
|
link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP);
|
|
link->next = cpu_to_be64(temp_link);
|
|
|
|
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
|
|
link->source_addr = cpu_to_be32(temp_addr);
|
|
else
|
|
link->dest_addr = cpu_to_be32(temp_addr);
|
|
|
|
temp_addr += period_size;
|
|
temp_link += sizeof(struct fsl_dma_link_descriptor);
|
|
}
|
|
/* The last link descriptor points to the first */
|
|
dma_private->link[i - 1].next = cpu_to_be64(dma_private->ld_buf_phys);
|
|
|
|
/* Tell the DMA controller where the first link descriptor is */
|
|
out_be32(&dma_channel->clndar,
|
|
CCSR_DMA_CLNDAR_ADDR(dma_private->ld_buf_phys));
|
|
out_be32(&dma_channel->eclndar,
|
|
CCSR_DMA_ECLNDAR_ADDR(dma_private->ld_buf_phys));
|
|
|
|
/* The manual says the BCR must be clear before enabling EMP */
|
|
out_be32(&dma_channel->bcr, 0);
|
|
|
|
/*
|
|
* Program the mode register for interrupts, external master control,
|
|
* and source/destination hold. Also clear the Channel Abort bit.
|
|
*/
|
|
mr = in_be32(&dma_channel->mr) &
|
|
~(CCSR_DMA_MR_CA | CCSR_DMA_MR_DAHE | CCSR_DMA_MR_SAHE);
|
|
|
|
/*
|
|
* We want External Master Start and External Master Pause enabled,
|
|
* because the SSI is controlling the DMA controller. We want the DMA
|
|
* controller to be set up in advance, and then we signal only the SSI
|
|
* to start transfering.
|
|
*
|
|
* We want End-Of-Segment Interrupts enabled, because this will generate
|
|
* an interrupt at the end of each segment (each link descriptor
|
|
* represents one segment). Each DMA segment is the same thing as an
|
|
* ALSA period, so this is how we get an interrupt at the end of every
|
|
* period.
|
|
*
|
|
* We want Error Interrupt enabled, so that we can get an error if
|
|
* the DMA controller is mis-programmed somehow.
|
|
*/
|
|
mr |= CCSR_DMA_MR_EOSIE | CCSR_DMA_MR_EIE | CCSR_DMA_MR_EMP_EN |
|
|
CCSR_DMA_MR_EMS_EN;
|
|
|
|
/* For playback, we want the destination address to be held. For
|
|
capture, set the source address to be held. */
|
|
mr |= (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) ?
|
|
CCSR_DMA_MR_DAHE : CCSR_DMA_MR_SAHE;
|
|
|
|
out_be32(&dma_channel->mr, mr);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* fsl_dma_prepare - prepare the DMA registers for playback.
|
|
*
|
|
* This function is called after the specifics of the audio data are known,
|
|
* i.e. snd_pcm_runtime is initialized.
|
|
*
|
|
* In this function, we finish programming the registers of the DMA
|
|
* controller that are dependent on the sample size.
|
|
*
|
|
* One of the drawbacks with big-endian is that when copying integers of
|
|
* different sizes to a fixed-sized register, the address to which the
|
|
* integer must be copied is dependent on the size of the integer.
|
|
*
|
|
* For example, if P is the address of a 32-bit register, and X is a 32-bit
|
|
* integer, then X should be copied to address P. However, if X is a 16-bit
|
|
* integer, then it should be copied to P+2. If X is an 8-bit register,
|
|
* then it should be copied to P+3.
|
|
*
|
|
* So for playback of 8-bit samples, the DMA controller must transfer single
|
|
* bytes from the DMA buffer to the last byte of the STX0 register, i.e.
|
|
* offset by 3 bytes. For 16-bit samples, the offset is two bytes.
|
|
*
|
|
* For 24-bit samples, the offset is 1 byte. However, the DMA controller
|
|
* does not support 3-byte copies (the DAHTS register supports only 1, 2, 4,
|
|
* and 8 bytes at a time). So we do not support packed 24-bit samples.
|
|
* 24-bit data must be padded to 32 bits.
|
|
*/
|
|
static int fsl_dma_prepare(struct snd_pcm_substream *substream)
|
|
{
|
|
struct snd_pcm_runtime *runtime = substream->runtime;
|
|
struct fsl_dma_private *dma_private = runtime->private_data;
|
|
struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
|
|
u32 mr;
|
|
unsigned int i;
|
|
dma_addr_t ssi_sxx_phys; /* Bus address of SSI STX register */
|
|
unsigned int frame_size; /* Number of bytes per frame */
|
|
|
|
ssi_sxx_phys = dma_private->ssi_sxx_phys;
|
|
|
|
mr = in_be32(&dma_channel->mr) & ~(CCSR_DMA_MR_BWC_MASK |
|
|
CCSR_DMA_MR_SAHTS_MASK | CCSR_DMA_MR_DAHTS_MASK);
|
|
|
|
switch (runtime->sample_bits) {
|
|
case 8:
|
|
mr |= CCSR_DMA_MR_DAHTS_1 | CCSR_DMA_MR_SAHTS_1;
|
|
ssi_sxx_phys += 3;
|
|
break;
|
|
case 16:
|
|
mr |= CCSR_DMA_MR_DAHTS_2 | CCSR_DMA_MR_SAHTS_2;
|
|
ssi_sxx_phys += 2;
|
|
break;
|
|
case 32:
|
|
mr |= CCSR_DMA_MR_DAHTS_4 | CCSR_DMA_MR_SAHTS_4;
|
|
break;
|
|
default:
|
|
dev_err(substream->pcm->card->dev,
|
|
"unsupported sample size %u\n", runtime->sample_bits);
|
|
return -EINVAL;
|
|
}
|
|
|
|
frame_size = runtime->frame_bits / 8;
|
|
/*
|
|
* BWC should always be a multiple of the frame size. BWC determines
|
|
* how many bytes are sent/received before the DMA controller checks the
|
|
* SSI to see if it needs to stop. For playback, the transmit FIFO can
|
|
* hold three frames, so we want to send two frames at a time. For
|
|
* capture, the receive FIFO is triggered when it contains one frame, so
|
|
* we want to receive one frame at a time.
|
|
*/
|
|
|
|
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
|
|
mr |= CCSR_DMA_MR_BWC(2 * frame_size);
|
|
else
|
|
mr |= CCSR_DMA_MR_BWC(frame_size);
|
|
|
|
out_be32(&dma_channel->mr, mr);
|
|
|
|
/*
|
|
* Program the address of the DMA transfer to/from the SSI.
|
|
*/
|
|
for (i = 0; i < NUM_DMA_LINKS; i++) {
|
|
struct fsl_dma_link_descriptor *link = &dma_private->link[i];
|
|
|
|
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
|
|
link->dest_addr = cpu_to_be32(ssi_sxx_phys);
|
|
else
|
|
link->source_addr = cpu_to_be32(ssi_sxx_phys);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* fsl_dma_pointer: determine the current position of the DMA transfer
|
|
*
|
|
* This function is called by ALSA when ALSA wants to know where in the
|
|
* stream buffer the hardware currently is.
|
|
*
|
|
* For playback, the SAR register contains the physical address of the most
|
|
* recent DMA transfer. For capture, the value is in the DAR register.
|
|
*
|
|
* The base address of the buffer is stored in the source_addr field of the
|
|
* first link descriptor.
|
|
*/
|
|
static snd_pcm_uframes_t fsl_dma_pointer(struct snd_pcm_substream *substream)
|
|
{
|
|
struct snd_pcm_runtime *runtime = substream->runtime;
|
|
struct fsl_dma_private *dma_private = runtime->private_data;
|
|
struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
|
|
dma_addr_t position;
|
|
snd_pcm_uframes_t frames;
|
|
|
|
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
|
|
position = in_be32(&dma_channel->sar);
|
|
else
|
|
position = in_be32(&dma_channel->dar);
|
|
|
|
frames = bytes_to_frames(runtime, position - dma_private->dma_buf_phys);
|
|
|
|
/*
|
|
* If the current address is just past the end of the buffer, wrap it
|
|
* around.
|
|
*/
|
|
if (frames == runtime->buffer_size)
|
|
frames = 0;
|
|
|
|
return frames;
|
|
}
|
|
|
|
/**
|
|
* fsl_dma_hw_free: release resources allocated in fsl_dma_hw_params()
|
|
*
|
|
* Release the resources allocated in fsl_dma_hw_params() and de-program the
|
|
* registers.
|
|
*
|
|
* This function can be called multiple times.
|
|
*/
|
|
static int fsl_dma_hw_free(struct snd_pcm_substream *substream)
|
|
{
|
|
struct snd_pcm_runtime *runtime = substream->runtime;
|
|
struct fsl_dma_private *dma_private = runtime->private_data;
|
|
|
|
if (dma_private) {
|
|
struct ccsr_dma_channel __iomem *dma_channel;
|
|
|
|
dma_channel = dma_private->dma_channel;
|
|
|
|
/* Stop the DMA */
|
|
out_be32(&dma_channel->mr, CCSR_DMA_MR_CA);
|
|
out_be32(&dma_channel->mr, 0);
|
|
|
|
/* Reset all the other registers */
|
|
out_be32(&dma_channel->sr, -1);
|
|
out_be32(&dma_channel->clndar, 0);
|
|
out_be32(&dma_channel->eclndar, 0);
|
|
out_be32(&dma_channel->satr, 0);
|
|
out_be32(&dma_channel->sar, 0);
|
|
out_be32(&dma_channel->datr, 0);
|
|
out_be32(&dma_channel->dar, 0);
|
|
out_be32(&dma_channel->bcr, 0);
|
|
out_be32(&dma_channel->nlndar, 0);
|
|
out_be32(&dma_channel->enlndar, 0);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* fsl_dma_close: close the stream.
|
|
*/
|
|
static int fsl_dma_close(struct snd_pcm_substream *substream)
|
|
{
|
|
struct snd_pcm_runtime *runtime = substream->runtime;
|
|
struct fsl_dma_private *dma_private = runtime->private_data;
|
|
int dir = substream->stream == SNDRV_PCM_STREAM_PLAYBACK ? 0 : 1;
|
|
|
|
if (dma_private) {
|
|
if (dma_private->irq)
|
|
free_irq(dma_private->irq, dma_private);
|
|
|
|
if (dma_private->ld_buf_phys) {
|
|
dma_unmap_single(substream->pcm->dev,
|
|
dma_private->ld_buf_phys,
|
|
sizeof(dma_private->link), DMA_TO_DEVICE);
|
|
}
|
|
|
|
/* Deallocate the fsl_dma_private structure */
|
|
dma_free_coherent(substream->pcm->dev,
|
|
sizeof(struct fsl_dma_private),
|
|
dma_private, dma_private->ld_buf_phys);
|
|
substream->runtime->private_data = NULL;
|
|
}
|
|
|
|
dma_global_data.assigned[dir] = 0;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Remove this PCM driver.
|
|
*/
|
|
static void fsl_dma_free_dma_buffers(struct snd_pcm *pcm)
|
|
{
|
|
struct snd_pcm_substream *substream;
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(pcm->streams); i++) {
|
|
substream = pcm->streams[i].substream;
|
|
if (substream) {
|
|
snd_dma_free_pages(&substream->dma_buffer);
|
|
substream->dma_buffer.area = NULL;
|
|
substream->dma_buffer.addr = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
static struct snd_pcm_ops fsl_dma_ops = {
|
|
.open = fsl_dma_open,
|
|
.close = fsl_dma_close,
|
|
.ioctl = snd_pcm_lib_ioctl,
|
|
.hw_params = fsl_dma_hw_params,
|
|
.hw_free = fsl_dma_hw_free,
|
|
.prepare = fsl_dma_prepare,
|
|
.pointer = fsl_dma_pointer,
|
|
};
|
|
|
|
struct snd_soc_platform fsl_soc_platform = {
|
|
.name = "fsl-dma",
|
|
.pcm_ops = &fsl_dma_ops,
|
|
.pcm_new = fsl_dma_new,
|
|
.pcm_free = fsl_dma_free_dma_buffers,
|
|
};
|
|
EXPORT_SYMBOL_GPL(fsl_soc_platform);
|
|
|
|
/**
|
|
* fsl_dma_configure: store the DMA parameters from the fabric driver.
|
|
*
|
|
* This function is called by the ASoC fabric driver to give us the DMA and
|
|
* SSI channel information.
|
|
*
|
|
* Unfortunately, ASoC V1 does make it possible to determine the DMA/SSI
|
|
* data when a substream is created, so for now we need to store this data
|
|
* into a global variable. This means that we can only support one DMA
|
|
* controller, and hence only one SSI.
|
|
*/
|
|
int fsl_dma_configure(struct fsl_dma_info *dma_info)
|
|
{
|
|
static int initialized;
|
|
|
|
/* We only support one DMA controller for now */
|
|
if (initialized)
|
|
return 0;
|
|
|
|
dma_global_data.ssi_stx_phys = dma_info->ssi_stx_phys;
|
|
dma_global_data.ssi_srx_phys = dma_info->ssi_srx_phys;
|
|
dma_global_data.dma_channel[0] = dma_info->dma_channel[0];
|
|
dma_global_data.dma_channel[1] = dma_info->dma_channel[1];
|
|
dma_global_data.irq[0] = dma_info->dma_irq[0];
|
|
dma_global_data.irq[1] = dma_info->dma_irq[1];
|
|
dma_global_data.assigned[0] = 0;
|
|
dma_global_data.assigned[1] = 0;
|
|
|
|
initialized = 1;
|
|
return 1;
|
|
}
|
|
EXPORT_SYMBOL_GPL(fsl_dma_configure);
|
|
|
|
MODULE_AUTHOR("Timur Tabi <timur@freescale.com>");
|
|
MODULE_DESCRIPTION("Freescale Elo DMA ASoC PCM module");
|
|
MODULE_LICENSE("GPL");
|