linux-sg2042/include/linux/fscrypt.h

295 lines
8.9 KiB
C

/* SPDX-License-Identifier: GPL-2.0 */
/*
* fscrypt.h: declarations for per-file encryption
*
* Filesystems that implement per-file encryption include this header
* file with the __FS_HAS_ENCRYPTION set according to whether that filesystem
* is being built with encryption support or not.
*
* Copyright (C) 2015, Google, Inc.
*
* Written by Michael Halcrow, 2015.
* Modified by Jaegeuk Kim, 2015.
*/
#ifndef _LINUX_FSCRYPT_H
#define _LINUX_FSCRYPT_H
#include <linux/key.h>
#include <linux/fs.h>
#include <linux/mm.h>
#include <linux/bio.h>
#include <linux/dcache.h>
#include <crypto/skcipher.h>
#include <uapi/linux/fs.h>
#define FS_CRYPTO_BLOCK_SIZE 16
struct fscrypt_info;
struct fscrypt_ctx {
union {
struct {
struct page *bounce_page; /* Ciphertext page */
struct page *control_page; /* Original page */
} w;
struct {
struct bio *bio;
struct work_struct work;
} r;
struct list_head free_list; /* Free list */
};
u8 flags; /* Flags */
};
/**
* For encrypted symlinks, the ciphertext length is stored at the beginning
* of the string in little-endian format.
*/
struct fscrypt_symlink_data {
__le16 len;
char encrypted_path[1];
} __packed;
struct fscrypt_str {
unsigned char *name;
u32 len;
};
struct fscrypt_name {
const struct qstr *usr_fname;
struct fscrypt_str disk_name;
u32 hash;
u32 minor_hash;
struct fscrypt_str crypto_buf;
};
#define FSTR_INIT(n, l) { .name = n, .len = l }
#define FSTR_TO_QSTR(f) QSTR_INIT((f)->name, (f)->len)
#define fname_name(p) ((p)->disk_name.name)
#define fname_len(p) ((p)->disk_name.len)
/*
* fscrypt superblock flags
*/
#define FS_CFLG_OWN_PAGES (1U << 1)
/*
* crypto opertions for filesystems
*/
struct fscrypt_operations {
unsigned int flags;
const char *key_prefix;
int (*get_context)(struct inode *, void *, size_t);
int (*set_context)(struct inode *, const void *, size_t, void *);
bool (*dummy_context)(struct inode *);
bool (*empty_dir)(struct inode *);
unsigned (*max_namelen)(struct inode *);
};
/* Maximum value for the third parameter of fscrypt_operations.set_context(). */
#define FSCRYPT_SET_CONTEXT_MAX_SIZE 28
static inline bool fscrypt_dummy_context_enabled(struct inode *inode)
{
if (inode->i_sb->s_cop->dummy_context &&
inode->i_sb->s_cop->dummy_context(inode))
return true;
return false;
}
static inline bool fscrypt_valid_enc_modes(u32 contents_mode,
u32 filenames_mode)
{
if (contents_mode == FS_ENCRYPTION_MODE_AES_128_CBC &&
filenames_mode == FS_ENCRYPTION_MODE_AES_128_CTS)
return true;
if (contents_mode == FS_ENCRYPTION_MODE_AES_256_XTS &&
filenames_mode == FS_ENCRYPTION_MODE_AES_256_CTS)
return true;
return false;
}
static inline bool fscrypt_is_dot_dotdot(const struct qstr *str)
{
if (str->len == 1 && str->name[0] == '.')
return true;
if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.')
return true;
return false;
}
#if __FS_HAS_ENCRYPTION
static inline struct page *fscrypt_control_page(struct page *page)
{
return ((struct fscrypt_ctx *)page_private(page))->w.control_page;
}
static inline bool fscrypt_has_encryption_key(const struct inode *inode)
{
return (inode->i_crypt_info != NULL);
}
#include <linux/fscrypt_supp.h>
#else /* !__FS_HAS_ENCRYPTION */
static inline struct page *fscrypt_control_page(struct page *page)
{
WARN_ON_ONCE(1);
return ERR_PTR(-EINVAL);
}
static inline bool fscrypt_has_encryption_key(const struct inode *inode)
{
return 0;
}
#include <linux/fscrypt_notsupp.h>
#endif /* __FS_HAS_ENCRYPTION */
/**
* fscrypt_require_key - require an inode's encryption key
* @inode: the inode we need the key for
*
* If the inode is encrypted, set up its encryption key if not already done.
* Then require that the key be present and return -ENOKEY otherwise.
*
* No locks are needed, and the key will live as long as the struct inode --- so
* it won't go away from under you.
*
* Return: 0 on success, -ENOKEY if the key is missing, or another -errno code
* if a problem occurred while setting up the encryption key.
*/
static inline int fscrypt_require_key(struct inode *inode)
{
if (IS_ENCRYPTED(inode)) {
int err = fscrypt_get_encryption_info(inode);
if (err)
return err;
if (!fscrypt_has_encryption_key(inode))
return -ENOKEY;
}
return 0;
}
/**
* fscrypt_prepare_link - prepare to link an inode into a possibly-encrypted directory
* @old_dentry: an existing dentry for the inode being linked
* @dir: the target directory
* @dentry: negative dentry for the target filename
*
* A new link can only be added to an encrypted directory if the directory's
* encryption key is available --- since otherwise we'd have no way to encrypt
* the filename. Therefore, we first set up the directory's encryption key (if
* not already done) and return an error if it's unavailable.
*
* We also verify that the link will not violate the constraint that all files
* in an encrypted directory tree use the same encryption policy.
*
* Return: 0 on success, -ENOKEY if the directory's encryption key is missing,
* -EPERM if the link would result in an inconsistent encryption policy, or
* another -errno code.
*/
static inline int fscrypt_prepare_link(struct dentry *old_dentry,
struct inode *dir,
struct dentry *dentry)
{
if (IS_ENCRYPTED(dir))
return __fscrypt_prepare_link(d_inode(old_dentry), dir);
return 0;
}
/**
* fscrypt_prepare_rename - prepare for a rename between possibly-encrypted directories
* @old_dir: source directory
* @old_dentry: dentry for source file
* @new_dir: target directory
* @new_dentry: dentry for target location (may be negative unless exchanging)
* @flags: rename flags (we care at least about %RENAME_EXCHANGE)
*
* Prepare for ->rename() where the source and/or target directories may be
* encrypted. A new link can only be added to an encrypted directory if the
* directory's encryption key is available --- since otherwise we'd have no way
* to encrypt the filename. A rename to an existing name, on the other hand,
* *is* cryptographically possible without the key. However, we take the more
* conservative approach and just forbid all no-key renames.
*
* We also verify that the rename will not violate the constraint that all files
* in an encrypted directory tree use the same encryption policy.
*
* Return: 0 on success, -ENOKEY if an encryption key is missing, -EPERM if the
* rename would cause inconsistent encryption policies, or another -errno code.
*/
static inline int fscrypt_prepare_rename(struct inode *old_dir,
struct dentry *old_dentry,
struct inode *new_dir,
struct dentry *new_dentry,
unsigned int flags)
{
if (IS_ENCRYPTED(old_dir) || IS_ENCRYPTED(new_dir))
return __fscrypt_prepare_rename(old_dir, old_dentry,
new_dir, new_dentry, flags);
return 0;
}
/**
* fscrypt_prepare_lookup - prepare to lookup a name in a possibly-encrypted directory
* @dir: directory being searched
* @dentry: filename being looked up
* @flags: lookup flags
*
* Prepare for ->lookup() in a directory which may be encrypted. Lookups can be
* done with or without the directory's encryption key; without the key,
* filenames are presented in encrypted form. Therefore, we'll try to set up
* the directory's encryption key, but even without it the lookup can continue.
*
* To allow invalidating stale dentries if the directory's encryption key is
* added later, we also install a custom ->d_revalidate() method and use the
* DCACHE_ENCRYPTED_WITH_KEY flag to indicate whether a given dentry is a
* plaintext name (flag set) or a ciphertext name (flag cleared).
*
* Return: 0 on success, -errno if a problem occurred while setting up the
* encryption key
*/
static inline int fscrypt_prepare_lookup(struct inode *dir,
struct dentry *dentry,
unsigned int flags)
{
if (IS_ENCRYPTED(dir))
return __fscrypt_prepare_lookup(dir, dentry);
return 0;
}
/**
* fscrypt_prepare_setattr - prepare to change a possibly-encrypted inode's attributes
* @dentry: dentry through which the inode is being changed
* @attr: attributes to change
*
* Prepare for ->setattr() on a possibly-encrypted inode. On an encrypted file,
* most attribute changes are allowed even without the encryption key. However,
* without the encryption key we do have to forbid truncates. This is needed
* because the size being truncated to may not be a multiple of the filesystem
* block size, and in that case we'd have to decrypt the final block, zero the
* portion past i_size, and re-encrypt it. (We *could* allow truncating to a
* filesystem block boundary, but it's simpler to just forbid all truncates ---
* and we already forbid all other contents modifications without the key.)
*
* Return: 0 on success, -ENOKEY if the key is missing, or another -errno code
* if a problem occurred while setting up the encryption key.
*/
static inline int fscrypt_prepare_setattr(struct dentry *dentry,
struct iattr *attr)
{
if (attr->ia_valid & ATTR_SIZE)
return fscrypt_require_key(d_inode(dentry));
return 0;
}
#endif /* _LINUX_FSCRYPT_H */