linux-sg2042/fs/ext4/extents_status.c

791 lines
21 KiB
C

/*
* fs/ext4/extents_status.c
*
* Written by Yongqiang Yang <xiaoqiangnk@gmail.com>
* Modified by
* Allison Henderson <achender@linux.vnet.ibm.com>
* Hugh Dickins <hughd@google.com>
* Zheng Liu <wenqing.lz@taobao.com>
*
* Ext4 extents status tree core functions.
*/
#include <linux/rbtree.h>
#include "ext4.h"
#include "extents_status.h"
#include "ext4_extents.h"
#include <trace/events/ext4.h>
/*
* According to previous discussion in Ext4 Developer Workshop, we
* will introduce a new structure called io tree to track all extent
* status in order to solve some problems that we have met
* (e.g. Reservation space warning), and provide extent-level locking.
* Delay extent tree is the first step to achieve this goal. It is
* original built by Yongqiang Yang. At that time it is called delay
* extent tree, whose goal is only track delayed extents in memory to
* simplify the implementation of fiemap and bigalloc, and introduce
* lseek SEEK_DATA/SEEK_HOLE support. That is why it is still called
* delay extent tree at the first commit. But for better understand
* what it does, it has been rename to extent status tree.
*
* Step1:
* Currently the first step has been done. All delayed extents are
* tracked in the tree. It maintains the delayed extent when a delayed
* allocation is issued, and the delayed extent is written out or
* invalidated. Therefore the implementation of fiemap and bigalloc
* are simplified, and SEEK_DATA/SEEK_HOLE are introduced.
*
* The following comment describes the implemenmtation of extent
* status tree and future works.
*
* Step2:
* In this step all extent status are tracked by extent status tree.
* Thus, we can first try to lookup a block mapping in this tree before
* finding it in extent tree. Hence, single extent cache can be removed
* because extent status tree can do a better job. Extents in status
* tree are loaded on-demand. Therefore, the extent status tree may not
* contain all of the extents in a file. Meanwhile we define a shrinker
* to reclaim memory from extent status tree because fragmented extent
* tree will make status tree cost too much memory. written/unwritten/-
* hole extents in the tree will be reclaimed by this shrinker when we
* are under high memory pressure. Delayed extents will not be
* reclimed because fiemap, bigalloc, and seek_data/hole need it.
*/
/*
* Extent status tree implementation for ext4.
*
*
* ==========================================================================
* Extent status tree tracks all extent status.
*
* 1. Why we need to implement extent status tree?
*
* Without extent status tree, ext4 identifies a delayed extent by looking
* up page cache, this has several deficiencies - complicated, buggy,
* and inefficient code.
*
* FIEMAP, SEEK_HOLE/DATA, bigalloc, and writeout all need to know if a
* block or a range of blocks are belonged to a delayed extent.
*
* Let us have a look at how they do without extent status tree.
* -- FIEMAP
* FIEMAP looks up page cache to identify delayed allocations from holes.
*
* -- SEEK_HOLE/DATA
* SEEK_HOLE/DATA has the same problem as FIEMAP.
*
* -- bigalloc
* bigalloc looks up page cache to figure out if a block is
* already under delayed allocation or not to determine whether
* quota reserving is needed for the cluster.
*
* -- writeout
* Writeout looks up whole page cache to see if a buffer is
* mapped, If there are not very many delayed buffers, then it is
* time comsuming.
*
* With extent status tree implementation, FIEMAP, SEEK_HOLE/DATA,
* bigalloc and writeout can figure out if a block or a range of
* blocks is under delayed allocation(belonged to a delayed extent) or
* not by searching the extent tree.
*
*
* ==========================================================================
* 2. Ext4 extent status tree impelmentation
*
* -- extent
* A extent is a range of blocks which are contiguous logically and
* physically. Unlike extent in extent tree, this extent in ext4 is
* a in-memory struct, there is no corresponding on-disk data. There
* is no limit on length of extent, so an extent can contain as many
* blocks as they are contiguous logically and physically.
*
* -- extent status tree
* Every inode has an extent status tree and all allocation blocks
* are added to the tree with different status. The extent in the
* tree are ordered by logical block no.
*
* -- operations on a extent status tree
* There are three important operations on a delayed extent tree: find
* next extent, adding a extent(a range of blocks) and removing a extent.
*
* -- race on a extent status tree
* Extent status tree is protected by inode->i_es_lock.
*
* -- memory consumption
* Fragmented extent tree will make extent status tree cost too much
* memory. Hence, we will reclaim written/unwritten/hole extents from
* the tree under a heavy memory pressure.
*
*
* ==========================================================================
* 3. Performance analysis
*
* -- overhead
* 1. There is a cache extent for write access, so if writes are
* not very random, adding space operaions are in O(1) time.
*
* -- gain
* 2. Code is much simpler, more readable, more maintainable and
* more efficient.
*
*
* ==========================================================================
* 4. TODO list
*
* -- Refactor delayed space reservation
*
* -- Extent-level locking
*/
static struct kmem_cache *ext4_es_cachep;
static int __es_insert_extent(struct inode *inode, struct extent_status *newes);
static int __es_remove_extent(struct inode *inode, ext4_lblk_t lblk,
ext4_lblk_t end);
static int __es_try_to_reclaim_extents(struct ext4_inode_info *ei,
int nr_to_scan);
int __init ext4_init_es(void)
{
ext4_es_cachep = kmem_cache_create("ext4_extent_status",
sizeof(struct extent_status),
0, (SLAB_RECLAIM_ACCOUNT), NULL);
if (ext4_es_cachep == NULL)
return -ENOMEM;
return 0;
}
void ext4_exit_es(void)
{
if (ext4_es_cachep)
kmem_cache_destroy(ext4_es_cachep);
}
void ext4_es_init_tree(struct ext4_es_tree *tree)
{
tree->root = RB_ROOT;
tree->cache_es = NULL;
}
#ifdef ES_DEBUG__
static void ext4_es_print_tree(struct inode *inode)
{
struct ext4_es_tree *tree;
struct rb_node *node;
printk(KERN_DEBUG "status extents for inode %lu:", inode->i_ino);
tree = &EXT4_I(inode)->i_es_tree;
node = rb_first(&tree->root);
while (node) {
struct extent_status *es;
es = rb_entry(node, struct extent_status, rb_node);
printk(KERN_DEBUG " [%u/%u) %llu %llx",
es->es_lblk, es->es_len,
ext4_es_pblock(es), ext4_es_status(es));
node = rb_next(node);
}
printk(KERN_DEBUG "\n");
}
#else
#define ext4_es_print_tree(inode)
#endif
static inline ext4_lblk_t ext4_es_end(struct extent_status *es)
{
BUG_ON(es->es_lblk + es->es_len < es->es_lblk);
return es->es_lblk + es->es_len - 1;
}
/*
* search through the tree for an delayed extent with a given offset. If
* it can't be found, try to find next extent.
*/
static struct extent_status *__es_tree_search(struct rb_root *root,
ext4_lblk_t lblk)
{
struct rb_node *node = root->rb_node;
struct extent_status *es = NULL;
while (node) {
es = rb_entry(node, struct extent_status, rb_node);
if (lblk < es->es_lblk)
node = node->rb_left;
else if (lblk > ext4_es_end(es))
node = node->rb_right;
else
return es;
}
if (es && lblk < es->es_lblk)
return es;
if (es && lblk > ext4_es_end(es)) {
node = rb_next(&es->rb_node);
return node ? rb_entry(node, struct extent_status, rb_node) :
NULL;
}
return NULL;
}
/*
* ext4_es_find_delayed_extent: find the 1st delayed extent covering @es->lblk
* if it exists, otherwise, the next extent after @es->lblk.
*
* @inode: the inode which owns delayed extents
* @lblk: the offset where we start to search
* @es: delayed extent that we found
*/
void ext4_es_find_delayed_extent(struct inode *inode, ext4_lblk_t lblk,
struct extent_status *es)
{
struct ext4_es_tree *tree = NULL;
struct extent_status *es1 = NULL;
struct rb_node *node;
BUG_ON(es == NULL);
trace_ext4_es_find_delayed_extent_enter(inode, lblk);
read_lock(&EXT4_I(inode)->i_es_lock);
tree = &EXT4_I(inode)->i_es_tree;
/* find extent in cache firstly */
es->es_lblk = es->es_len = es->es_pblk = 0;
if (tree->cache_es) {
es1 = tree->cache_es;
if (in_range(lblk, es1->es_lblk, es1->es_len)) {
es_debug("%u cached by [%u/%u) %llu %llx\n",
lblk, es1->es_lblk, es1->es_len,
ext4_es_pblock(es1), ext4_es_status(es1));
goto out;
}
}
es1 = __es_tree_search(&tree->root, lblk);
out:
if (es1 && !ext4_es_is_delayed(es1)) {
while ((node = rb_next(&es1->rb_node)) != NULL) {
es1 = rb_entry(node, struct extent_status, rb_node);
if (ext4_es_is_delayed(es1))
break;
}
}
if (es1 && ext4_es_is_delayed(es1)) {
tree->cache_es = es1;
es->es_lblk = es1->es_lblk;
es->es_len = es1->es_len;
es->es_pblk = es1->es_pblk;
}
read_unlock(&EXT4_I(inode)->i_es_lock);
ext4_es_lru_add(inode);
trace_ext4_es_find_delayed_extent_exit(inode, es);
}
static struct extent_status *
ext4_es_alloc_extent(struct inode *inode, ext4_lblk_t lblk, ext4_lblk_t len,
ext4_fsblk_t pblk)
{
struct extent_status *es;
es = kmem_cache_alloc(ext4_es_cachep, GFP_ATOMIC);
if (es == NULL)
return NULL;
es->es_lblk = lblk;
es->es_len = len;
es->es_pblk = pblk;
/*
* We don't count delayed extent because we never try to reclaim them
*/
if (!ext4_es_is_delayed(es)) {
EXT4_I(inode)->i_es_lru_nr++;
percpu_counter_inc(&EXT4_SB(inode->i_sb)->s_extent_cache_cnt);
}
return es;
}
static void ext4_es_free_extent(struct inode *inode, struct extent_status *es)
{
/* Decrease the lru counter when this es is not delayed */
if (!ext4_es_is_delayed(es)) {
BUG_ON(EXT4_I(inode)->i_es_lru_nr == 0);
EXT4_I(inode)->i_es_lru_nr--;
percpu_counter_dec(&EXT4_SB(inode->i_sb)->s_extent_cache_cnt);
}
kmem_cache_free(ext4_es_cachep, es);
}
/*
* Check whether or not two extents can be merged
* Condition:
* - logical block number is contiguous
* - physical block number is contiguous
* - status is equal
*/
static int ext4_es_can_be_merged(struct extent_status *es1,
struct extent_status *es2)
{
if (es1->es_lblk + es1->es_len != es2->es_lblk)
return 0;
if (ext4_es_status(es1) != ext4_es_status(es2))
return 0;
if ((ext4_es_is_written(es1) || ext4_es_is_unwritten(es1)) &&
(ext4_es_pblock(es1) + es1->es_len != ext4_es_pblock(es2)))
return 0;
return 1;
}
static struct extent_status *
ext4_es_try_to_merge_left(struct inode *inode, struct extent_status *es)
{
struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
struct extent_status *es1;
struct rb_node *node;
node = rb_prev(&es->rb_node);
if (!node)
return es;
es1 = rb_entry(node, struct extent_status, rb_node);
if (ext4_es_can_be_merged(es1, es)) {
es1->es_len += es->es_len;
rb_erase(&es->rb_node, &tree->root);
ext4_es_free_extent(inode, es);
es = es1;
}
return es;
}
static struct extent_status *
ext4_es_try_to_merge_right(struct inode *inode, struct extent_status *es)
{
struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
struct extent_status *es1;
struct rb_node *node;
node = rb_next(&es->rb_node);
if (!node)
return es;
es1 = rb_entry(node, struct extent_status, rb_node);
if (ext4_es_can_be_merged(es, es1)) {
es->es_len += es1->es_len;
rb_erase(node, &tree->root);
ext4_es_free_extent(inode, es1);
}
return es;
}
static int __es_insert_extent(struct inode *inode, struct extent_status *newes)
{
struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
struct rb_node **p = &tree->root.rb_node;
struct rb_node *parent = NULL;
struct extent_status *es;
while (*p) {
parent = *p;
es = rb_entry(parent, struct extent_status, rb_node);
if (newes->es_lblk < es->es_lblk) {
if (ext4_es_can_be_merged(newes, es)) {
/*
* Here we can modify es_lblk directly
* because it isn't overlapped.
*/
es->es_lblk = newes->es_lblk;
es->es_len += newes->es_len;
if (ext4_es_is_written(es) ||
ext4_es_is_unwritten(es))
ext4_es_store_pblock(es,
newes->es_pblk);
es = ext4_es_try_to_merge_left(inode, es);
goto out;
}
p = &(*p)->rb_left;
} else if (newes->es_lblk > ext4_es_end(es)) {
if (ext4_es_can_be_merged(es, newes)) {
es->es_len += newes->es_len;
es = ext4_es_try_to_merge_right(inode, es);
goto out;
}
p = &(*p)->rb_right;
} else {
BUG_ON(1);
return -EINVAL;
}
}
es = ext4_es_alloc_extent(inode, newes->es_lblk, newes->es_len,
newes->es_pblk);
if (!es)
return -ENOMEM;
rb_link_node(&es->rb_node, parent, p);
rb_insert_color(&es->rb_node, &tree->root);
out:
tree->cache_es = es;
return 0;
}
/*
* ext4_es_insert_extent() adds a space to a extent status tree.
*
* ext4_es_insert_extent is called by ext4_da_write_begin and
* ext4_es_remove_extent.
*
* Return 0 on success, error code on failure.
*/
int ext4_es_insert_extent(struct inode *inode, ext4_lblk_t lblk,
ext4_lblk_t len, ext4_fsblk_t pblk,
unsigned long long status)
{
struct extent_status newes;
ext4_lblk_t end = lblk + len - 1;
int err = 0;
es_debug("add [%u/%u) %llu %llx to extent status tree of inode %lu\n",
lblk, len, pblk, status, inode->i_ino);
if (!len)
return 0;
BUG_ON(end < lblk);
newes.es_lblk = lblk;
newes.es_len = len;
ext4_es_store_pblock(&newes, pblk);
ext4_es_store_status(&newes, status);
trace_ext4_es_insert_extent(inode, &newes);
write_lock(&EXT4_I(inode)->i_es_lock);
err = __es_remove_extent(inode, lblk, end);
if (err != 0)
goto error;
err = __es_insert_extent(inode, &newes);
error:
write_unlock(&EXT4_I(inode)->i_es_lock);
ext4_es_lru_add(inode);
ext4_es_print_tree(inode);
return err;
}
/*
* ext4_es_lookup_extent() looks up an extent in extent status tree.
*
* ext4_es_lookup_extent is called by ext4_map_blocks/ext4_da_map_blocks.
*
* Return: 1 on found, 0 on not
*/
int ext4_es_lookup_extent(struct inode *inode, ext4_lblk_t lblk,
struct extent_status *es)
{
struct ext4_es_tree *tree;
struct extent_status *es1 = NULL;
struct rb_node *node;
int found = 0;
trace_ext4_es_lookup_extent_enter(inode, lblk);
es_debug("lookup extent in block %u\n", lblk);
tree = &EXT4_I(inode)->i_es_tree;
read_lock(&EXT4_I(inode)->i_es_lock);
/* find extent in cache firstly */
es->es_lblk = es->es_len = es->es_pblk = 0;
if (tree->cache_es) {
es1 = tree->cache_es;
if (in_range(lblk, es1->es_lblk, es1->es_len)) {
es_debug("%u cached by [%u/%u)\n",
lblk, es1->es_lblk, es1->es_len);
found = 1;
goto out;
}
}
node = tree->root.rb_node;
while (node) {
es1 = rb_entry(node, struct extent_status, rb_node);
if (lblk < es1->es_lblk)
node = node->rb_left;
else if (lblk > ext4_es_end(es1))
node = node->rb_right;
else {
found = 1;
break;
}
}
out:
if (found) {
BUG_ON(!es1);
es->es_lblk = es1->es_lblk;
es->es_len = es1->es_len;
es->es_pblk = es1->es_pblk;
}
read_unlock(&EXT4_I(inode)->i_es_lock);
ext4_es_lru_add(inode);
trace_ext4_es_lookup_extent_exit(inode, es, found);
return found;
}
static int __es_remove_extent(struct inode *inode, ext4_lblk_t lblk,
ext4_lblk_t end)
{
struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
struct rb_node *node;
struct extent_status *es;
struct extent_status orig_es;
ext4_lblk_t len1, len2;
ext4_fsblk_t block;
int err = 0;
es = __es_tree_search(&tree->root, lblk);
if (!es)
goto out;
if (es->es_lblk > end)
goto out;
/* Simply invalidate cache_es. */
tree->cache_es = NULL;
orig_es.es_lblk = es->es_lblk;
orig_es.es_len = es->es_len;
orig_es.es_pblk = es->es_pblk;
len1 = lblk > es->es_lblk ? lblk - es->es_lblk : 0;
len2 = ext4_es_end(es) > end ? ext4_es_end(es) - end : 0;
if (len1 > 0)
es->es_len = len1;
if (len2 > 0) {
if (len1 > 0) {
struct extent_status newes;
newes.es_lblk = end + 1;
newes.es_len = len2;
if (ext4_es_is_written(&orig_es) ||
ext4_es_is_unwritten(&orig_es)) {
block = ext4_es_pblock(&orig_es) +
orig_es.es_len - len2;
ext4_es_store_pblock(&newes, block);
}
ext4_es_store_status(&newes, ext4_es_status(&orig_es));
err = __es_insert_extent(inode, &newes);
if (err) {
es->es_lblk = orig_es.es_lblk;
es->es_len = orig_es.es_len;
goto out;
}
} else {
es->es_lblk = end + 1;
es->es_len = len2;
if (ext4_es_is_written(es) ||
ext4_es_is_unwritten(es)) {
block = orig_es.es_pblk + orig_es.es_len - len2;
ext4_es_store_pblock(es, block);
}
}
goto out;
}
if (len1 > 0) {
node = rb_next(&es->rb_node);
if (node)
es = rb_entry(node, struct extent_status, rb_node);
else
es = NULL;
}
while (es && ext4_es_end(es) <= end) {
node = rb_next(&es->rb_node);
rb_erase(&es->rb_node, &tree->root);
ext4_es_free_extent(inode, es);
if (!node) {
es = NULL;
break;
}
es = rb_entry(node, struct extent_status, rb_node);
}
if (es && es->es_lblk < end + 1) {
ext4_lblk_t orig_len = es->es_len;
len1 = ext4_es_end(es) - end;
es->es_lblk = end + 1;
es->es_len = len1;
if (ext4_es_is_written(es) || ext4_es_is_unwritten(es)) {
block = es->es_pblk + orig_len - len1;
ext4_es_store_pblock(es, block);
}
}
out:
return err;
}
/*
* ext4_es_remove_extent() removes a space from a extent status tree.
*
* Return 0 on success, error code on failure.
*/
int ext4_es_remove_extent(struct inode *inode, ext4_lblk_t lblk,
ext4_lblk_t len)
{
ext4_lblk_t end;
int err = 0;
trace_ext4_es_remove_extent(inode, lblk, len);
es_debug("remove [%u/%u) from extent status tree of inode %lu\n",
lblk, len, inode->i_ino);
if (!len)
return err;
end = lblk + len - 1;
BUG_ON(end < lblk);
write_lock(&EXT4_I(inode)->i_es_lock);
err = __es_remove_extent(inode, lblk, end);
write_unlock(&EXT4_I(inode)->i_es_lock);
ext4_es_print_tree(inode);
return err;
}
static int ext4_es_shrink(struct shrinker *shrink, struct shrink_control *sc)
{
struct ext4_sb_info *sbi = container_of(shrink,
struct ext4_sb_info, s_es_shrinker);
struct ext4_inode_info *ei;
struct list_head *cur, *tmp, scanned;
int nr_to_scan = sc->nr_to_scan;
int ret, nr_shrunk = 0;
ret = percpu_counter_read_positive(&sbi->s_extent_cache_cnt);
trace_ext4_es_shrink_enter(sbi->s_sb, nr_to_scan, ret);
if (!nr_to_scan)
return ret;
INIT_LIST_HEAD(&scanned);
spin_lock(&sbi->s_es_lru_lock);
list_for_each_safe(cur, tmp, &sbi->s_es_lru) {
list_move_tail(cur, &scanned);
ei = list_entry(cur, struct ext4_inode_info, i_es_lru);
read_lock(&ei->i_es_lock);
if (ei->i_es_lru_nr == 0) {
read_unlock(&ei->i_es_lock);
continue;
}
read_unlock(&ei->i_es_lock);
write_lock(&ei->i_es_lock);
ret = __es_try_to_reclaim_extents(ei, nr_to_scan);
write_unlock(&ei->i_es_lock);
nr_shrunk += ret;
nr_to_scan -= ret;
if (nr_to_scan == 0)
break;
}
list_splice_tail(&scanned, &sbi->s_es_lru);
spin_unlock(&sbi->s_es_lru_lock);
ret = percpu_counter_read_positive(&sbi->s_extent_cache_cnt);
trace_ext4_es_shrink_exit(sbi->s_sb, nr_shrunk, ret);
return ret;
}
void ext4_es_register_shrinker(struct super_block *sb)
{
struct ext4_sb_info *sbi;
sbi = EXT4_SB(sb);
INIT_LIST_HEAD(&sbi->s_es_lru);
spin_lock_init(&sbi->s_es_lru_lock);
sbi->s_es_shrinker.shrink = ext4_es_shrink;
sbi->s_es_shrinker.seeks = DEFAULT_SEEKS;
register_shrinker(&sbi->s_es_shrinker);
}
void ext4_es_unregister_shrinker(struct super_block *sb)
{
unregister_shrinker(&EXT4_SB(sb)->s_es_shrinker);
}
void ext4_es_lru_add(struct inode *inode)
{
struct ext4_inode_info *ei = EXT4_I(inode);
struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
spin_lock(&sbi->s_es_lru_lock);
if (list_empty(&ei->i_es_lru))
list_add_tail(&ei->i_es_lru, &sbi->s_es_lru);
else
list_move_tail(&ei->i_es_lru, &sbi->s_es_lru);
spin_unlock(&sbi->s_es_lru_lock);
}
void ext4_es_lru_del(struct inode *inode)
{
struct ext4_inode_info *ei = EXT4_I(inode);
struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
spin_lock(&sbi->s_es_lru_lock);
if (!list_empty(&ei->i_es_lru))
list_del_init(&ei->i_es_lru);
spin_unlock(&sbi->s_es_lru_lock);
}
static int __es_try_to_reclaim_extents(struct ext4_inode_info *ei,
int nr_to_scan)
{
struct inode *inode = &ei->vfs_inode;
struct ext4_es_tree *tree = &ei->i_es_tree;
struct rb_node *node;
struct extent_status *es;
int nr_shrunk = 0;
if (ei->i_es_lru_nr == 0)
return 0;
node = rb_first(&tree->root);
while (node != NULL) {
es = rb_entry(node, struct extent_status, rb_node);
node = rb_next(&es->rb_node);
/*
* We can't reclaim delayed extent from status tree because
* fiemap, bigallic, and seek_data/hole need to use it.
*/
if (!ext4_es_is_delayed(es)) {
rb_erase(&es->rb_node, &tree->root);
ext4_es_free_extent(inode, es);
nr_shrunk++;
if (--nr_to_scan == 0)
break;
}
}
tree->cache_es = NULL;
return nr_shrunk;
}