1856 lines
48 KiB
C
1856 lines
48 KiB
C
/*
|
|
* Copyright 2004-2007 Freescale Semiconductor, Inc. All Rights Reserved.
|
|
* Copyright 2008 Sascha Hauer, kernel@pengutronix.de
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version 2
|
|
* of the License, or (at your option) any later version.
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
|
|
* MA 02110-1301, USA.
|
|
*/
|
|
|
|
#include <linux/delay.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/init.h>
|
|
#include <linux/module.h>
|
|
#include <linux/mtd/mtd.h>
|
|
#include <linux/mtd/nand.h>
|
|
#include <linux/mtd/partitions.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/device.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/clk.h>
|
|
#include <linux/err.h>
|
|
#include <linux/io.h>
|
|
#include <linux/irq.h>
|
|
#include <linux/completion.h>
|
|
#include <linux/of.h>
|
|
#include <linux/of_device.h>
|
|
|
|
#include <asm/mach/flash.h>
|
|
#include <linux/platform_data/mtd-mxc_nand.h>
|
|
|
|
#define DRIVER_NAME "mxc_nand"
|
|
|
|
/* Addresses for NFC registers */
|
|
#define NFC_V1_V2_BUF_SIZE (host->regs + 0x00)
|
|
#define NFC_V1_V2_BUF_ADDR (host->regs + 0x04)
|
|
#define NFC_V1_V2_FLASH_ADDR (host->regs + 0x06)
|
|
#define NFC_V1_V2_FLASH_CMD (host->regs + 0x08)
|
|
#define NFC_V1_V2_CONFIG (host->regs + 0x0a)
|
|
#define NFC_V1_V2_ECC_STATUS_RESULT (host->regs + 0x0c)
|
|
#define NFC_V1_V2_RSLTMAIN_AREA (host->regs + 0x0e)
|
|
#define NFC_V1_V2_RSLTSPARE_AREA (host->regs + 0x10)
|
|
#define NFC_V1_V2_WRPROT (host->regs + 0x12)
|
|
#define NFC_V1_UNLOCKSTART_BLKADDR (host->regs + 0x14)
|
|
#define NFC_V1_UNLOCKEND_BLKADDR (host->regs + 0x16)
|
|
#define NFC_V21_UNLOCKSTART_BLKADDR0 (host->regs + 0x20)
|
|
#define NFC_V21_UNLOCKSTART_BLKADDR1 (host->regs + 0x24)
|
|
#define NFC_V21_UNLOCKSTART_BLKADDR2 (host->regs + 0x28)
|
|
#define NFC_V21_UNLOCKSTART_BLKADDR3 (host->regs + 0x2c)
|
|
#define NFC_V21_UNLOCKEND_BLKADDR0 (host->regs + 0x22)
|
|
#define NFC_V21_UNLOCKEND_BLKADDR1 (host->regs + 0x26)
|
|
#define NFC_V21_UNLOCKEND_BLKADDR2 (host->regs + 0x2a)
|
|
#define NFC_V21_UNLOCKEND_BLKADDR3 (host->regs + 0x2e)
|
|
#define NFC_V1_V2_NF_WRPRST (host->regs + 0x18)
|
|
#define NFC_V1_V2_CONFIG1 (host->regs + 0x1a)
|
|
#define NFC_V1_V2_CONFIG2 (host->regs + 0x1c)
|
|
|
|
#define NFC_V2_CONFIG1_ECC_MODE_4 (1 << 0)
|
|
#define NFC_V1_V2_CONFIG1_SP_EN (1 << 2)
|
|
#define NFC_V1_V2_CONFIG1_ECC_EN (1 << 3)
|
|
#define NFC_V1_V2_CONFIG1_INT_MSK (1 << 4)
|
|
#define NFC_V1_V2_CONFIG1_BIG (1 << 5)
|
|
#define NFC_V1_V2_CONFIG1_RST (1 << 6)
|
|
#define NFC_V1_V2_CONFIG1_CE (1 << 7)
|
|
#define NFC_V2_CONFIG1_ONE_CYCLE (1 << 8)
|
|
#define NFC_V2_CONFIG1_PPB(x) (((x) & 0x3) << 9)
|
|
#define NFC_V2_CONFIG1_FP_INT (1 << 11)
|
|
|
|
#define NFC_V1_V2_CONFIG2_INT (1 << 15)
|
|
|
|
/*
|
|
* Operation modes for the NFC. Valid for v1, v2 and v3
|
|
* type controllers.
|
|
*/
|
|
#define NFC_CMD (1 << 0)
|
|
#define NFC_ADDR (1 << 1)
|
|
#define NFC_INPUT (1 << 2)
|
|
#define NFC_OUTPUT (1 << 3)
|
|
#define NFC_ID (1 << 4)
|
|
#define NFC_STATUS (1 << 5)
|
|
|
|
#define NFC_V3_FLASH_CMD (host->regs_axi + 0x00)
|
|
#define NFC_V3_FLASH_ADDR0 (host->regs_axi + 0x04)
|
|
|
|
#define NFC_V3_CONFIG1 (host->regs_axi + 0x34)
|
|
#define NFC_V3_CONFIG1_SP_EN (1 << 0)
|
|
#define NFC_V3_CONFIG1_RBA(x) (((x) & 0x7 ) << 4)
|
|
|
|
#define NFC_V3_ECC_STATUS_RESULT (host->regs_axi + 0x38)
|
|
|
|
#define NFC_V3_LAUNCH (host->regs_axi + 0x40)
|
|
|
|
#define NFC_V3_WRPROT (host->regs_ip + 0x0)
|
|
#define NFC_V3_WRPROT_LOCK_TIGHT (1 << 0)
|
|
#define NFC_V3_WRPROT_LOCK (1 << 1)
|
|
#define NFC_V3_WRPROT_UNLOCK (1 << 2)
|
|
#define NFC_V3_WRPROT_BLS_UNLOCK (2 << 6)
|
|
|
|
#define NFC_V3_WRPROT_UNLOCK_BLK_ADD0 (host->regs_ip + 0x04)
|
|
|
|
#define NFC_V3_CONFIG2 (host->regs_ip + 0x24)
|
|
#define NFC_V3_CONFIG2_PS_512 (0 << 0)
|
|
#define NFC_V3_CONFIG2_PS_2048 (1 << 0)
|
|
#define NFC_V3_CONFIG2_PS_4096 (2 << 0)
|
|
#define NFC_V3_CONFIG2_ONE_CYCLE (1 << 2)
|
|
#define NFC_V3_CONFIG2_ECC_EN (1 << 3)
|
|
#define NFC_V3_CONFIG2_2CMD_PHASES (1 << 4)
|
|
#define NFC_V3_CONFIG2_NUM_ADDR_PHASE0 (1 << 5)
|
|
#define NFC_V3_CONFIG2_ECC_MODE_8 (1 << 6)
|
|
#define NFC_V3_CONFIG2_PPB(x, shift) (((x) & 0x3) << shift)
|
|
#define NFC_V3_CONFIG2_NUM_ADDR_PHASE1(x) (((x) & 0x3) << 12)
|
|
#define NFC_V3_CONFIG2_INT_MSK (1 << 15)
|
|
#define NFC_V3_CONFIG2_ST_CMD(x) (((x) & 0xff) << 24)
|
|
#define NFC_V3_CONFIG2_SPAS(x) (((x) & 0xff) << 16)
|
|
|
|
#define NFC_V3_CONFIG3 (host->regs_ip + 0x28)
|
|
#define NFC_V3_CONFIG3_ADD_OP(x) (((x) & 0x3) << 0)
|
|
#define NFC_V3_CONFIG3_FW8 (1 << 3)
|
|
#define NFC_V3_CONFIG3_SBB(x) (((x) & 0x7) << 8)
|
|
#define NFC_V3_CONFIG3_NUM_OF_DEVICES(x) (((x) & 0x7) << 12)
|
|
#define NFC_V3_CONFIG3_RBB_MODE (1 << 15)
|
|
#define NFC_V3_CONFIG3_NO_SDMA (1 << 20)
|
|
|
|
#define NFC_V3_IPC (host->regs_ip + 0x2C)
|
|
#define NFC_V3_IPC_CREQ (1 << 0)
|
|
#define NFC_V3_IPC_INT (1 << 31)
|
|
|
|
#define NFC_V3_DELAY_LINE (host->regs_ip + 0x34)
|
|
|
|
struct mxc_nand_host;
|
|
|
|
struct mxc_nand_devtype_data {
|
|
void (*preset)(struct mtd_info *);
|
|
void (*send_cmd)(struct mxc_nand_host *, uint16_t, int);
|
|
void (*send_addr)(struct mxc_nand_host *, uint16_t, int);
|
|
void (*send_page)(struct mtd_info *, unsigned int);
|
|
void (*send_read_id)(struct mxc_nand_host *);
|
|
uint16_t (*get_dev_status)(struct mxc_nand_host *);
|
|
int (*check_int)(struct mxc_nand_host *);
|
|
void (*irq_control)(struct mxc_nand_host *, int);
|
|
u32 (*get_ecc_status)(struct mxc_nand_host *);
|
|
const struct mtd_ooblayout_ops *ooblayout;
|
|
void (*select_chip)(struct mtd_info *mtd, int chip);
|
|
int (*correct_data)(struct mtd_info *mtd, u_char *dat,
|
|
u_char *read_ecc, u_char *calc_ecc);
|
|
int (*setup_data_interface)(struct mtd_info *mtd,
|
|
const struct nand_data_interface *conf,
|
|
bool check_only);
|
|
|
|
/*
|
|
* On i.MX21 the CONFIG2:INT bit cannot be read if interrupts are masked
|
|
* (CONFIG1:INT_MSK is set). To handle this the driver uses
|
|
* enable_irq/disable_irq_nosync instead of CONFIG1:INT_MSK
|
|
*/
|
|
int irqpending_quirk;
|
|
int needs_ip;
|
|
|
|
size_t regs_offset;
|
|
size_t spare0_offset;
|
|
size_t axi_offset;
|
|
|
|
int spare_len;
|
|
int eccbytes;
|
|
int eccsize;
|
|
int ppb_shift;
|
|
};
|
|
|
|
struct mxc_nand_host {
|
|
struct nand_chip nand;
|
|
struct device *dev;
|
|
|
|
void __iomem *spare0;
|
|
void __iomem *main_area0;
|
|
|
|
void __iomem *base;
|
|
void __iomem *regs;
|
|
void __iomem *regs_axi;
|
|
void __iomem *regs_ip;
|
|
int status_request;
|
|
struct clk *clk;
|
|
int clk_act;
|
|
int irq;
|
|
int eccsize;
|
|
int used_oobsize;
|
|
int active_cs;
|
|
|
|
struct completion op_completion;
|
|
|
|
uint8_t *data_buf;
|
|
unsigned int buf_start;
|
|
|
|
const struct mxc_nand_devtype_data *devtype_data;
|
|
struct mxc_nand_platform_data pdata;
|
|
};
|
|
|
|
static const char * const part_probes[] = {
|
|
"cmdlinepart", "RedBoot", "ofpart", NULL };
|
|
|
|
static void memcpy32_fromio(void *trg, const void __iomem *src, size_t size)
|
|
{
|
|
int i;
|
|
u32 *t = trg;
|
|
const __iomem u32 *s = src;
|
|
|
|
for (i = 0; i < (size >> 2); i++)
|
|
*t++ = __raw_readl(s++);
|
|
}
|
|
|
|
static void memcpy16_fromio(void *trg, const void __iomem *src, size_t size)
|
|
{
|
|
int i;
|
|
u16 *t = trg;
|
|
const __iomem u16 *s = src;
|
|
|
|
/* We assume that src (IO) is always 32bit aligned */
|
|
if (PTR_ALIGN(trg, 4) == trg && IS_ALIGNED(size, 4)) {
|
|
memcpy32_fromio(trg, src, size);
|
|
return;
|
|
}
|
|
|
|
for (i = 0; i < (size >> 1); i++)
|
|
*t++ = __raw_readw(s++);
|
|
}
|
|
|
|
static inline void memcpy32_toio(void __iomem *trg, const void *src, int size)
|
|
{
|
|
/* __iowrite32_copy use 32bit size values so divide by 4 */
|
|
__iowrite32_copy(trg, src, size / 4);
|
|
}
|
|
|
|
static void memcpy16_toio(void __iomem *trg, const void *src, int size)
|
|
{
|
|
int i;
|
|
__iomem u16 *t = trg;
|
|
const u16 *s = src;
|
|
|
|
/* We assume that trg (IO) is always 32bit aligned */
|
|
if (PTR_ALIGN(src, 4) == src && IS_ALIGNED(size, 4)) {
|
|
memcpy32_toio(trg, src, size);
|
|
return;
|
|
}
|
|
|
|
for (i = 0; i < (size >> 1); i++)
|
|
__raw_writew(*s++, t++);
|
|
}
|
|
|
|
static int check_int_v3(struct mxc_nand_host *host)
|
|
{
|
|
uint32_t tmp;
|
|
|
|
tmp = readl(NFC_V3_IPC);
|
|
if (!(tmp & NFC_V3_IPC_INT))
|
|
return 0;
|
|
|
|
tmp &= ~NFC_V3_IPC_INT;
|
|
writel(tmp, NFC_V3_IPC);
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int check_int_v1_v2(struct mxc_nand_host *host)
|
|
{
|
|
uint32_t tmp;
|
|
|
|
tmp = readw(NFC_V1_V2_CONFIG2);
|
|
if (!(tmp & NFC_V1_V2_CONFIG2_INT))
|
|
return 0;
|
|
|
|
if (!host->devtype_data->irqpending_quirk)
|
|
writew(tmp & ~NFC_V1_V2_CONFIG2_INT, NFC_V1_V2_CONFIG2);
|
|
|
|
return 1;
|
|
}
|
|
|
|
static void irq_control_v1_v2(struct mxc_nand_host *host, int activate)
|
|
{
|
|
uint16_t tmp;
|
|
|
|
tmp = readw(NFC_V1_V2_CONFIG1);
|
|
|
|
if (activate)
|
|
tmp &= ~NFC_V1_V2_CONFIG1_INT_MSK;
|
|
else
|
|
tmp |= NFC_V1_V2_CONFIG1_INT_MSK;
|
|
|
|
writew(tmp, NFC_V1_V2_CONFIG1);
|
|
}
|
|
|
|
static void irq_control_v3(struct mxc_nand_host *host, int activate)
|
|
{
|
|
uint32_t tmp;
|
|
|
|
tmp = readl(NFC_V3_CONFIG2);
|
|
|
|
if (activate)
|
|
tmp &= ~NFC_V3_CONFIG2_INT_MSK;
|
|
else
|
|
tmp |= NFC_V3_CONFIG2_INT_MSK;
|
|
|
|
writel(tmp, NFC_V3_CONFIG2);
|
|
}
|
|
|
|
static void irq_control(struct mxc_nand_host *host, int activate)
|
|
{
|
|
if (host->devtype_data->irqpending_quirk) {
|
|
if (activate)
|
|
enable_irq(host->irq);
|
|
else
|
|
disable_irq_nosync(host->irq);
|
|
} else {
|
|
host->devtype_data->irq_control(host, activate);
|
|
}
|
|
}
|
|
|
|
static u32 get_ecc_status_v1(struct mxc_nand_host *host)
|
|
{
|
|
return readw(NFC_V1_V2_ECC_STATUS_RESULT);
|
|
}
|
|
|
|
static u32 get_ecc_status_v2(struct mxc_nand_host *host)
|
|
{
|
|
return readl(NFC_V1_V2_ECC_STATUS_RESULT);
|
|
}
|
|
|
|
static u32 get_ecc_status_v3(struct mxc_nand_host *host)
|
|
{
|
|
return readl(NFC_V3_ECC_STATUS_RESULT);
|
|
}
|
|
|
|
static irqreturn_t mxc_nfc_irq(int irq, void *dev_id)
|
|
{
|
|
struct mxc_nand_host *host = dev_id;
|
|
|
|
if (!host->devtype_data->check_int(host))
|
|
return IRQ_NONE;
|
|
|
|
irq_control(host, 0);
|
|
|
|
complete(&host->op_completion);
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
/* This function polls the NANDFC to wait for the basic operation to
|
|
* complete by checking the INT bit of config2 register.
|
|
*/
|
|
static int wait_op_done(struct mxc_nand_host *host, int useirq)
|
|
{
|
|
int ret = 0;
|
|
|
|
/*
|
|
* If operation is already complete, don't bother to setup an irq or a
|
|
* loop.
|
|
*/
|
|
if (host->devtype_data->check_int(host))
|
|
return 0;
|
|
|
|
if (useirq) {
|
|
unsigned long timeout;
|
|
|
|
reinit_completion(&host->op_completion);
|
|
|
|
irq_control(host, 1);
|
|
|
|
timeout = wait_for_completion_timeout(&host->op_completion, HZ);
|
|
if (!timeout && !host->devtype_data->check_int(host)) {
|
|
dev_dbg(host->dev, "timeout waiting for irq\n");
|
|
ret = -ETIMEDOUT;
|
|
}
|
|
} else {
|
|
int max_retries = 8000;
|
|
int done;
|
|
|
|
do {
|
|
udelay(1);
|
|
|
|
done = host->devtype_data->check_int(host);
|
|
if (done)
|
|
break;
|
|
|
|
} while (--max_retries);
|
|
|
|
if (!done) {
|
|
dev_dbg(host->dev, "timeout polling for completion\n");
|
|
ret = -ETIMEDOUT;
|
|
}
|
|
}
|
|
|
|
WARN_ONCE(ret < 0, "timeout! useirq=%d\n", useirq);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void send_cmd_v3(struct mxc_nand_host *host, uint16_t cmd, int useirq)
|
|
{
|
|
/* fill command */
|
|
writel(cmd, NFC_V3_FLASH_CMD);
|
|
|
|
/* send out command */
|
|
writel(NFC_CMD, NFC_V3_LAUNCH);
|
|
|
|
/* Wait for operation to complete */
|
|
wait_op_done(host, useirq);
|
|
}
|
|
|
|
/* This function issues the specified command to the NAND device and
|
|
* waits for completion. */
|
|
static void send_cmd_v1_v2(struct mxc_nand_host *host, uint16_t cmd, int useirq)
|
|
{
|
|
pr_debug("send_cmd(host, 0x%x, %d)\n", cmd, useirq);
|
|
|
|
writew(cmd, NFC_V1_V2_FLASH_CMD);
|
|
writew(NFC_CMD, NFC_V1_V2_CONFIG2);
|
|
|
|
if (host->devtype_data->irqpending_quirk && (cmd == NAND_CMD_RESET)) {
|
|
int max_retries = 100;
|
|
/* Reset completion is indicated by NFC_CONFIG2 */
|
|
/* being set to 0 */
|
|
while (max_retries-- > 0) {
|
|
if (readw(NFC_V1_V2_CONFIG2) == 0) {
|
|
break;
|
|
}
|
|
udelay(1);
|
|
}
|
|
if (max_retries < 0)
|
|
pr_debug("%s: RESET failed\n", __func__);
|
|
} else {
|
|
/* Wait for operation to complete */
|
|
wait_op_done(host, useirq);
|
|
}
|
|
}
|
|
|
|
static void send_addr_v3(struct mxc_nand_host *host, uint16_t addr, int islast)
|
|
{
|
|
/* fill address */
|
|
writel(addr, NFC_V3_FLASH_ADDR0);
|
|
|
|
/* send out address */
|
|
writel(NFC_ADDR, NFC_V3_LAUNCH);
|
|
|
|
wait_op_done(host, 0);
|
|
}
|
|
|
|
/* This function sends an address (or partial address) to the
|
|
* NAND device. The address is used to select the source/destination for
|
|
* a NAND command. */
|
|
static void send_addr_v1_v2(struct mxc_nand_host *host, uint16_t addr, int islast)
|
|
{
|
|
pr_debug("send_addr(host, 0x%x %d)\n", addr, islast);
|
|
|
|
writew(addr, NFC_V1_V2_FLASH_ADDR);
|
|
writew(NFC_ADDR, NFC_V1_V2_CONFIG2);
|
|
|
|
/* Wait for operation to complete */
|
|
wait_op_done(host, islast);
|
|
}
|
|
|
|
static void send_page_v3(struct mtd_info *mtd, unsigned int ops)
|
|
{
|
|
struct nand_chip *nand_chip = mtd_to_nand(mtd);
|
|
struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
|
|
uint32_t tmp;
|
|
|
|
tmp = readl(NFC_V3_CONFIG1);
|
|
tmp &= ~(7 << 4);
|
|
writel(tmp, NFC_V3_CONFIG1);
|
|
|
|
/* transfer data from NFC ram to nand */
|
|
writel(ops, NFC_V3_LAUNCH);
|
|
|
|
wait_op_done(host, false);
|
|
}
|
|
|
|
static void send_page_v2(struct mtd_info *mtd, unsigned int ops)
|
|
{
|
|
struct nand_chip *nand_chip = mtd_to_nand(mtd);
|
|
struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
|
|
|
|
/* NANDFC buffer 0 is used for page read/write */
|
|
writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
|
|
|
|
writew(ops, NFC_V1_V2_CONFIG2);
|
|
|
|
/* Wait for operation to complete */
|
|
wait_op_done(host, true);
|
|
}
|
|
|
|
static void send_page_v1(struct mtd_info *mtd, unsigned int ops)
|
|
{
|
|
struct nand_chip *nand_chip = mtd_to_nand(mtd);
|
|
struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
|
|
int bufs, i;
|
|
|
|
if (mtd->writesize > 512)
|
|
bufs = 4;
|
|
else
|
|
bufs = 1;
|
|
|
|
for (i = 0; i < bufs; i++) {
|
|
|
|
/* NANDFC buffer 0 is used for page read/write */
|
|
writew((host->active_cs << 4) | i, NFC_V1_V2_BUF_ADDR);
|
|
|
|
writew(ops, NFC_V1_V2_CONFIG2);
|
|
|
|
/* Wait for operation to complete */
|
|
wait_op_done(host, true);
|
|
}
|
|
}
|
|
|
|
static void send_read_id_v3(struct mxc_nand_host *host)
|
|
{
|
|
/* Read ID into main buffer */
|
|
writel(NFC_ID, NFC_V3_LAUNCH);
|
|
|
|
wait_op_done(host, true);
|
|
|
|
memcpy32_fromio(host->data_buf, host->main_area0, 16);
|
|
}
|
|
|
|
/* Request the NANDFC to perform a read of the NAND device ID. */
|
|
static void send_read_id_v1_v2(struct mxc_nand_host *host)
|
|
{
|
|
/* NANDFC buffer 0 is used for device ID output */
|
|
writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
|
|
|
|
writew(NFC_ID, NFC_V1_V2_CONFIG2);
|
|
|
|
/* Wait for operation to complete */
|
|
wait_op_done(host, true);
|
|
|
|
memcpy32_fromio(host->data_buf, host->main_area0, 16);
|
|
}
|
|
|
|
static uint16_t get_dev_status_v3(struct mxc_nand_host *host)
|
|
{
|
|
writew(NFC_STATUS, NFC_V3_LAUNCH);
|
|
wait_op_done(host, true);
|
|
|
|
return readl(NFC_V3_CONFIG1) >> 16;
|
|
}
|
|
|
|
/* This function requests the NANDFC to perform a read of the
|
|
* NAND device status and returns the current status. */
|
|
static uint16_t get_dev_status_v1_v2(struct mxc_nand_host *host)
|
|
{
|
|
void __iomem *main_buf = host->main_area0;
|
|
uint32_t store;
|
|
uint16_t ret;
|
|
|
|
writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
|
|
|
|
/*
|
|
* The device status is stored in main_area0. To
|
|
* prevent corruption of the buffer save the value
|
|
* and restore it afterwards.
|
|
*/
|
|
store = readl(main_buf);
|
|
|
|
writew(NFC_STATUS, NFC_V1_V2_CONFIG2);
|
|
wait_op_done(host, true);
|
|
|
|
ret = readw(main_buf);
|
|
|
|
writel(store, main_buf);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* This functions is used by upper layer to checks if device is ready */
|
|
static int mxc_nand_dev_ready(struct mtd_info *mtd)
|
|
{
|
|
/*
|
|
* NFC handles R/B internally. Therefore, this function
|
|
* always returns status as ready.
|
|
*/
|
|
return 1;
|
|
}
|
|
|
|
static void mxc_nand_enable_hwecc(struct mtd_info *mtd, int mode)
|
|
{
|
|
/*
|
|
* If HW ECC is enabled, we turn it on during init. There is
|
|
* no need to enable again here.
|
|
*/
|
|
}
|
|
|
|
static int mxc_nand_correct_data_v1(struct mtd_info *mtd, u_char *dat,
|
|
u_char *read_ecc, u_char *calc_ecc)
|
|
{
|
|
struct nand_chip *nand_chip = mtd_to_nand(mtd);
|
|
struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
|
|
|
|
/*
|
|
* 1-Bit errors are automatically corrected in HW. No need for
|
|
* additional correction. 2-Bit errors cannot be corrected by
|
|
* HW ECC, so we need to return failure
|
|
*/
|
|
uint16_t ecc_status = get_ecc_status_v1(host);
|
|
|
|
if (((ecc_status & 0x3) == 2) || ((ecc_status >> 2) == 2)) {
|
|
pr_debug("MXC_NAND: HWECC uncorrectable 2-bit ECC error\n");
|
|
return -EBADMSG;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int mxc_nand_correct_data_v2_v3(struct mtd_info *mtd, u_char *dat,
|
|
u_char *read_ecc, u_char *calc_ecc)
|
|
{
|
|
struct nand_chip *nand_chip = mtd_to_nand(mtd);
|
|
struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
|
|
u32 ecc_stat, err;
|
|
int no_subpages = 1;
|
|
int ret = 0;
|
|
u8 ecc_bit_mask, err_limit;
|
|
|
|
ecc_bit_mask = (host->eccsize == 4) ? 0x7 : 0xf;
|
|
err_limit = (host->eccsize == 4) ? 0x4 : 0x8;
|
|
|
|
no_subpages = mtd->writesize >> 9;
|
|
|
|
ecc_stat = host->devtype_data->get_ecc_status(host);
|
|
|
|
do {
|
|
err = ecc_stat & ecc_bit_mask;
|
|
if (err > err_limit) {
|
|
printk(KERN_WARNING "UnCorrectable RS-ECC Error\n");
|
|
return -EBADMSG;
|
|
} else {
|
|
ret += err;
|
|
}
|
|
ecc_stat >>= 4;
|
|
} while (--no_subpages);
|
|
|
|
pr_debug("%d Symbol Correctable RS-ECC Error\n", ret);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int mxc_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
|
|
u_char *ecc_code)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static u_char mxc_nand_read_byte(struct mtd_info *mtd)
|
|
{
|
|
struct nand_chip *nand_chip = mtd_to_nand(mtd);
|
|
struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
|
|
uint8_t ret;
|
|
|
|
/* Check for status request */
|
|
if (host->status_request)
|
|
return host->devtype_data->get_dev_status(host) & 0xFF;
|
|
|
|
if (nand_chip->options & NAND_BUSWIDTH_16) {
|
|
/* only take the lower byte of each word */
|
|
ret = *(uint16_t *)(host->data_buf + host->buf_start);
|
|
|
|
host->buf_start += 2;
|
|
} else {
|
|
ret = *(uint8_t *)(host->data_buf + host->buf_start);
|
|
host->buf_start++;
|
|
}
|
|
|
|
pr_debug("%s: ret=0x%hhx (start=%u)\n", __func__, ret, host->buf_start);
|
|
return ret;
|
|
}
|
|
|
|
static uint16_t mxc_nand_read_word(struct mtd_info *mtd)
|
|
{
|
|
struct nand_chip *nand_chip = mtd_to_nand(mtd);
|
|
struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
|
|
uint16_t ret;
|
|
|
|
ret = *(uint16_t *)(host->data_buf + host->buf_start);
|
|
host->buf_start += 2;
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* Write data of length len to buffer buf. The data to be
|
|
* written on NAND Flash is first copied to RAMbuffer. After the Data Input
|
|
* Operation by the NFC, the data is written to NAND Flash */
|
|
static void mxc_nand_write_buf(struct mtd_info *mtd,
|
|
const u_char *buf, int len)
|
|
{
|
|
struct nand_chip *nand_chip = mtd_to_nand(mtd);
|
|
struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
|
|
u16 col = host->buf_start;
|
|
int n = mtd->oobsize + mtd->writesize - col;
|
|
|
|
n = min(n, len);
|
|
|
|
memcpy(host->data_buf + col, buf, n);
|
|
|
|
host->buf_start += n;
|
|
}
|
|
|
|
/* Read the data buffer from the NAND Flash. To read the data from NAND
|
|
* Flash first the data output cycle is initiated by the NFC, which copies
|
|
* the data to RAMbuffer. This data of length len is then copied to buffer buf.
|
|
*/
|
|
static void mxc_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
|
|
{
|
|
struct nand_chip *nand_chip = mtd_to_nand(mtd);
|
|
struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
|
|
u16 col = host->buf_start;
|
|
int n = mtd->oobsize + mtd->writesize - col;
|
|
|
|
n = min(n, len);
|
|
|
|
memcpy(buf, host->data_buf + col, n);
|
|
|
|
host->buf_start += n;
|
|
}
|
|
|
|
/* This function is used by upper layer for select and
|
|
* deselect of the NAND chip */
|
|
static void mxc_nand_select_chip_v1_v3(struct mtd_info *mtd, int chip)
|
|
{
|
|
struct nand_chip *nand_chip = mtd_to_nand(mtd);
|
|
struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
|
|
|
|
if (chip == -1) {
|
|
/* Disable the NFC clock */
|
|
if (host->clk_act) {
|
|
clk_disable_unprepare(host->clk);
|
|
host->clk_act = 0;
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (!host->clk_act) {
|
|
/* Enable the NFC clock */
|
|
clk_prepare_enable(host->clk);
|
|
host->clk_act = 1;
|
|
}
|
|
}
|
|
|
|
static void mxc_nand_select_chip_v2(struct mtd_info *mtd, int chip)
|
|
{
|
|
struct nand_chip *nand_chip = mtd_to_nand(mtd);
|
|
struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
|
|
|
|
if (chip == -1) {
|
|
/* Disable the NFC clock */
|
|
if (host->clk_act) {
|
|
clk_disable_unprepare(host->clk);
|
|
host->clk_act = 0;
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (!host->clk_act) {
|
|
/* Enable the NFC clock */
|
|
clk_prepare_enable(host->clk);
|
|
host->clk_act = 1;
|
|
}
|
|
|
|
host->active_cs = chip;
|
|
writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
|
|
}
|
|
|
|
/*
|
|
* The controller splits a page into data chunks of 512 bytes + partial oob.
|
|
* There are writesize / 512 such chunks, the size of the partial oob parts is
|
|
* oobsize / #chunks rounded down to a multiple of 2. The last oob chunk then
|
|
* contains additionally the byte lost by rounding (if any).
|
|
* This function handles the needed shuffling between host->data_buf (which
|
|
* holds a page in natural order, i.e. writesize bytes data + oobsize bytes
|
|
* spare) and the NFC buffer.
|
|
*/
|
|
static void copy_spare(struct mtd_info *mtd, bool bfrom)
|
|
{
|
|
struct nand_chip *this = mtd_to_nand(mtd);
|
|
struct mxc_nand_host *host = nand_get_controller_data(this);
|
|
u16 i, oob_chunk_size;
|
|
u16 num_chunks = mtd->writesize / 512;
|
|
|
|
u8 *d = host->data_buf + mtd->writesize;
|
|
u8 __iomem *s = host->spare0;
|
|
u16 sparebuf_size = host->devtype_data->spare_len;
|
|
|
|
/* size of oob chunk for all but possibly the last one */
|
|
oob_chunk_size = (host->used_oobsize / num_chunks) & ~1;
|
|
|
|
if (bfrom) {
|
|
for (i = 0; i < num_chunks - 1; i++)
|
|
memcpy16_fromio(d + i * oob_chunk_size,
|
|
s + i * sparebuf_size,
|
|
oob_chunk_size);
|
|
|
|
/* the last chunk */
|
|
memcpy16_fromio(d + i * oob_chunk_size,
|
|
s + i * sparebuf_size,
|
|
host->used_oobsize - i * oob_chunk_size);
|
|
} else {
|
|
for (i = 0; i < num_chunks - 1; i++)
|
|
memcpy16_toio(&s[i * sparebuf_size],
|
|
&d[i * oob_chunk_size],
|
|
oob_chunk_size);
|
|
|
|
/* the last chunk */
|
|
memcpy16_toio(&s[i * sparebuf_size],
|
|
&d[i * oob_chunk_size],
|
|
host->used_oobsize - i * oob_chunk_size);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* MXC NANDFC can only perform full page+spare or spare-only read/write. When
|
|
* the upper layers perform a read/write buf operation, the saved column address
|
|
* is used to index into the full page. So usually this function is called with
|
|
* column == 0 (unless no column cycle is needed indicated by column == -1)
|
|
*/
|
|
static void mxc_do_addr_cycle(struct mtd_info *mtd, int column, int page_addr)
|
|
{
|
|
struct nand_chip *nand_chip = mtd_to_nand(mtd);
|
|
struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
|
|
|
|
/* Write out column address, if necessary */
|
|
if (column != -1) {
|
|
host->devtype_data->send_addr(host, column & 0xff,
|
|
page_addr == -1);
|
|
if (mtd->writesize > 512)
|
|
/* another col addr cycle for 2k page */
|
|
host->devtype_data->send_addr(host,
|
|
(column >> 8) & 0xff,
|
|
false);
|
|
}
|
|
|
|
/* Write out page address, if necessary */
|
|
if (page_addr != -1) {
|
|
/* paddr_0 - p_addr_7 */
|
|
host->devtype_data->send_addr(host, (page_addr & 0xff), false);
|
|
|
|
if (mtd->writesize > 512) {
|
|
if (mtd->size >= 0x10000000) {
|
|
/* paddr_8 - paddr_15 */
|
|
host->devtype_data->send_addr(host,
|
|
(page_addr >> 8) & 0xff,
|
|
false);
|
|
host->devtype_data->send_addr(host,
|
|
(page_addr >> 16) & 0xff,
|
|
true);
|
|
} else
|
|
/* paddr_8 - paddr_15 */
|
|
host->devtype_data->send_addr(host,
|
|
(page_addr >> 8) & 0xff, true);
|
|
} else {
|
|
/* One more address cycle for higher density devices */
|
|
if (mtd->size >= 0x4000000) {
|
|
/* paddr_8 - paddr_15 */
|
|
host->devtype_data->send_addr(host,
|
|
(page_addr >> 8) & 0xff,
|
|
false);
|
|
host->devtype_data->send_addr(host,
|
|
(page_addr >> 16) & 0xff,
|
|
true);
|
|
} else
|
|
/* paddr_8 - paddr_15 */
|
|
host->devtype_data->send_addr(host,
|
|
(page_addr >> 8) & 0xff, true);
|
|
}
|
|
}
|
|
}
|
|
|
|
static int mxc_v1_ooblayout_ecc(struct mtd_info *mtd, int section,
|
|
struct mtd_oob_region *oobregion)
|
|
{
|
|
struct nand_chip *nand_chip = mtd_to_nand(mtd);
|
|
|
|
if (section >= nand_chip->ecc.steps)
|
|
return -ERANGE;
|
|
|
|
oobregion->offset = (section * 16) + 6;
|
|
oobregion->length = nand_chip->ecc.bytes;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int mxc_v1_ooblayout_free(struct mtd_info *mtd, int section,
|
|
struct mtd_oob_region *oobregion)
|
|
{
|
|
struct nand_chip *nand_chip = mtd_to_nand(mtd);
|
|
|
|
if (section > nand_chip->ecc.steps)
|
|
return -ERANGE;
|
|
|
|
if (!section) {
|
|
if (mtd->writesize <= 512) {
|
|
oobregion->offset = 0;
|
|
oobregion->length = 5;
|
|
} else {
|
|
oobregion->offset = 2;
|
|
oobregion->length = 4;
|
|
}
|
|
} else {
|
|
oobregion->offset = ((section - 1) * 16) +
|
|
nand_chip->ecc.bytes + 6;
|
|
if (section < nand_chip->ecc.steps)
|
|
oobregion->length = (section * 16) + 6 -
|
|
oobregion->offset;
|
|
else
|
|
oobregion->length = mtd->oobsize - oobregion->offset;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct mtd_ooblayout_ops mxc_v1_ooblayout_ops = {
|
|
.ecc = mxc_v1_ooblayout_ecc,
|
|
.free = mxc_v1_ooblayout_free,
|
|
};
|
|
|
|
static int mxc_v2_ooblayout_ecc(struct mtd_info *mtd, int section,
|
|
struct mtd_oob_region *oobregion)
|
|
{
|
|
struct nand_chip *nand_chip = mtd_to_nand(mtd);
|
|
int stepsize = nand_chip->ecc.bytes == 9 ? 16 : 26;
|
|
|
|
if (section >= nand_chip->ecc.steps)
|
|
return -ERANGE;
|
|
|
|
oobregion->offset = (section * stepsize) + 7;
|
|
oobregion->length = nand_chip->ecc.bytes;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int mxc_v2_ooblayout_free(struct mtd_info *mtd, int section,
|
|
struct mtd_oob_region *oobregion)
|
|
{
|
|
struct nand_chip *nand_chip = mtd_to_nand(mtd);
|
|
int stepsize = nand_chip->ecc.bytes == 9 ? 16 : 26;
|
|
|
|
if (section >= nand_chip->ecc.steps)
|
|
return -ERANGE;
|
|
|
|
if (!section) {
|
|
if (mtd->writesize <= 512) {
|
|
oobregion->offset = 0;
|
|
oobregion->length = 5;
|
|
} else {
|
|
oobregion->offset = 2;
|
|
oobregion->length = 4;
|
|
}
|
|
} else {
|
|
oobregion->offset = section * stepsize;
|
|
oobregion->length = 7;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct mtd_ooblayout_ops mxc_v2_ooblayout_ops = {
|
|
.ecc = mxc_v2_ooblayout_ecc,
|
|
.free = mxc_v2_ooblayout_free,
|
|
};
|
|
|
|
/*
|
|
* v2 and v3 type controllers can do 4bit or 8bit ecc depending
|
|
* on how much oob the nand chip has. For 8bit ecc we need at least
|
|
* 26 bytes of oob data per 512 byte block.
|
|
*/
|
|
static int get_eccsize(struct mtd_info *mtd)
|
|
{
|
|
int oobbytes_per_512 = 0;
|
|
|
|
oobbytes_per_512 = mtd->oobsize * 512 / mtd->writesize;
|
|
|
|
if (oobbytes_per_512 < 26)
|
|
return 4;
|
|
else
|
|
return 8;
|
|
}
|
|
|
|
static void preset_v1(struct mtd_info *mtd)
|
|
{
|
|
struct nand_chip *nand_chip = mtd_to_nand(mtd);
|
|
struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
|
|
uint16_t config1 = 0;
|
|
|
|
if (nand_chip->ecc.mode == NAND_ECC_HW && mtd->writesize)
|
|
config1 |= NFC_V1_V2_CONFIG1_ECC_EN;
|
|
|
|
if (!host->devtype_data->irqpending_quirk)
|
|
config1 |= NFC_V1_V2_CONFIG1_INT_MSK;
|
|
|
|
host->eccsize = 1;
|
|
|
|
writew(config1, NFC_V1_V2_CONFIG1);
|
|
/* preset operation */
|
|
|
|
/* Unlock the internal RAM Buffer */
|
|
writew(0x2, NFC_V1_V2_CONFIG);
|
|
|
|
/* Blocks to be unlocked */
|
|
writew(0x0, NFC_V1_UNLOCKSTART_BLKADDR);
|
|
writew(0xffff, NFC_V1_UNLOCKEND_BLKADDR);
|
|
|
|
/* Unlock Block Command for given address range */
|
|
writew(0x4, NFC_V1_V2_WRPROT);
|
|
}
|
|
|
|
static int mxc_nand_v2_setup_data_interface(struct mtd_info *mtd,
|
|
const struct nand_data_interface *conf,
|
|
bool check_only)
|
|
{
|
|
struct nand_chip *nand_chip = mtd_to_nand(mtd);
|
|
struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
|
|
int tRC_min_ns, tRC_ps, ret;
|
|
unsigned long rate, rate_round;
|
|
const struct nand_sdr_timings *timings;
|
|
u16 config1;
|
|
|
|
timings = nand_get_sdr_timings(conf);
|
|
if (IS_ERR(timings))
|
|
return -ENOTSUPP;
|
|
|
|
config1 = readw(NFC_V1_V2_CONFIG1);
|
|
|
|
tRC_min_ns = timings->tRC_min / 1000;
|
|
rate = 1000000000 / tRC_min_ns;
|
|
|
|
/*
|
|
* For tRC < 30ns we have to use EDO mode. In this case the controller
|
|
* does one access per clock cycle. Otherwise the controller does one
|
|
* access in two clock cycles, thus we have to double the rate to the
|
|
* controller.
|
|
*/
|
|
if (tRC_min_ns < 30) {
|
|
rate_round = clk_round_rate(host->clk, rate);
|
|
config1 |= NFC_V2_CONFIG1_ONE_CYCLE;
|
|
tRC_ps = 1000000000 / (rate_round / 1000);
|
|
} else {
|
|
rate *= 2;
|
|
rate_round = clk_round_rate(host->clk, rate);
|
|
config1 &= ~NFC_V2_CONFIG1_ONE_CYCLE;
|
|
tRC_ps = 1000000000 / (rate_round / 1000 / 2);
|
|
}
|
|
|
|
/*
|
|
* The timing values compared against are from the i.MX25 Automotive
|
|
* datasheet, Table 50. NFC Timing Parameters
|
|
*/
|
|
if (timings->tCLS_min > tRC_ps - 1000 ||
|
|
timings->tCLH_min > tRC_ps - 2000 ||
|
|
timings->tCS_min > tRC_ps - 1000 ||
|
|
timings->tCH_min > tRC_ps - 2000 ||
|
|
timings->tWP_min > tRC_ps - 1500 ||
|
|
timings->tALS_min > tRC_ps ||
|
|
timings->tALH_min > tRC_ps - 3000 ||
|
|
timings->tDS_min > tRC_ps ||
|
|
timings->tDH_min > tRC_ps - 5000 ||
|
|
timings->tWC_min > 2 * tRC_ps ||
|
|
timings->tWH_min > tRC_ps - 2500 ||
|
|
timings->tRR_min > 6 * tRC_ps ||
|
|
timings->tRP_min > 3 * tRC_ps / 2 ||
|
|
timings->tRC_min > 2 * tRC_ps ||
|
|
timings->tREH_min > (tRC_ps / 2) - 2500) {
|
|
dev_dbg(host->dev, "Timing out of bounds\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (check_only)
|
|
return 0;
|
|
|
|
ret = clk_set_rate(host->clk, rate);
|
|
if (ret)
|
|
return ret;
|
|
|
|
writew(config1, NFC_V1_V2_CONFIG1);
|
|
|
|
dev_dbg(host->dev, "Setting rate to %ldHz, %s mode\n", rate_round,
|
|
config1 & NFC_V2_CONFIG1_ONE_CYCLE ? "One cycle (EDO)" :
|
|
"normal");
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void preset_v2(struct mtd_info *mtd)
|
|
{
|
|
struct nand_chip *nand_chip = mtd_to_nand(mtd);
|
|
struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
|
|
uint16_t config1 = 0;
|
|
|
|
config1 |= NFC_V2_CONFIG1_FP_INT;
|
|
|
|
if (!host->devtype_data->irqpending_quirk)
|
|
config1 |= NFC_V1_V2_CONFIG1_INT_MSK;
|
|
|
|
if (mtd->writesize) {
|
|
uint16_t pages_per_block = mtd->erasesize / mtd->writesize;
|
|
|
|
if (nand_chip->ecc.mode == NAND_ECC_HW)
|
|
config1 |= NFC_V1_V2_CONFIG1_ECC_EN;
|
|
|
|
host->eccsize = get_eccsize(mtd);
|
|
if (host->eccsize == 4)
|
|
config1 |= NFC_V2_CONFIG1_ECC_MODE_4;
|
|
|
|
config1 |= NFC_V2_CONFIG1_PPB(ffs(pages_per_block) - 6);
|
|
} else {
|
|
host->eccsize = 1;
|
|
}
|
|
|
|
writew(config1, NFC_V1_V2_CONFIG1);
|
|
/* preset operation */
|
|
|
|
/* Unlock the internal RAM Buffer */
|
|
writew(0x2, NFC_V1_V2_CONFIG);
|
|
|
|
/* Blocks to be unlocked */
|
|
writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR0);
|
|
writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR1);
|
|
writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR2);
|
|
writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR3);
|
|
writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR0);
|
|
writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR1);
|
|
writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR2);
|
|
writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR3);
|
|
|
|
/* Unlock Block Command for given address range */
|
|
writew(0x4, NFC_V1_V2_WRPROT);
|
|
}
|
|
|
|
static void preset_v3(struct mtd_info *mtd)
|
|
{
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
struct mxc_nand_host *host = nand_get_controller_data(chip);
|
|
uint32_t config2, config3;
|
|
int i, addr_phases;
|
|
|
|
writel(NFC_V3_CONFIG1_RBA(0), NFC_V3_CONFIG1);
|
|
writel(NFC_V3_IPC_CREQ, NFC_V3_IPC);
|
|
|
|
/* Unlock the internal RAM Buffer */
|
|
writel(NFC_V3_WRPROT_BLS_UNLOCK | NFC_V3_WRPROT_UNLOCK,
|
|
NFC_V3_WRPROT);
|
|
|
|
/* Blocks to be unlocked */
|
|
for (i = 0; i < NAND_MAX_CHIPS; i++)
|
|
writel(0xffff << 16, NFC_V3_WRPROT_UNLOCK_BLK_ADD0 + (i << 2));
|
|
|
|
writel(0, NFC_V3_IPC);
|
|
|
|
config2 = NFC_V3_CONFIG2_ONE_CYCLE |
|
|
NFC_V3_CONFIG2_2CMD_PHASES |
|
|
NFC_V3_CONFIG2_SPAS(mtd->oobsize >> 1) |
|
|
NFC_V3_CONFIG2_ST_CMD(0x70) |
|
|
NFC_V3_CONFIG2_INT_MSK |
|
|
NFC_V3_CONFIG2_NUM_ADDR_PHASE0;
|
|
|
|
addr_phases = fls(chip->pagemask) >> 3;
|
|
|
|
if (mtd->writesize == 2048) {
|
|
config2 |= NFC_V3_CONFIG2_PS_2048;
|
|
config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases);
|
|
} else if (mtd->writesize == 4096) {
|
|
config2 |= NFC_V3_CONFIG2_PS_4096;
|
|
config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases);
|
|
} else {
|
|
config2 |= NFC_V3_CONFIG2_PS_512;
|
|
config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases - 1);
|
|
}
|
|
|
|
if (mtd->writesize) {
|
|
if (chip->ecc.mode == NAND_ECC_HW)
|
|
config2 |= NFC_V3_CONFIG2_ECC_EN;
|
|
|
|
config2 |= NFC_V3_CONFIG2_PPB(
|
|
ffs(mtd->erasesize / mtd->writesize) - 6,
|
|
host->devtype_data->ppb_shift);
|
|
host->eccsize = get_eccsize(mtd);
|
|
if (host->eccsize == 8)
|
|
config2 |= NFC_V3_CONFIG2_ECC_MODE_8;
|
|
}
|
|
|
|
writel(config2, NFC_V3_CONFIG2);
|
|
|
|
config3 = NFC_V3_CONFIG3_NUM_OF_DEVICES(0) |
|
|
NFC_V3_CONFIG3_NO_SDMA |
|
|
NFC_V3_CONFIG3_RBB_MODE |
|
|
NFC_V3_CONFIG3_SBB(6) | /* Reset default */
|
|
NFC_V3_CONFIG3_ADD_OP(0);
|
|
|
|
if (!(chip->options & NAND_BUSWIDTH_16))
|
|
config3 |= NFC_V3_CONFIG3_FW8;
|
|
|
|
writel(config3, NFC_V3_CONFIG3);
|
|
|
|
writel(0, NFC_V3_DELAY_LINE);
|
|
}
|
|
|
|
/* Used by the upper layer to write command to NAND Flash for
|
|
* different operations to be carried out on NAND Flash */
|
|
static void mxc_nand_command(struct mtd_info *mtd, unsigned command,
|
|
int column, int page_addr)
|
|
{
|
|
struct nand_chip *nand_chip = mtd_to_nand(mtd);
|
|
struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
|
|
|
|
pr_debug("mxc_nand_command (cmd = 0x%x, col = 0x%x, page = 0x%x)\n",
|
|
command, column, page_addr);
|
|
|
|
/* Reset command state information */
|
|
host->status_request = false;
|
|
|
|
/* Command pre-processing step */
|
|
switch (command) {
|
|
case NAND_CMD_RESET:
|
|
host->devtype_data->preset(mtd);
|
|
host->devtype_data->send_cmd(host, command, false);
|
|
break;
|
|
|
|
case NAND_CMD_STATUS:
|
|
host->buf_start = 0;
|
|
host->status_request = true;
|
|
|
|
host->devtype_data->send_cmd(host, command, true);
|
|
WARN_ONCE(column != -1 || page_addr != -1,
|
|
"Unexpected column/row value (cmd=%u, col=%d, row=%d)\n",
|
|
command, column, page_addr);
|
|
mxc_do_addr_cycle(mtd, column, page_addr);
|
|
break;
|
|
|
|
case NAND_CMD_READ0:
|
|
case NAND_CMD_READOOB:
|
|
if (command == NAND_CMD_READ0)
|
|
host->buf_start = column;
|
|
else
|
|
host->buf_start = column + mtd->writesize;
|
|
|
|
command = NAND_CMD_READ0; /* only READ0 is valid */
|
|
|
|
host->devtype_data->send_cmd(host, command, false);
|
|
WARN_ONCE(column < 0,
|
|
"Unexpected column/row value (cmd=%u, col=%d, row=%d)\n",
|
|
command, column, page_addr);
|
|
mxc_do_addr_cycle(mtd, 0, page_addr);
|
|
|
|
if (mtd->writesize > 512)
|
|
host->devtype_data->send_cmd(host,
|
|
NAND_CMD_READSTART, true);
|
|
|
|
host->devtype_data->send_page(mtd, NFC_OUTPUT);
|
|
|
|
memcpy32_fromio(host->data_buf, host->main_area0,
|
|
mtd->writesize);
|
|
copy_spare(mtd, true);
|
|
break;
|
|
|
|
case NAND_CMD_SEQIN:
|
|
if (column >= mtd->writesize)
|
|
/* call ourself to read a page */
|
|
mxc_nand_command(mtd, NAND_CMD_READ0, 0, page_addr);
|
|
|
|
host->buf_start = column;
|
|
|
|
host->devtype_data->send_cmd(host, command, false);
|
|
WARN_ONCE(column < -1,
|
|
"Unexpected column/row value (cmd=%u, col=%d, row=%d)\n",
|
|
command, column, page_addr);
|
|
mxc_do_addr_cycle(mtd, 0, page_addr);
|
|
break;
|
|
|
|
case NAND_CMD_PAGEPROG:
|
|
memcpy32_toio(host->main_area0, host->data_buf, mtd->writesize);
|
|
copy_spare(mtd, false);
|
|
host->devtype_data->send_page(mtd, NFC_INPUT);
|
|
host->devtype_data->send_cmd(host, command, true);
|
|
WARN_ONCE(column != -1 || page_addr != -1,
|
|
"Unexpected column/row value (cmd=%u, col=%d, row=%d)\n",
|
|
command, column, page_addr);
|
|
mxc_do_addr_cycle(mtd, column, page_addr);
|
|
break;
|
|
|
|
case NAND_CMD_READID:
|
|
host->devtype_data->send_cmd(host, command, true);
|
|
mxc_do_addr_cycle(mtd, column, page_addr);
|
|
host->devtype_data->send_read_id(host);
|
|
host->buf_start = 0;
|
|
break;
|
|
|
|
case NAND_CMD_ERASE1:
|
|
case NAND_CMD_ERASE2:
|
|
host->devtype_data->send_cmd(host, command, false);
|
|
WARN_ONCE(column != -1,
|
|
"Unexpected column value (cmd=%u, col=%d)\n",
|
|
command, column);
|
|
mxc_do_addr_cycle(mtd, column, page_addr);
|
|
|
|
break;
|
|
case NAND_CMD_PARAM:
|
|
host->devtype_data->send_cmd(host, command, false);
|
|
mxc_do_addr_cycle(mtd, column, page_addr);
|
|
host->devtype_data->send_page(mtd, NFC_OUTPUT);
|
|
memcpy32_fromio(host->data_buf, host->main_area0, 512);
|
|
host->buf_start = 0;
|
|
break;
|
|
default:
|
|
WARN_ONCE(1, "Unimplemented command (cmd=%u)\n",
|
|
command);
|
|
break;
|
|
}
|
|
}
|
|
|
|
static int mxc_nand_onfi_set_features(struct mtd_info *mtd,
|
|
struct nand_chip *chip, int addr,
|
|
u8 *subfeature_param)
|
|
{
|
|
struct nand_chip *nand_chip = mtd_to_nand(mtd);
|
|
struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
|
|
int i;
|
|
|
|
if (!chip->onfi_version ||
|
|
!(le16_to_cpu(chip->onfi_params.opt_cmd)
|
|
& ONFI_OPT_CMD_SET_GET_FEATURES))
|
|
return -EINVAL;
|
|
|
|
host->buf_start = 0;
|
|
|
|
for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
|
|
chip->write_byte(mtd, subfeature_param[i]);
|
|
|
|
memcpy32_toio(host->main_area0, host->data_buf, mtd->writesize);
|
|
host->devtype_data->send_cmd(host, NAND_CMD_SET_FEATURES, false);
|
|
mxc_do_addr_cycle(mtd, addr, -1);
|
|
host->devtype_data->send_page(mtd, NFC_INPUT);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int mxc_nand_onfi_get_features(struct mtd_info *mtd,
|
|
struct nand_chip *chip, int addr,
|
|
u8 *subfeature_param)
|
|
{
|
|
struct nand_chip *nand_chip = mtd_to_nand(mtd);
|
|
struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
|
|
int i;
|
|
|
|
if (!chip->onfi_version ||
|
|
!(le16_to_cpu(chip->onfi_params.opt_cmd)
|
|
& ONFI_OPT_CMD_SET_GET_FEATURES))
|
|
return -EINVAL;
|
|
|
|
host->devtype_data->send_cmd(host, NAND_CMD_GET_FEATURES, false);
|
|
mxc_do_addr_cycle(mtd, addr, -1);
|
|
host->devtype_data->send_page(mtd, NFC_OUTPUT);
|
|
memcpy32_fromio(host->data_buf, host->main_area0, 512);
|
|
host->buf_start = 0;
|
|
|
|
for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
|
|
*subfeature_param++ = chip->read_byte(mtd);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* The generic flash bbt decriptors overlap with our ecc
|
|
* hardware, so define some i.MX specific ones.
|
|
*/
|
|
static uint8_t bbt_pattern[] = { 'B', 'b', 't', '0' };
|
|
static uint8_t mirror_pattern[] = { '1', 't', 'b', 'B' };
|
|
|
|
static struct nand_bbt_descr bbt_main_descr = {
|
|
.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
|
|
| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
|
|
.offs = 0,
|
|
.len = 4,
|
|
.veroffs = 4,
|
|
.maxblocks = 4,
|
|
.pattern = bbt_pattern,
|
|
};
|
|
|
|
static struct nand_bbt_descr bbt_mirror_descr = {
|
|
.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
|
|
| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
|
|
.offs = 0,
|
|
.len = 4,
|
|
.veroffs = 4,
|
|
.maxblocks = 4,
|
|
.pattern = mirror_pattern,
|
|
};
|
|
|
|
/* v1 + irqpending_quirk: i.MX21 */
|
|
static const struct mxc_nand_devtype_data imx21_nand_devtype_data = {
|
|
.preset = preset_v1,
|
|
.send_cmd = send_cmd_v1_v2,
|
|
.send_addr = send_addr_v1_v2,
|
|
.send_page = send_page_v1,
|
|
.send_read_id = send_read_id_v1_v2,
|
|
.get_dev_status = get_dev_status_v1_v2,
|
|
.check_int = check_int_v1_v2,
|
|
.irq_control = irq_control_v1_v2,
|
|
.get_ecc_status = get_ecc_status_v1,
|
|
.ooblayout = &mxc_v1_ooblayout_ops,
|
|
.select_chip = mxc_nand_select_chip_v1_v3,
|
|
.correct_data = mxc_nand_correct_data_v1,
|
|
.irqpending_quirk = 1,
|
|
.needs_ip = 0,
|
|
.regs_offset = 0xe00,
|
|
.spare0_offset = 0x800,
|
|
.spare_len = 16,
|
|
.eccbytes = 3,
|
|
.eccsize = 1,
|
|
};
|
|
|
|
/* v1 + !irqpending_quirk: i.MX27, i.MX31 */
|
|
static const struct mxc_nand_devtype_data imx27_nand_devtype_data = {
|
|
.preset = preset_v1,
|
|
.send_cmd = send_cmd_v1_v2,
|
|
.send_addr = send_addr_v1_v2,
|
|
.send_page = send_page_v1,
|
|
.send_read_id = send_read_id_v1_v2,
|
|
.get_dev_status = get_dev_status_v1_v2,
|
|
.check_int = check_int_v1_v2,
|
|
.irq_control = irq_control_v1_v2,
|
|
.get_ecc_status = get_ecc_status_v1,
|
|
.ooblayout = &mxc_v1_ooblayout_ops,
|
|
.select_chip = mxc_nand_select_chip_v1_v3,
|
|
.correct_data = mxc_nand_correct_data_v1,
|
|
.irqpending_quirk = 0,
|
|
.needs_ip = 0,
|
|
.regs_offset = 0xe00,
|
|
.spare0_offset = 0x800,
|
|
.axi_offset = 0,
|
|
.spare_len = 16,
|
|
.eccbytes = 3,
|
|
.eccsize = 1,
|
|
};
|
|
|
|
/* v21: i.MX25, i.MX35 */
|
|
static const struct mxc_nand_devtype_data imx25_nand_devtype_data = {
|
|
.preset = preset_v2,
|
|
.send_cmd = send_cmd_v1_v2,
|
|
.send_addr = send_addr_v1_v2,
|
|
.send_page = send_page_v2,
|
|
.send_read_id = send_read_id_v1_v2,
|
|
.get_dev_status = get_dev_status_v1_v2,
|
|
.check_int = check_int_v1_v2,
|
|
.irq_control = irq_control_v1_v2,
|
|
.get_ecc_status = get_ecc_status_v2,
|
|
.ooblayout = &mxc_v2_ooblayout_ops,
|
|
.select_chip = mxc_nand_select_chip_v2,
|
|
.correct_data = mxc_nand_correct_data_v2_v3,
|
|
.setup_data_interface = mxc_nand_v2_setup_data_interface,
|
|
.irqpending_quirk = 0,
|
|
.needs_ip = 0,
|
|
.regs_offset = 0x1e00,
|
|
.spare0_offset = 0x1000,
|
|
.axi_offset = 0,
|
|
.spare_len = 64,
|
|
.eccbytes = 9,
|
|
.eccsize = 0,
|
|
};
|
|
|
|
/* v3.2a: i.MX51 */
|
|
static const struct mxc_nand_devtype_data imx51_nand_devtype_data = {
|
|
.preset = preset_v3,
|
|
.send_cmd = send_cmd_v3,
|
|
.send_addr = send_addr_v3,
|
|
.send_page = send_page_v3,
|
|
.send_read_id = send_read_id_v3,
|
|
.get_dev_status = get_dev_status_v3,
|
|
.check_int = check_int_v3,
|
|
.irq_control = irq_control_v3,
|
|
.get_ecc_status = get_ecc_status_v3,
|
|
.ooblayout = &mxc_v2_ooblayout_ops,
|
|
.select_chip = mxc_nand_select_chip_v1_v3,
|
|
.correct_data = mxc_nand_correct_data_v2_v3,
|
|
.irqpending_quirk = 0,
|
|
.needs_ip = 1,
|
|
.regs_offset = 0,
|
|
.spare0_offset = 0x1000,
|
|
.axi_offset = 0x1e00,
|
|
.spare_len = 64,
|
|
.eccbytes = 0,
|
|
.eccsize = 0,
|
|
.ppb_shift = 7,
|
|
};
|
|
|
|
/* v3.2b: i.MX53 */
|
|
static const struct mxc_nand_devtype_data imx53_nand_devtype_data = {
|
|
.preset = preset_v3,
|
|
.send_cmd = send_cmd_v3,
|
|
.send_addr = send_addr_v3,
|
|
.send_page = send_page_v3,
|
|
.send_read_id = send_read_id_v3,
|
|
.get_dev_status = get_dev_status_v3,
|
|
.check_int = check_int_v3,
|
|
.irq_control = irq_control_v3,
|
|
.get_ecc_status = get_ecc_status_v3,
|
|
.ooblayout = &mxc_v2_ooblayout_ops,
|
|
.select_chip = mxc_nand_select_chip_v1_v3,
|
|
.correct_data = mxc_nand_correct_data_v2_v3,
|
|
.irqpending_quirk = 0,
|
|
.needs_ip = 1,
|
|
.regs_offset = 0,
|
|
.spare0_offset = 0x1000,
|
|
.axi_offset = 0x1e00,
|
|
.spare_len = 64,
|
|
.eccbytes = 0,
|
|
.eccsize = 0,
|
|
.ppb_shift = 8,
|
|
};
|
|
|
|
static inline int is_imx21_nfc(struct mxc_nand_host *host)
|
|
{
|
|
return host->devtype_data == &imx21_nand_devtype_data;
|
|
}
|
|
|
|
static inline int is_imx27_nfc(struct mxc_nand_host *host)
|
|
{
|
|
return host->devtype_data == &imx27_nand_devtype_data;
|
|
}
|
|
|
|
static inline int is_imx25_nfc(struct mxc_nand_host *host)
|
|
{
|
|
return host->devtype_data == &imx25_nand_devtype_data;
|
|
}
|
|
|
|
static inline int is_imx51_nfc(struct mxc_nand_host *host)
|
|
{
|
|
return host->devtype_data == &imx51_nand_devtype_data;
|
|
}
|
|
|
|
static inline int is_imx53_nfc(struct mxc_nand_host *host)
|
|
{
|
|
return host->devtype_data == &imx53_nand_devtype_data;
|
|
}
|
|
|
|
static const struct platform_device_id mxcnd_devtype[] = {
|
|
{
|
|
.name = "imx21-nand",
|
|
.driver_data = (kernel_ulong_t) &imx21_nand_devtype_data,
|
|
}, {
|
|
.name = "imx27-nand",
|
|
.driver_data = (kernel_ulong_t) &imx27_nand_devtype_data,
|
|
}, {
|
|
.name = "imx25-nand",
|
|
.driver_data = (kernel_ulong_t) &imx25_nand_devtype_data,
|
|
}, {
|
|
.name = "imx51-nand",
|
|
.driver_data = (kernel_ulong_t) &imx51_nand_devtype_data,
|
|
}, {
|
|
.name = "imx53-nand",
|
|
.driver_data = (kernel_ulong_t) &imx53_nand_devtype_data,
|
|
}, {
|
|
/* sentinel */
|
|
}
|
|
};
|
|
MODULE_DEVICE_TABLE(platform, mxcnd_devtype);
|
|
|
|
#ifdef CONFIG_OF
|
|
static const struct of_device_id mxcnd_dt_ids[] = {
|
|
{
|
|
.compatible = "fsl,imx21-nand",
|
|
.data = &imx21_nand_devtype_data,
|
|
}, {
|
|
.compatible = "fsl,imx27-nand",
|
|
.data = &imx27_nand_devtype_data,
|
|
}, {
|
|
.compatible = "fsl,imx25-nand",
|
|
.data = &imx25_nand_devtype_data,
|
|
}, {
|
|
.compatible = "fsl,imx51-nand",
|
|
.data = &imx51_nand_devtype_data,
|
|
}, {
|
|
.compatible = "fsl,imx53-nand",
|
|
.data = &imx53_nand_devtype_data,
|
|
},
|
|
{ /* sentinel */ }
|
|
};
|
|
MODULE_DEVICE_TABLE(of, mxcnd_dt_ids);
|
|
|
|
static int __init mxcnd_probe_dt(struct mxc_nand_host *host)
|
|
{
|
|
struct device_node *np = host->dev->of_node;
|
|
const struct of_device_id *of_id =
|
|
of_match_device(mxcnd_dt_ids, host->dev);
|
|
|
|
if (!np)
|
|
return 1;
|
|
|
|
host->devtype_data = of_id->data;
|
|
|
|
return 0;
|
|
}
|
|
#else
|
|
static int __init mxcnd_probe_dt(struct mxc_nand_host *host)
|
|
{
|
|
return 1;
|
|
}
|
|
#endif
|
|
|
|
static int mxcnd_probe(struct platform_device *pdev)
|
|
{
|
|
struct nand_chip *this;
|
|
struct mtd_info *mtd;
|
|
struct mxc_nand_host *host;
|
|
struct resource *res;
|
|
int err = 0;
|
|
|
|
/* Allocate memory for MTD device structure and private data */
|
|
host = devm_kzalloc(&pdev->dev, sizeof(struct mxc_nand_host),
|
|
GFP_KERNEL);
|
|
if (!host)
|
|
return -ENOMEM;
|
|
|
|
/* allocate a temporary buffer for the nand_scan_ident() */
|
|
host->data_buf = devm_kzalloc(&pdev->dev, PAGE_SIZE, GFP_KERNEL);
|
|
if (!host->data_buf)
|
|
return -ENOMEM;
|
|
|
|
host->dev = &pdev->dev;
|
|
/* structures must be linked */
|
|
this = &host->nand;
|
|
mtd = nand_to_mtd(this);
|
|
mtd->dev.parent = &pdev->dev;
|
|
mtd->name = DRIVER_NAME;
|
|
|
|
/* 50 us command delay time */
|
|
this->chip_delay = 5;
|
|
|
|
nand_set_controller_data(this, host);
|
|
nand_set_flash_node(this, pdev->dev.of_node),
|
|
this->dev_ready = mxc_nand_dev_ready;
|
|
this->cmdfunc = mxc_nand_command;
|
|
this->read_byte = mxc_nand_read_byte;
|
|
this->read_word = mxc_nand_read_word;
|
|
this->write_buf = mxc_nand_write_buf;
|
|
this->read_buf = mxc_nand_read_buf;
|
|
this->onfi_set_features = mxc_nand_onfi_set_features;
|
|
this->onfi_get_features = mxc_nand_onfi_get_features;
|
|
|
|
host->clk = devm_clk_get(&pdev->dev, NULL);
|
|
if (IS_ERR(host->clk))
|
|
return PTR_ERR(host->clk);
|
|
|
|
err = mxcnd_probe_dt(host);
|
|
if (err > 0) {
|
|
struct mxc_nand_platform_data *pdata =
|
|
dev_get_platdata(&pdev->dev);
|
|
if (pdata) {
|
|
host->pdata = *pdata;
|
|
host->devtype_data = (struct mxc_nand_devtype_data *)
|
|
pdev->id_entry->driver_data;
|
|
} else {
|
|
err = -ENODEV;
|
|
}
|
|
}
|
|
if (err < 0)
|
|
return err;
|
|
|
|
this->setup_data_interface = host->devtype_data->setup_data_interface;
|
|
|
|
if (host->devtype_data->needs_ip) {
|
|
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
|
|
host->regs_ip = devm_ioremap_resource(&pdev->dev, res);
|
|
if (IS_ERR(host->regs_ip))
|
|
return PTR_ERR(host->regs_ip);
|
|
|
|
res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
|
|
} else {
|
|
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
|
|
}
|
|
|
|
host->base = devm_ioremap_resource(&pdev->dev, res);
|
|
if (IS_ERR(host->base))
|
|
return PTR_ERR(host->base);
|
|
|
|
host->main_area0 = host->base;
|
|
|
|
if (host->devtype_data->regs_offset)
|
|
host->regs = host->base + host->devtype_data->regs_offset;
|
|
host->spare0 = host->base + host->devtype_data->spare0_offset;
|
|
if (host->devtype_data->axi_offset)
|
|
host->regs_axi = host->base + host->devtype_data->axi_offset;
|
|
|
|
this->ecc.bytes = host->devtype_data->eccbytes;
|
|
host->eccsize = host->devtype_data->eccsize;
|
|
|
|
this->select_chip = host->devtype_data->select_chip;
|
|
this->ecc.size = 512;
|
|
mtd_set_ooblayout(mtd, host->devtype_data->ooblayout);
|
|
|
|
if (host->pdata.hw_ecc) {
|
|
this->ecc.mode = NAND_ECC_HW;
|
|
} else {
|
|
this->ecc.mode = NAND_ECC_SOFT;
|
|
this->ecc.algo = NAND_ECC_HAMMING;
|
|
}
|
|
|
|
/* NAND bus width determines access functions used by upper layer */
|
|
if (host->pdata.width == 2)
|
|
this->options |= NAND_BUSWIDTH_16;
|
|
|
|
/* update flash based bbt */
|
|
if (host->pdata.flash_bbt)
|
|
this->bbt_options |= NAND_BBT_USE_FLASH;
|
|
|
|
init_completion(&host->op_completion);
|
|
|
|
host->irq = platform_get_irq(pdev, 0);
|
|
if (host->irq < 0)
|
|
return host->irq;
|
|
|
|
/*
|
|
* Use host->devtype_data->irq_control() here instead of irq_control()
|
|
* because we must not disable_irq_nosync without having requested the
|
|
* irq.
|
|
*/
|
|
host->devtype_data->irq_control(host, 0);
|
|
|
|
err = devm_request_irq(&pdev->dev, host->irq, mxc_nfc_irq,
|
|
0, DRIVER_NAME, host);
|
|
if (err)
|
|
return err;
|
|
|
|
err = clk_prepare_enable(host->clk);
|
|
if (err)
|
|
return err;
|
|
host->clk_act = 1;
|
|
|
|
/*
|
|
* Now that we "own" the interrupt make sure the interrupt mask bit is
|
|
* cleared on i.MX21. Otherwise we can't read the interrupt status bit
|
|
* on this machine.
|
|
*/
|
|
if (host->devtype_data->irqpending_quirk) {
|
|
disable_irq_nosync(host->irq);
|
|
host->devtype_data->irq_control(host, 1);
|
|
}
|
|
|
|
/* first scan to find the device and get the page size */
|
|
err = nand_scan_ident(mtd, is_imx25_nfc(host) ? 4 : 1, NULL);
|
|
if (err)
|
|
goto escan;
|
|
|
|
switch (this->ecc.mode) {
|
|
case NAND_ECC_HW:
|
|
this->ecc.calculate = mxc_nand_calculate_ecc;
|
|
this->ecc.hwctl = mxc_nand_enable_hwecc;
|
|
this->ecc.correct = host->devtype_data->correct_data;
|
|
break;
|
|
|
|
case NAND_ECC_SOFT:
|
|
break;
|
|
|
|
default:
|
|
err = -EINVAL;
|
|
goto escan;
|
|
}
|
|
|
|
if (this->bbt_options & NAND_BBT_USE_FLASH) {
|
|
this->bbt_td = &bbt_main_descr;
|
|
this->bbt_md = &bbt_mirror_descr;
|
|
}
|
|
|
|
/* allocate the right size buffer now */
|
|
devm_kfree(&pdev->dev, (void *)host->data_buf);
|
|
host->data_buf = devm_kzalloc(&pdev->dev, mtd->writesize + mtd->oobsize,
|
|
GFP_KERNEL);
|
|
if (!host->data_buf) {
|
|
err = -ENOMEM;
|
|
goto escan;
|
|
}
|
|
|
|
/* Call preset again, with correct writesize this time */
|
|
host->devtype_data->preset(mtd);
|
|
|
|
if (!this->ecc.bytes) {
|
|
if (host->eccsize == 8)
|
|
this->ecc.bytes = 18;
|
|
else if (host->eccsize == 4)
|
|
this->ecc.bytes = 9;
|
|
}
|
|
|
|
/*
|
|
* Experimentation shows that i.MX NFC can only handle up to 218 oob
|
|
* bytes. Limit used_oobsize to 218 so as to not confuse copy_spare()
|
|
* into copying invalid data to/from the spare IO buffer, as this
|
|
* might cause ECC data corruption when doing sub-page write to a
|
|
* partially written page.
|
|
*/
|
|
host->used_oobsize = min(mtd->oobsize, 218U);
|
|
|
|
if (this->ecc.mode == NAND_ECC_HW) {
|
|
if (is_imx21_nfc(host) || is_imx27_nfc(host))
|
|
this->ecc.strength = 1;
|
|
else
|
|
this->ecc.strength = (host->eccsize == 4) ? 4 : 8;
|
|
}
|
|
|
|
/* second phase scan */
|
|
err = nand_scan_tail(mtd);
|
|
if (err)
|
|
goto escan;
|
|
|
|
/* Register the partitions */
|
|
mtd_device_parse_register(mtd, part_probes,
|
|
NULL,
|
|
host->pdata.parts,
|
|
host->pdata.nr_parts);
|
|
|
|
platform_set_drvdata(pdev, host);
|
|
|
|
return 0;
|
|
|
|
escan:
|
|
if (host->clk_act)
|
|
clk_disable_unprepare(host->clk);
|
|
|
|
return err;
|
|
}
|
|
|
|
static int mxcnd_remove(struct platform_device *pdev)
|
|
{
|
|
struct mxc_nand_host *host = platform_get_drvdata(pdev);
|
|
|
|
nand_release(nand_to_mtd(&host->nand));
|
|
if (host->clk_act)
|
|
clk_disable_unprepare(host->clk);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct platform_driver mxcnd_driver = {
|
|
.driver = {
|
|
.name = DRIVER_NAME,
|
|
.of_match_table = of_match_ptr(mxcnd_dt_ids),
|
|
},
|
|
.id_table = mxcnd_devtype,
|
|
.probe = mxcnd_probe,
|
|
.remove = mxcnd_remove,
|
|
};
|
|
module_platform_driver(mxcnd_driver);
|
|
|
|
MODULE_AUTHOR("Freescale Semiconductor, Inc.");
|
|
MODULE_DESCRIPTION("MXC NAND MTD driver");
|
|
MODULE_LICENSE("GPL");
|