992 lines
25 KiB
C
992 lines
25 KiB
C
/*
|
|
* This file implements the DMA operations for NVLink devices. The NPU
|
|
* devices all point to the same iommu table as the parent PCI device.
|
|
*
|
|
* Copyright Alistair Popple, IBM Corporation 2015.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of version 2 of the GNU General Public
|
|
* License as published by the Free Software Foundation.
|
|
*/
|
|
|
|
#include <linux/slab.h>
|
|
#include <linux/mmu_notifier.h>
|
|
#include <linux/mmu_context.h>
|
|
#include <linux/of.h>
|
|
#include <linux/export.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/memblock.h>
|
|
#include <linux/iommu.h>
|
|
|
|
#include <asm/tlb.h>
|
|
#include <asm/powernv.h>
|
|
#include <asm/reg.h>
|
|
#include <asm/opal.h>
|
|
#include <asm/io.h>
|
|
#include <asm/iommu.h>
|
|
#include <asm/pnv-pci.h>
|
|
#include <asm/msi_bitmap.h>
|
|
#include <asm/opal.h>
|
|
|
|
#include "powernv.h"
|
|
#include "pci.h"
|
|
|
|
#define npu_to_phb(x) container_of(x, struct pnv_phb, npu)
|
|
|
|
/*
|
|
* spinlock to protect initialisation of an npu_context for a particular
|
|
* mm_struct.
|
|
*/
|
|
static DEFINE_SPINLOCK(npu_context_lock);
|
|
|
|
/*
|
|
* When an address shootdown range exceeds this threshold we invalidate the
|
|
* entire TLB on the GPU for the given PID rather than each specific address in
|
|
* the range.
|
|
*/
|
|
#define ATSD_THRESHOLD (2*1024*1024)
|
|
|
|
/*
|
|
* Other types of TCE cache invalidation are not functional in the
|
|
* hardware.
|
|
*/
|
|
static struct pci_dev *get_pci_dev(struct device_node *dn)
|
|
{
|
|
struct pci_dn *pdn = PCI_DN(dn);
|
|
|
|
return pci_get_domain_bus_and_slot(pci_domain_nr(pdn->phb->bus),
|
|
pdn->busno, pdn->devfn);
|
|
}
|
|
|
|
/* Given a NPU device get the associated PCI device. */
|
|
struct pci_dev *pnv_pci_get_gpu_dev(struct pci_dev *npdev)
|
|
{
|
|
struct device_node *dn;
|
|
struct pci_dev *gpdev;
|
|
|
|
if (WARN_ON(!npdev))
|
|
return NULL;
|
|
|
|
if (WARN_ON(!npdev->dev.of_node))
|
|
return NULL;
|
|
|
|
/* Get assoicated PCI device */
|
|
dn = of_parse_phandle(npdev->dev.of_node, "ibm,gpu", 0);
|
|
if (!dn)
|
|
return NULL;
|
|
|
|
gpdev = get_pci_dev(dn);
|
|
of_node_put(dn);
|
|
|
|
return gpdev;
|
|
}
|
|
EXPORT_SYMBOL(pnv_pci_get_gpu_dev);
|
|
|
|
/* Given the real PCI device get a linked NPU device. */
|
|
struct pci_dev *pnv_pci_get_npu_dev(struct pci_dev *gpdev, int index)
|
|
{
|
|
struct device_node *dn;
|
|
struct pci_dev *npdev;
|
|
|
|
if (WARN_ON(!gpdev))
|
|
return NULL;
|
|
|
|
/* Not all PCI devices have device-tree nodes */
|
|
if (!gpdev->dev.of_node)
|
|
return NULL;
|
|
|
|
/* Get assoicated PCI device */
|
|
dn = of_parse_phandle(gpdev->dev.of_node, "ibm,npu", index);
|
|
if (!dn)
|
|
return NULL;
|
|
|
|
npdev = get_pci_dev(dn);
|
|
of_node_put(dn);
|
|
|
|
return npdev;
|
|
}
|
|
EXPORT_SYMBOL(pnv_pci_get_npu_dev);
|
|
|
|
#define NPU_DMA_OP_UNSUPPORTED() \
|
|
dev_err_once(dev, "%s operation unsupported for NVLink devices\n", \
|
|
__func__)
|
|
|
|
static void *dma_npu_alloc(struct device *dev, size_t size,
|
|
dma_addr_t *dma_handle, gfp_t flag,
|
|
unsigned long attrs)
|
|
{
|
|
NPU_DMA_OP_UNSUPPORTED();
|
|
return NULL;
|
|
}
|
|
|
|
static void dma_npu_free(struct device *dev, size_t size,
|
|
void *vaddr, dma_addr_t dma_handle,
|
|
unsigned long attrs)
|
|
{
|
|
NPU_DMA_OP_UNSUPPORTED();
|
|
}
|
|
|
|
static dma_addr_t dma_npu_map_page(struct device *dev, struct page *page,
|
|
unsigned long offset, size_t size,
|
|
enum dma_data_direction direction,
|
|
unsigned long attrs)
|
|
{
|
|
NPU_DMA_OP_UNSUPPORTED();
|
|
return 0;
|
|
}
|
|
|
|
static int dma_npu_map_sg(struct device *dev, struct scatterlist *sglist,
|
|
int nelems, enum dma_data_direction direction,
|
|
unsigned long attrs)
|
|
{
|
|
NPU_DMA_OP_UNSUPPORTED();
|
|
return 0;
|
|
}
|
|
|
|
static int dma_npu_dma_supported(struct device *dev, u64 mask)
|
|
{
|
|
NPU_DMA_OP_UNSUPPORTED();
|
|
return 0;
|
|
}
|
|
|
|
static u64 dma_npu_get_required_mask(struct device *dev)
|
|
{
|
|
NPU_DMA_OP_UNSUPPORTED();
|
|
return 0;
|
|
}
|
|
|
|
static const struct dma_map_ops dma_npu_ops = {
|
|
.map_page = dma_npu_map_page,
|
|
.map_sg = dma_npu_map_sg,
|
|
.alloc = dma_npu_alloc,
|
|
.free = dma_npu_free,
|
|
.dma_supported = dma_npu_dma_supported,
|
|
.get_required_mask = dma_npu_get_required_mask,
|
|
};
|
|
|
|
/*
|
|
* Returns the PE assoicated with the PCI device of the given
|
|
* NPU. Returns the linked pci device if pci_dev != NULL.
|
|
*/
|
|
static struct pnv_ioda_pe *get_gpu_pci_dev_and_pe(struct pnv_ioda_pe *npe,
|
|
struct pci_dev **gpdev)
|
|
{
|
|
struct pnv_phb *phb;
|
|
struct pci_controller *hose;
|
|
struct pci_dev *pdev;
|
|
struct pnv_ioda_pe *pe;
|
|
struct pci_dn *pdn;
|
|
|
|
pdev = pnv_pci_get_gpu_dev(npe->pdev);
|
|
if (!pdev)
|
|
return NULL;
|
|
|
|
pdn = pci_get_pdn(pdev);
|
|
if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE))
|
|
return NULL;
|
|
|
|
hose = pci_bus_to_host(pdev->bus);
|
|
phb = hose->private_data;
|
|
pe = &phb->ioda.pe_array[pdn->pe_number];
|
|
|
|
if (gpdev)
|
|
*gpdev = pdev;
|
|
|
|
return pe;
|
|
}
|
|
|
|
long pnv_npu_set_window(struct pnv_ioda_pe *npe, int num,
|
|
struct iommu_table *tbl)
|
|
{
|
|
struct pnv_phb *phb = npe->phb;
|
|
int64_t rc;
|
|
const unsigned long size = tbl->it_indirect_levels ?
|
|
tbl->it_level_size : tbl->it_size;
|
|
const __u64 start_addr = tbl->it_offset << tbl->it_page_shift;
|
|
const __u64 win_size = tbl->it_size << tbl->it_page_shift;
|
|
|
|
pe_info(npe, "Setting up window %llx..%llx pg=%lx\n",
|
|
start_addr, start_addr + win_size - 1,
|
|
IOMMU_PAGE_SIZE(tbl));
|
|
|
|
rc = opal_pci_map_pe_dma_window(phb->opal_id,
|
|
npe->pe_number,
|
|
npe->pe_number,
|
|
tbl->it_indirect_levels + 1,
|
|
__pa(tbl->it_base),
|
|
size << 3,
|
|
IOMMU_PAGE_SIZE(tbl));
|
|
if (rc) {
|
|
pe_err(npe, "Failed to configure TCE table, err %lld\n", rc);
|
|
return rc;
|
|
}
|
|
pnv_pci_ioda2_tce_invalidate_entire(phb, false);
|
|
|
|
/* Add the table to the list so its TCE cache will get invalidated */
|
|
pnv_pci_link_table_and_group(phb->hose->node, num,
|
|
tbl, &npe->table_group);
|
|
|
|
return 0;
|
|
}
|
|
|
|
long pnv_npu_unset_window(struct pnv_ioda_pe *npe, int num)
|
|
{
|
|
struct pnv_phb *phb = npe->phb;
|
|
int64_t rc;
|
|
|
|
pe_info(npe, "Removing DMA window\n");
|
|
|
|
rc = opal_pci_map_pe_dma_window(phb->opal_id, npe->pe_number,
|
|
npe->pe_number,
|
|
0/* levels */, 0/* table address */,
|
|
0/* table size */, 0/* page size */);
|
|
if (rc) {
|
|
pe_err(npe, "Unmapping failed, ret = %lld\n", rc);
|
|
return rc;
|
|
}
|
|
pnv_pci_ioda2_tce_invalidate_entire(phb, false);
|
|
|
|
pnv_pci_unlink_table_and_group(npe->table_group.tables[num],
|
|
&npe->table_group);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Enables 32 bit DMA on NPU.
|
|
*/
|
|
static void pnv_npu_dma_set_32(struct pnv_ioda_pe *npe)
|
|
{
|
|
struct pci_dev *gpdev;
|
|
struct pnv_ioda_pe *gpe;
|
|
int64_t rc;
|
|
|
|
/*
|
|
* Find the assoicated PCI devices and get the dma window
|
|
* information from there.
|
|
*/
|
|
if (!npe->pdev || !(npe->flags & PNV_IODA_PE_DEV))
|
|
return;
|
|
|
|
gpe = get_gpu_pci_dev_and_pe(npe, &gpdev);
|
|
if (!gpe)
|
|
return;
|
|
|
|
rc = pnv_npu_set_window(npe, 0, gpe->table_group.tables[0]);
|
|
|
|
/*
|
|
* We don't initialise npu_pe->tce32_table as we always use
|
|
* dma_npu_ops which are nops.
|
|
*/
|
|
set_dma_ops(&npe->pdev->dev, &dma_npu_ops);
|
|
}
|
|
|
|
/*
|
|
* Enables bypass mode on the NPU. The NPU only supports one
|
|
* window per link, so bypass needs to be explicitly enabled or
|
|
* disabled. Unlike for a PHB3 bypass and non-bypass modes can't be
|
|
* active at the same time.
|
|
*/
|
|
static int pnv_npu_dma_set_bypass(struct pnv_ioda_pe *npe)
|
|
{
|
|
struct pnv_phb *phb = npe->phb;
|
|
int64_t rc = 0;
|
|
phys_addr_t top = memblock_end_of_DRAM();
|
|
|
|
if (phb->type != PNV_PHB_NPU_NVLINK || !npe->pdev)
|
|
return -EINVAL;
|
|
|
|
rc = pnv_npu_unset_window(npe, 0);
|
|
if (rc != OPAL_SUCCESS)
|
|
return rc;
|
|
|
|
/* Enable the bypass window */
|
|
|
|
top = roundup_pow_of_two(top);
|
|
dev_info(&npe->pdev->dev, "Enabling bypass for PE %x\n",
|
|
npe->pe_number);
|
|
rc = opal_pci_map_pe_dma_window_real(phb->opal_id,
|
|
npe->pe_number, npe->pe_number,
|
|
0 /* bypass base */, top);
|
|
|
|
if (rc == OPAL_SUCCESS)
|
|
pnv_pci_ioda2_tce_invalidate_entire(phb, false);
|
|
|
|
return rc;
|
|
}
|
|
|
|
void pnv_npu_try_dma_set_bypass(struct pci_dev *gpdev, bool bypass)
|
|
{
|
|
int i;
|
|
struct pnv_phb *phb;
|
|
struct pci_dn *pdn;
|
|
struct pnv_ioda_pe *npe;
|
|
struct pci_dev *npdev;
|
|
|
|
for (i = 0; ; ++i) {
|
|
npdev = pnv_pci_get_npu_dev(gpdev, i);
|
|
|
|
if (!npdev)
|
|
break;
|
|
|
|
pdn = pci_get_pdn(npdev);
|
|
if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE))
|
|
return;
|
|
|
|
phb = pci_bus_to_host(npdev->bus)->private_data;
|
|
|
|
/* We only do bypass if it's enabled on the linked device */
|
|
npe = &phb->ioda.pe_array[pdn->pe_number];
|
|
|
|
if (bypass) {
|
|
dev_info(&npdev->dev,
|
|
"Using 64-bit DMA iommu bypass\n");
|
|
pnv_npu_dma_set_bypass(npe);
|
|
} else {
|
|
dev_info(&npdev->dev, "Using 32-bit DMA via iommu\n");
|
|
pnv_npu_dma_set_32(npe);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Switch ownership from platform code to external user (e.g. VFIO) */
|
|
void pnv_npu_take_ownership(struct pnv_ioda_pe *npe)
|
|
{
|
|
struct pnv_phb *phb = npe->phb;
|
|
int64_t rc;
|
|
|
|
/*
|
|
* Note: NPU has just a single TVE in the hardware which means that
|
|
* while used by the kernel, it can have either 32bit window or
|
|
* DMA bypass but never both. So we deconfigure 32bit window only
|
|
* if it was enabled at the moment of ownership change.
|
|
*/
|
|
if (npe->table_group.tables[0]) {
|
|
pnv_npu_unset_window(npe, 0);
|
|
return;
|
|
}
|
|
|
|
/* Disable bypass */
|
|
rc = opal_pci_map_pe_dma_window_real(phb->opal_id,
|
|
npe->pe_number, npe->pe_number,
|
|
0 /* bypass base */, 0);
|
|
if (rc) {
|
|
pe_err(npe, "Failed to disable bypass, err %lld\n", rc);
|
|
return;
|
|
}
|
|
pnv_pci_ioda2_tce_invalidate_entire(npe->phb, false);
|
|
}
|
|
|
|
struct pnv_ioda_pe *pnv_pci_npu_setup_iommu(struct pnv_ioda_pe *npe)
|
|
{
|
|
struct pnv_phb *phb = npe->phb;
|
|
struct pci_bus *pbus = phb->hose->bus;
|
|
struct pci_dev *npdev, *gpdev = NULL, *gptmp;
|
|
struct pnv_ioda_pe *gpe = get_gpu_pci_dev_and_pe(npe, &gpdev);
|
|
|
|
if (!gpe || !gpdev)
|
|
return NULL;
|
|
|
|
list_for_each_entry(npdev, &pbus->devices, bus_list) {
|
|
gptmp = pnv_pci_get_gpu_dev(npdev);
|
|
|
|
if (gptmp != gpdev)
|
|
continue;
|
|
|
|
pe_info(gpe, "Attached NPU %s\n", dev_name(&npdev->dev));
|
|
iommu_group_add_device(gpe->table_group.group, &npdev->dev);
|
|
}
|
|
|
|
return gpe;
|
|
}
|
|
|
|
/* Maximum number of nvlinks per npu */
|
|
#define NV_MAX_LINKS 6
|
|
|
|
/* Maximum index of npu2 hosts in the system. Always < NV_MAX_NPUS */
|
|
static int max_npu2_index;
|
|
|
|
struct npu_context {
|
|
struct mm_struct *mm;
|
|
struct pci_dev *npdev[NV_MAX_NPUS][NV_MAX_LINKS];
|
|
struct mmu_notifier mn;
|
|
struct kref kref;
|
|
bool nmmu_flush;
|
|
|
|
/* Callback to stop translation requests on a given GPU */
|
|
void (*release_cb)(struct npu_context *context, void *priv);
|
|
|
|
/*
|
|
* Private pointer passed to the above callback for usage by
|
|
* device drivers.
|
|
*/
|
|
void *priv;
|
|
};
|
|
|
|
struct mmio_atsd_reg {
|
|
struct npu *npu;
|
|
int reg;
|
|
};
|
|
|
|
/*
|
|
* Find a free MMIO ATSD register and mark it in use. Return -ENOSPC
|
|
* if none are available.
|
|
*/
|
|
static int get_mmio_atsd_reg(struct npu *npu)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < npu->mmio_atsd_count; i++) {
|
|
if (!test_and_set_bit_lock(i, &npu->mmio_atsd_usage))
|
|
return i;
|
|
}
|
|
|
|
return -ENOSPC;
|
|
}
|
|
|
|
static void put_mmio_atsd_reg(struct npu *npu, int reg)
|
|
{
|
|
clear_bit_unlock(reg, &npu->mmio_atsd_usage);
|
|
}
|
|
|
|
/* MMIO ATSD register offsets */
|
|
#define XTS_ATSD_AVA 1
|
|
#define XTS_ATSD_STAT 2
|
|
|
|
static void mmio_launch_invalidate(struct mmio_atsd_reg *mmio_atsd_reg,
|
|
unsigned long launch, unsigned long va)
|
|
{
|
|
struct npu *npu = mmio_atsd_reg->npu;
|
|
int reg = mmio_atsd_reg->reg;
|
|
|
|
__raw_writeq(cpu_to_be64(va),
|
|
npu->mmio_atsd_regs[reg] + XTS_ATSD_AVA);
|
|
eieio();
|
|
__raw_writeq(cpu_to_be64(launch), npu->mmio_atsd_regs[reg]);
|
|
}
|
|
|
|
static void mmio_invalidate_pid(struct mmio_atsd_reg mmio_atsd_reg[NV_MAX_NPUS],
|
|
unsigned long pid, bool flush)
|
|
{
|
|
int i;
|
|
unsigned long launch;
|
|
|
|
for (i = 0; i <= max_npu2_index; i++) {
|
|
if (mmio_atsd_reg[i].reg < 0)
|
|
continue;
|
|
|
|
/* IS set to invalidate matching PID */
|
|
launch = PPC_BIT(12);
|
|
|
|
/* PRS set to process-scoped */
|
|
launch |= PPC_BIT(13);
|
|
|
|
/* AP */
|
|
launch |= (u64)
|
|
mmu_get_ap(mmu_virtual_psize) << PPC_BITLSHIFT(17);
|
|
|
|
/* PID */
|
|
launch |= pid << PPC_BITLSHIFT(38);
|
|
|
|
/* No flush */
|
|
launch |= !flush << PPC_BITLSHIFT(39);
|
|
|
|
/* Invalidating the entire process doesn't use a va */
|
|
mmio_launch_invalidate(&mmio_atsd_reg[i], launch, 0);
|
|
}
|
|
}
|
|
|
|
static void mmio_invalidate_va(struct mmio_atsd_reg mmio_atsd_reg[NV_MAX_NPUS],
|
|
unsigned long va, unsigned long pid, bool flush)
|
|
{
|
|
int i;
|
|
unsigned long launch;
|
|
|
|
for (i = 0; i <= max_npu2_index; i++) {
|
|
if (mmio_atsd_reg[i].reg < 0)
|
|
continue;
|
|
|
|
/* IS set to invalidate target VA */
|
|
launch = 0;
|
|
|
|
/* PRS set to process scoped */
|
|
launch |= PPC_BIT(13);
|
|
|
|
/* AP */
|
|
launch |= (u64)
|
|
mmu_get_ap(mmu_virtual_psize) << PPC_BITLSHIFT(17);
|
|
|
|
/* PID */
|
|
launch |= pid << PPC_BITLSHIFT(38);
|
|
|
|
/* No flush */
|
|
launch |= !flush << PPC_BITLSHIFT(39);
|
|
|
|
mmio_launch_invalidate(&mmio_atsd_reg[i], launch, va);
|
|
}
|
|
}
|
|
|
|
#define mn_to_npu_context(x) container_of(x, struct npu_context, mn)
|
|
|
|
static void mmio_invalidate_wait(
|
|
struct mmio_atsd_reg mmio_atsd_reg[NV_MAX_NPUS])
|
|
{
|
|
struct npu *npu;
|
|
int i, reg;
|
|
|
|
/* Wait for all invalidations to complete */
|
|
for (i = 0; i <= max_npu2_index; i++) {
|
|
if (mmio_atsd_reg[i].reg < 0)
|
|
continue;
|
|
|
|
/* Wait for completion */
|
|
npu = mmio_atsd_reg[i].npu;
|
|
reg = mmio_atsd_reg[i].reg;
|
|
while (__raw_readq(npu->mmio_atsd_regs[reg] + XTS_ATSD_STAT))
|
|
cpu_relax();
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Acquires all the address translation shootdown (ATSD) registers required to
|
|
* launch an ATSD on all links this npu_context is active on.
|
|
*/
|
|
static void acquire_atsd_reg(struct npu_context *npu_context,
|
|
struct mmio_atsd_reg mmio_atsd_reg[NV_MAX_NPUS])
|
|
{
|
|
int i, j;
|
|
struct npu *npu;
|
|
struct pci_dev *npdev;
|
|
struct pnv_phb *nphb;
|
|
|
|
for (i = 0; i <= max_npu2_index; i++) {
|
|
mmio_atsd_reg[i].reg = -1;
|
|
for (j = 0; j < NV_MAX_LINKS; j++) {
|
|
/*
|
|
* There are no ordering requirements with respect to
|
|
* the setup of struct npu_context, but to ensure
|
|
* consistent behaviour we need to ensure npdev[][] is
|
|
* only read once.
|
|
*/
|
|
npdev = READ_ONCE(npu_context->npdev[i][j]);
|
|
if (!npdev)
|
|
continue;
|
|
|
|
nphb = pci_bus_to_host(npdev->bus)->private_data;
|
|
npu = &nphb->npu;
|
|
mmio_atsd_reg[i].npu = npu;
|
|
mmio_atsd_reg[i].reg = get_mmio_atsd_reg(npu);
|
|
while (mmio_atsd_reg[i].reg < 0) {
|
|
mmio_atsd_reg[i].reg = get_mmio_atsd_reg(npu);
|
|
cpu_relax();
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Release previously acquired ATSD registers. To avoid deadlocks the registers
|
|
* must be released in the same order they were acquired above in
|
|
* acquire_atsd_reg.
|
|
*/
|
|
static void release_atsd_reg(struct mmio_atsd_reg mmio_atsd_reg[NV_MAX_NPUS])
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i <= max_npu2_index; i++) {
|
|
/*
|
|
* We can't rely on npu_context->npdev[][] being the same here
|
|
* as when acquire_atsd_reg() was called, hence we use the
|
|
* values stored in mmio_atsd_reg during the acquire phase
|
|
* rather than re-reading npdev[][].
|
|
*/
|
|
if (mmio_atsd_reg[i].reg < 0)
|
|
continue;
|
|
|
|
put_mmio_atsd_reg(mmio_atsd_reg[i].npu, mmio_atsd_reg[i].reg);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Invalidate either a single address or an entire PID depending on
|
|
* the value of va.
|
|
*/
|
|
static void mmio_invalidate(struct npu_context *npu_context, int va,
|
|
unsigned long address, bool flush)
|
|
{
|
|
struct mmio_atsd_reg mmio_atsd_reg[NV_MAX_NPUS];
|
|
unsigned long pid = npu_context->mm->context.id;
|
|
|
|
if (npu_context->nmmu_flush)
|
|
/*
|
|
* Unfortunately the nest mmu does not support flushing specific
|
|
* addresses so we have to flush the whole mm once before
|
|
* shooting down the GPU translation.
|
|
*/
|
|
flush_all_mm(npu_context->mm);
|
|
|
|
/*
|
|
* Loop over all the NPUs this process is active on and launch
|
|
* an invalidate.
|
|
*/
|
|
acquire_atsd_reg(npu_context, mmio_atsd_reg);
|
|
if (va)
|
|
mmio_invalidate_va(mmio_atsd_reg, address, pid, flush);
|
|
else
|
|
mmio_invalidate_pid(mmio_atsd_reg, pid, flush);
|
|
|
|
mmio_invalidate_wait(mmio_atsd_reg);
|
|
if (flush) {
|
|
/*
|
|
* The GPU requires two flush ATSDs to ensure all entries have
|
|
* been flushed. We use PID 0 as it will never be used for a
|
|
* process on the GPU.
|
|
*/
|
|
mmio_invalidate_pid(mmio_atsd_reg, 0, true);
|
|
mmio_invalidate_wait(mmio_atsd_reg);
|
|
mmio_invalidate_pid(mmio_atsd_reg, 0, true);
|
|
mmio_invalidate_wait(mmio_atsd_reg);
|
|
}
|
|
release_atsd_reg(mmio_atsd_reg);
|
|
}
|
|
|
|
static void pnv_npu2_mn_release(struct mmu_notifier *mn,
|
|
struct mm_struct *mm)
|
|
{
|
|
struct npu_context *npu_context = mn_to_npu_context(mn);
|
|
|
|
/* Call into device driver to stop requests to the NMMU */
|
|
if (npu_context->release_cb)
|
|
npu_context->release_cb(npu_context, npu_context->priv);
|
|
|
|
/*
|
|
* There should be no more translation requests for this PID, but we
|
|
* need to ensure any entries for it are removed from the TLB.
|
|
*/
|
|
mmio_invalidate(npu_context, 0, 0, true);
|
|
}
|
|
|
|
static void pnv_npu2_mn_change_pte(struct mmu_notifier *mn,
|
|
struct mm_struct *mm,
|
|
unsigned long address,
|
|
pte_t pte)
|
|
{
|
|
struct npu_context *npu_context = mn_to_npu_context(mn);
|
|
|
|
mmio_invalidate(npu_context, 1, address, true);
|
|
}
|
|
|
|
static void pnv_npu2_mn_invalidate_range(struct mmu_notifier *mn,
|
|
struct mm_struct *mm,
|
|
unsigned long start, unsigned long end)
|
|
{
|
|
struct npu_context *npu_context = mn_to_npu_context(mn);
|
|
unsigned long address;
|
|
|
|
if (end - start > ATSD_THRESHOLD) {
|
|
/*
|
|
* Just invalidate the entire PID if the address range is too
|
|
* large.
|
|
*/
|
|
mmio_invalidate(npu_context, 0, 0, true);
|
|
} else {
|
|
for (address = start; address < end; address += PAGE_SIZE)
|
|
mmio_invalidate(npu_context, 1, address, false);
|
|
|
|
/* Do the flush only on the final addess == end */
|
|
mmio_invalidate(npu_context, 1, address, true);
|
|
}
|
|
}
|
|
|
|
static const struct mmu_notifier_ops nv_nmmu_notifier_ops = {
|
|
.release = pnv_npu2_mn_release,
|
|
.change_pte = pnv_npu2_mn_change_pte,
|
|
.invalidate_range = pnv_npu2_mn_invalidate_range,
|
|
};
|
|
|
|
/*
|
|
* Call into OPAL to setup the nmmu context for the current task in
|
|
* the NPU. This must be called to setup the context tables before the
|
|
* GPU issues ATRs. pdev should be a pointed to PCIe GPU device.
|
|
*
|
|
* A release callback should be registered to allow a device driver to
|
|
* be notified that it should not launch any new translation requests
|
|
* as the final TLB invalidate is about to occur.
|
|
*
|
|
* Returns an error if there no contexts are currently available or a
|
|
* npu_context which should be passed to pnv_npu2_handle_fault().
|
|
*
|
|
* mmap_sem must be held in write mode and must not be called from interrupt
|
|
* context.
|
|
*/
|
|
struct npu_context *pnv_npu2_init_context(struct pci_dev *gpdev,
|
|
unsigned long flags,
|
|
void (*cb)(struct npu_context *, void *),
|
|
void *priv)
|
|
{
|
|
int rc;
|
|
u32 nvlink_index;
|
|
struct device_node *nvlink_dn;
|
|
struct mm_struct *mm = current->mm;
|
|
struct pnv_phb *nphb;
|
|
struct npu *npu;
|
|
struct npu_context *npu_context;
|
|
|
|
/*
|
|
* At present we don't support GPUs connected to multiple NPUs and I'm
|
|
* not sure the hardware does either.
|
|
*/
|
|
struct pci_dev *npdev = pnv_pci_get_npu_dev(gpdev, 0);
|
|
|
|
if (!firmware_has_feature(FW_FEATURE_OPAL))
|
|
return ERR_PTR(-ENODEV);
|
|
|
|
if (!npdev)
|
|
/* No nvlink associated with this GPU device */
|
|
return ERR_PTR(-ENODEV);
|
|
|
|
nvlink_dn = of_parse_phandle(npdev->dev.of_node, "ibm,nvlink", 0);
|
|
if (WARN_ON(of_property_read_u32(nvlink_dn, "ibm,npu-link-index",
|
|
&nvlink_index)))
|
|
return ERR_PTR(-ENODEV);
|
|
|
|
if (!mm || mm->context.id == 0) {
|
|
/*
|
|
* Kernel thread contexts are not supported and context id 0 is
|
|
* reserved on the GPU.
|
|
*/
|
|
return ERR_PTR(-EINVAL);
|
|
}
|
|
|
|
nphb = pci_bus_to_host(npdev->bus)->private_data;
|
|
npu = &nphb->npu;
|
|
|
|
/*
|
|
* Setup the NPU context table for a particular GPU. These need to be
|
|
* per-GPU as we need the tables to filter ATSDs when there are no
|
|
* active contexts on a particular GPU. It is safe for these to be
|
|
* called concurrently with destroy as the OPAL call takes appropriate
|
|
* locks and refcounts on init/destroy.
|
|
*/
|
|
rc = opal_npu_init_context(nphb->opal_id, mm->context.id, flags,
|
|
PCI_DEVID(gpdev->bus->number, gpdev->devfn));
|
|
if (rc < 0)
|
|
return ERR_PTR(-ENOSPC);
|
|
|
|
/*
|
|
* We store the npu pci device so we can more easily get at the
|
|
* associated npus.
|
|
*/
|
|
spin_lock(&npu_context_lock);
|
|
npu_context = mm->context.npu_context;
|
|
if (npu_context) {
|
|
if (npu_context->release_cb != cb ||
|
|
npu_context->priv != priv) {
|
|
spin_unlock(&npu_context_lock);
|
|
opal_npu_destroy_context(nphb->opal_id, mm->context.id,
|
|
PCI_DEVID(gpdev->bus->number,
|
|
gpdev->devfn));
|
|
return ERR_PTR(-EINVAL);
|
|
}
|
|
|
|
WARN_ON(!kref_get_unless_zero(&npu_context->kref));
|
|
}
|
|
spin_unlock(&npu_context_lock);
|
|
|
|
if (!npu_context) {
|
|
/*
|
|
* We can set up these fields without holding the
|
|
* npu_context_lock as the npu_context hasn't been returned to
|
|
* the caller meaning it can't be destroyed. Parallel allocation
|
|
* is protected against by mmap_sem.
|
|
*/
|
|
rc = -ENOMEM;
|
|
npu_context = kzalloc(sizeof(struct npu_context), GFP_KERNEL);
|
|
if (npu_context) {
|
|
kref_init(&npu_context->kref);
|
|
npu_context->mm = mm;
|
|
npu_context->mn.ops = &nv_nmmu_notifier_ops;
|
|
rc = __mmu_notifier_register(&npu_context->mn, mm);
|
|
}
|
|
|
|
if (rc) {
|
|
kfree(npu_context);
|
|
opal_npu_destroy_context(nphb->opal_id, mm->context.id,
|
|
PCI_DEVID(gpdev->bus->number,
|
|
gpdev->devfn));
|
|
return ERR_PTR(rc);
|
|
}
|
|
|
|
mm->context.npu_context = npu_context;
|
|
}
|
|
|
|
npu_context->release_cb = cb;
|
|
npu_context->priv = priv;
|
|
|
|
/*
|
|
* npdev is a pci_dev pointer setup by the PCI code. We assign it to
|
|
* npdev[][] to indicate to the mmu notifiers that an invalidation
|
|
* should also be sent over this nvlink. The notifiers don't use any
|
|
* other fields in npu_context, so we just need to ensure that when they
|
|
* deference npu_context->npdev[][] it is either a valid pointer or
|
|
* NULL.
|
|
*/
|
|
WRITE_ONCE(npu_context->npdev[npu->index][nvlink_index], npdev);
|
|
|
|
if (!nphb->npu.nmmu_flush) {
|
|
/*
|
|
* If we're not explicitly flushing ourselves we need to mark
|
|
* the thread for global flushes
|
|
*/
|
|
npu_context->nmmu_flush = false;
|
|
mm_context_add_copro(mm);
|
|
} else
|
|
npu_context->nmmu_flush = true;
|
|
|
|
return npu_context;
|
|
}
|
|
EXPORT_SYMBOL(pnv_npu2_init_context);
|
|
|
|
static void pnv_npu2_release_context(struct kref *kref)
|
|
{
|
|
struct npu_context *npu_context =
|
|
container_of(kref, struct npu_context, kref);
|
|
|
|
if (!npu_context->nmmu_flush)
|
|
mm_context_remove_copro(npu_context->mm);
|
|
|
|
npu_context->mm->context.npu_context = NULL;
|
|
}
|
|
|
|
/*
|
|
* Destroy a context on the given GPU. May free the npu_context if it is no
|
|
* longer active on any GPUs. Must not be called from interrupt context.
|
|
*/
|
|
void pnv_npu2_destroy_context(struct npu_context *npu_context,
|
|
struct pci_dev *gpdev)
|
|
{
|
|
int removed;
|
|
struct pnv_phb *nphb;
|
|
struct npu *npu;
|
|
struct pci_dev *npdev = pnv_pci_get_npu_dev(gpdev, 0);
|
|
struct device_node *nvlink_dn;
|
|
u32 nvlink_index;
|
|
|
|
if (WARN_ON(!npdev))
|
|
return;
|
|
|
|
if (!firmware_has_feature(FW_FEATURE_OPAL))
|
|
return;
|
|
|
|
nphb = pci_bus_to_host(npdev->bus)->private_data;
|
|
npu = &nphb->npu;
|
|
nvlink_dn = of_parse_phandle(npdev->dev.of_node, "ibm,nvlink", 0);
|
|
if (WARN_ON(of_property_read_u32(nvlink_dn, "ibm,npu-link-index",
|
|
&nvlink_index)))
|
|
return;
|
|
WRITE_ONCE(npu_context->npdev[npu->index][nvlink_index], NULL);
|
|
opal_npu_destroy_context(nphb->opal_id, npu_context->mm->context.id,
|
|
PCI_DEVID(gpdev->bus->number, gpdev->devfn));
|
|
spin_lock(&npu_context_lock);
|
|
removed = kref_put(&npu_context->kref, pnv_npu2_release_context);
|
|
spin_unlock(&npu_context_lock);
|
|
|
|
/*
|
|
* We need to do this outside of pnv_npu2_release_context so that it is
|
|
* outside the spinlock as mmu_notifier_destroy uses SRCU.
|
|
*/
|
|
if (removed) {
|
|
mmu_notifier_unregister(&npu_context->mn,
|
|
npu_context->mm);
|
|
|
|
kfree(npu_context);
|
|
}
|
|
|
|
}
|
|
EXPORT_SYMBOL(pnv_npu2_destroy_context);
|
|
|
|
/*
|
|
* Assumes mmap_sem is held for the contexts associated mm.
|
|
*/
|
|
int pnv_npu2_handle_fault(struct npu_context *context, uintptr_t *ea,
|
|
unsigned long *flags, unsigned long *status, int count)
|
|
{
|
|
u64 rc = 0, result = 0;
|
|
int i, is_write;
|
|
struct page *page[1];
|
|
|
|
/* mmap_sem should be held so the struct_mm must be present */
|
|
struct mm_struct *mm = context->mm;
|
|
|
|
if (!firmware_has_feature(FW_FEATURE_OPAL))
|
|
return -ENODEV;
|
|
|
|
WARN_ON(!rwsem_is_locked(&mm->mmap_sem));
|
|
|
|
for (i = 0; i < count; i++) {
|
|
is_write = flags[i] & NPU2_WRITE;
|
|
rc = get_user_pages_remote(NULL, mm, ea[i], 1,
|
|
is_write ? FOLL_WRITE : 0,
|
|
page, NULL, NULL);
|
|
|
|
/*
|
|
* To support virtualised environments we will have to do an
|
|
* access to the page to ensure it gets faulted into the
|
|
* hypervisor. For the moment virtualisation is not supported in
|
|
* other areas so leave the access out.
|
|
*/
|
|
if (rc != 1) {
|
|
status[i] = rc;
|
|
result = -EFAULT;
|
|
continue;
|
|
}
|
|
|
|
status[i] = 0;
|
|
put_page(page[0]);
|
|
}
|
|
|
|
return result;
|
|
}
|
|
EXPORT_SYMBOL(pnv_npu2_handle_fault);
|
|
|
|
int pnv_npu2_init(struct pnv_phb *phb)
|
|
{
|
|
unsigned int i;
|
|
u64 mmio_atsd;
|
|
struct device_node *dn;
|
|
struct pci_dev *gpdev;
|
|
static int npu_index;
|
|
uint64_t rc = 0;
|
|
|
|
phb->npu.nmmu_flush =
|
|
of_property_read_bool(phb->hose->dn, "ibm,nmmu-flush");
|
|
for_each_child_of_node(phb->hose->dn, dn) {
|
|
gpdev = pnv_pci_get_gpu_dev(get_pci_dev(dn));
|
|
if (gpdev) {
|
|
rc = opal_npu_map_lpar(phb->opal_id,
|
|
PCI_DEVID(gpdev->bus->number, gpdev->devfn),
|
|
0, 0);
|
|
if (rc)
|
|
dev_err(&gpdev->dev,
|
|
"Error %lld mapping device to LPAR\n",
|
|
rc);
|
|
}
|
|
}
|
|
|
|
for (i = 0; !of_property_read_u64_index(phb->hose->dn, "ibm,mmio-atsd",
|
|
i, &mmio_atsd); i++)
|
|
phb->npu.mmio_atsd_regs[i] = ioremap(mmio_atsd, 32);
|
|
|
|
pr_info("NPU%lld: Found %d MMIO ATSD registers", phb->opal_id, i);
|
|
phb->npu.mmio_atsd_count = i;
|
|
phb->npu.mmio_atsd_usage = 0;
|
|
npu_index++;
|
|
if (WARN_ON(npu_index >= NV_MAX_NPUS))
|
|
return -ENOSPC;
|
|
max_npu2_index = npu_index;
|
|
phb->npu.index = npu_index;
|
|
|
|
return 0;
|
|
}
|