linux-sg2042/drivers/net/dsa/mv88e6352.c

735 lines
17 KiB
C

/*
* net/dsa/mv88e6352.c - Marvell 88e6352 switch chip support
*
* Copyright (c) 2014 Guenter Roeck
*
* Derived from mv88e6123_61_65.c
* Copyright (c) 2008-2009 Marvell Semiconductor
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*/
#include <linux/delay.h>
#include <linux/jiffies.h>
#include <linux/list.h>
#include <linux/module.h>
#include <linux/netdevice.h>
#include <linux/platform_device.h>
#include <linux/phy.h>
#include <net/dsa.h>
#include "mv88e6xxx.h"
static char *mv88e6352_probe(struct device *host_dev, int sw_addr)
{
struct mii_bus *bus = dsa_host_dev_to_mii_bus(host_dev);
int ret;
if (bus == NULL)
return NULL;
ret = __mv88e6xxx_reg_read(bus, sw_addr, REG_PORT(0), 0x03);
if (ret >= 0) {
if ((ret & 0xfff0) == 0x1760)
return "Marvell 88E6176";
if (ret == 0x3521)
return "Marvell 88E6352 (A0)";
if (ret == 0x3522)
return "Marvell 88E6352 (A1)";
if ((ret & 0xfff0) == 0x3520)
return "Marvell 88E6352";
}
return NULL;
}
static int mv88e6352_switch_reset(struct dsa_switch *ds)
{
unsigned long timeout;
int ret;
int i;
/* Set all ports to the disabled state. */
for (i = 0; i < 7; i++) {
ret = REG_READ(REG_PORT(i), 0x04);
REG_WRITE(REG_PORT(i), 0x04, ret & 0xfffc);
}
/* Wait for transmit queues to drain. */
usleep_range(2000, 4000);
/* Reset the switch. Keep PPU active (bit 14, undocumented).
* The PPU needs to be active to support indirect phy register
* accesses through global registers 0x18 and 0x19.
*/
REG_WRITE(REG_GLOBAL, 0x04, 0xc000);
/* Wait up to one second for reset to complete. */
timeout = jiffies + 1 * HZ;
while (time_before(jiffies, timeout)) {
ret = REG_READ(REG_GLOBAL, 0x00);
if ((ret & 0x8800) == 0x8800)
break;
usleep_range(1000, 2000);
}
if (time_after(jiffies, timeout))
return -ETIMEDOUT;
return 0;
}
static int mv88e6352_setup_global(struct dsa_switch *ds)
{
int ret;
int i;
/* Discard packets with excessive collisions,
* mask all interrupt sources, enable PPU (bit 14, undocumented).
*/
REG_WRITE(REG_GLOBAL, 0x04, 0x6000);
/* Set the default address aging time to 5 minutes, and
* enable address learn messages to be sent to all message
* ports.
*/
REG_WRITE(REG_GLOBAL, 0x0a, 0x0148);
/* Configure the priority mapping registers. */
ret = mv88e6xxx_config_prio(ds);
if (ret < 0)
return ret;
/* Configure the upstream port, and configure the upstream
* port as the port to which ingress and egress monitor frames
* are to be sent.
*/
REG_WRITE(REG_GLOBAL, 0x1a, (dsa_upstream_port(ds) * 0x1110));
/* Disable remote management for now, and set the switch's
* DSA device number.
*/
REG_WRITE(REG_GLOBAL, 0x1c, ds->index & 0x1f);
/* Send all frames with destination addresses matching
* 01:80:c2:00:00:2x to the CPU port.
*/
REG_WRITE(REG_GLOBAL2, 0x02, 0xffff);
/* Send all frames with destination addresses matching
* 01:80:c2:00:00:0x to the CPU port.
*/
REG_WRITE(REG_GLOBAL2, 0x03, 0xffff);
/* Disable the loopback filter, disable flow control
* messages, disable flood broadcast override, disable
* removing of provider tags, disable ATU age violation
* interrupts, disable tag flow control, force flow
* control priority to the highest, and send all special
* multicast frames to the CPU at the highest priority.
*/
REG_WRITE(REG_GLOBAL2, 0x05, 0x00ff);
/* Program the DSA routing table. */
for (i = 0; i < 32; i++) {
int nexthop = 0x1f;
if (i != ds->index && i < ds->dst->pd->nr_chips)
nexthop = ds->pd->rtable[i] & 0x1f;
REG_WRITE(REG_GLOBAL2, 0x06, 0x8000 | (i << 8) | nexthop);
}
/* Clear all trunk masks. */
for (i = 0; i < 8; i++)
REG_WRITE(REG_GLOBAL2, 0x07, 0x8000 | (i << 12) | 0x7f);
/* Clear all trunk mappings. */
for (i = 0; i < 16; i++)
REG_WRITE(REG_GLOBAL2, 0x08, 0x8000 | (i << 11));
/* Disable ingress rate limiting by resetting all ingress
* rate limit registers to their initial state.
*/
for (i = 0; i < 7; i++)
REG_WRITE(REG_GLOBAL2, 0x09, 0x9000 | (i << 8));
/* Initialise cross-chip port VLAN table to reset defaults. */
REG_WRITE(REG_GLOBAL2, 0x0b, 0x9000);
/* Clear the priority override table. */
for (i = 0; i < 16; i++)
REG_WRITE(REG_GLOBAL2, 0x0f, 0x8000 | (i << 8));
/* @@@ initialise AVB (22/23) watchdog (27) sdet (29) registers */
return 0;
}
static int mv88e6352_setup_port(struct dsa_switch *ds, int p)
{
int addr = REG_PORT(p);
u16 val;
/* MAC Forcing register: don't force link, speed, duplex
* or flow control state to any particular values on physical
* ports, but force the CPU port and all DSA ports to 1000 Mb/s
* full duplex.
*/
if (dsa_is_cpu_port(ds, p) || ds->dsa_port_mask & (1 << p))
REG_WRITE(addr, 0x01, 0x003e);
else
REG_WRITE(addr, 0x01, 0x0003);
/* Do not limit the period of time that this port can be
* paused for by the remote end or the period of time that
* this port can pause the remote end.
*/
REG_WRITE(addr, 0x02, 0x0000);
/* Port Control: disable Drop-on-Unlock, disable Drop-on-Lock,
* disable Header mode, enable IGMP/MLD snooping, disable VLAN
* tunneling, determine priority by looking at 802.1p and IP
* priority fields (IP prio has precedence), and set STP state
* to Forwarding.
*
* If this is the CPU link, use DSA or EDSA tagging depending
* on which tagging mode was configured.
*
* If this is a link to another switch, use DSA tagging mode.
*
* If this is the upstream port for this switch, enable
* forwarding of unknown unicasts and multicasts.
*/
val = 0x0433;
if (dsa_is_cpu_port(ds, p)) {
if (ds->dst->tag_protocol == DSA_TAG_PROTO_EDSA)
val |= 0x3300;
else
val |= 0x0100;
}
if (ds->dsa_port_mask & (1 << p))
val |= 0x0100;
if (p == dsa_upstream_port(ds))
val |= 0x000c;
REG_WRITE(addr, 0x04, val);
/* Port Control 1: disable trunking. Also, if this is the
* CPU port, enable learn messages to be sent to this port.
*/
REG_WRITE(addr, 0x05, dsa_is_cpu_port(ds, p) ? 0x8000 : 0x0000);
/* Port based VLAN map: give each port its own address
* database, allow the CPU port to talk to each of the 'real'
* ports, and allow each of the 'real' ports to only talk to
* the upstream port.
*/
val = (p & 0xf) << 12;
if (dsa_is_cpu_port(ds, p))
val |= ds->phys_port_mask;
else
val |= 1 << dsa_upstream_port(ds);
REG_WRITE(addr, 0x06, val);
/* Default VLAN ID and priority: don't set a default VLAN
* ID, and set the default packet priority to zero.
*/
REG_WRITE(addr, 0x07, 0x0000);
/* Port Control 2: don't force a good FCS, set the maximum
* frame size to 10240 bytes, don't let the switch add or
* strip 802.1q tags, don't discard tagged or untagged frames
* on this port, do a destination address lookup on all
* received packets as usual, disable ARP mirroring and don't
* send a copy of all transmitted/received frames on this port
* to the CPU.
*/
REG_WRITE(addr, 0x08, 0x2080);
/* Egress rate control: disable egress rate control. */
REG_WRITE(addr, 0x09, 0x0001);
/* Egress rate control 2: disable egress rate control. */
REG_WRITE(addr, 0x0a, 0x0000);
/* Port Association Vector: when learning source addresses
* of packets, add the address to the address database using
* a port bitmap that has only the bit for this port set and
* the other bits clear.
*/
REG_WRITE(addr, 0x0b, 1 << p);
/* Port ATU control: disable limiting the number of address
* database entries that this port is allowed to use.
*/
REG_WRITE(addr, 0x0c, 0x0000);
/* Priority Override: disable DA, SA and VTU priority override. */
REG_WRITE(addr, 0x0d, 0x0000);
/* Port Ethertype: use the Ethertype DSA Ethertype value. */
REG_WRITE(addr, 0x0f, ETH_P_EDSA);
/* Tag Remap: use an identity 802.1p prio -> switch prio
* mapping.
*/
REG_WRITE(addr, 0x18, 0x3210);
/* Tag Remap 2: use an identity 802.1p prio -> switch prio
* mapping.
*/
REG_WRITE(addr, 0x19, 0x7654);
return 0;
}
#ifdef CONFIG_NET_DSA_HWMON
static int mv88e6352_phy_page_read(struct dsa_switch *ds,
int port, int page, int reg)
{
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
int ret;
mutex_lock(&ps->phy_mutex);
ret = mv88e6xxx_phy_write_indirect(ds, port, 0x16, page);
if (ret < 0)
goto error;
ret = mv88e6xxx_phy_read_indirect(ds, port, reg);
error:
mv88e6xxx_phy_write_indirect(ds, port, 0x16, 0x0);
mutex_unlock(&ps->phy_mutex);
return ret;
}
static int mv88e6352_phy_page_write(struct dsa_switch *ds,
int port, int page, int reg, int val)
{
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
int ret;
mutex_lock(&ps->phy_mutex);
ret = mv88e6xxx_phy_write_indirect(ds, port, 0x16, page);
if (ret < 0)
goto error;
ret = mv88e6xxx_phy_write_indirect(ds, port, reg, val);
error:
mv88e6xxx_phy_write_indirect(ds, port, 0x16, 0x0);
mutex_unlock(&ps->phy_mutex);
return ret;
}
static int mv88e6352_get_temp(struct dsa_switch *ds, int *temp)
{
int ret;
*temp = 0;
ret = mv88e6352_phy_page_read(ds, 0, 6, 27);
if (ret < 0)
return ret;
*temp = (ret & 0xff) - 25;
return 0;
}
static int mv88e6352_get_temp_limit(struct dsa_switch *ds, int *temp)
{
int ret;
*temp = 0;
ret = mv88e6352_phy_page_read(ds, 0, 6, 26);
if (ret < 0)
return ret;
*temp = (((ret >> 8) & 0x1f) * 5) - 25;
return 0;
}
static int mv88e6352_set_temp_limit(struct dsa_switch *ds, int temp)
{
int ret;
ret = mv88e6352_phy_page_read(ds, 0, 6, 26);
if (ret < 0)
return ret;
temp = clamp_val(DIV_ROUND_CLOSEST(temp, 5) + 5, 0, 0x1f);
return mv88e6352_phy_page_write(ds, 0, 6, 26,
(ret & 0xe0ff) | (temp << 8));
}
static int mv88e6352_get_temp_alarm(struct dsa_switch *ds, bool *alarm)
{
int ret;
*alarm = false;
ret = mv88e6352_phy_page_read(ds, 0, 6, 26);
if (ret < 0)
return ret;
*alarm = !!(ret & 0x40);
return 0;
}
#endif /* CONFIG_NET_DSA_HWMON */
static int mv88e6352_setup(struct dsa_switch *ds)
{
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
int ret;
int i;
mutex_init(&ps->smi_mutex);
mutex_init(&ps->stats_mutex);
mutex_init(&ps->phy_mutex);
mutex_init(&ps->eeprom_mutex);
ps->id = REG_READ(REG_PORT(0), 0x03) & 0xfff0;
ret = mv88e6352_switch_reset(ds);
if (ret < 0)
return ret;
/* @@@ initialise vtu and atu */
ret = mv88e6352_setup_global(ds);
if (ret < 0)
return ret;
for (i = 0; i < 7; i++) {
ret = mv88e6352_setup_port(ds, i);
if (ret < 0)
return ret;
}
return 0;
}
static int mv88e6352_port_to_phy_addr(int port)
{
if (port >= 0 && port <= 4)
return port;
return -EINVAL;
}
static int
mv88e6352_phy_read(struct dsa_switch *ds, int port, int regnum)
{
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
int addr = mv88e6352_port_to_phy_addr(port);
int ret;
if (addr < 0)
return addr;
mutex_lock(&ps->phy_mutex);
ret = mv88e6xxx_phy_read_indirect(ds, addr, regnum);
mutex_unlock(&ps->phy_mutex);
return ret;
}
static int
mv88e6352_phy_write(struct dsa_switch *ds, int port, int regnum, u16 val)
{
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
int addr = mv88e6352_port_to_phy_addr(port);
int ret;
if (addr < 0)
return addr;
mutex_lock(&ps->phy_mutex);
ret = mv88e6xxx_phy_write_indirect(ds, addr, regnum, val);
mutex_unlock(&ps->phy_mutex);
return ret;
}
static struct mv88e6xxx_hw_stat mv88e6352_hw_stats[] = {
{ "in_good_octets", 8, 0x00, },
{ "in_bad_octets", 4, 0x02, },
{ "in_unicast", 4, 0x04, },
{ "in_broadcasts", 4, 0x06, },
{ "in_multicasts", 4, 0x07, },
{ "in_pause", 4, 0x16, },
{ "in_undersize", 4, 0x18, },
{ "in_fragments", 4, 0x19, },
{ "in_oversize", 4, 0x1a, },
{ "in_jabber", 4, 0x1b, },
{ "in_rx_error", 4, 0x1c, },
{ "in_fcs_error", 4, 0x1d, },
{ "out_octets", 8, 0x0e, },
{ "out_unicast", 4, 0x10, },
{ "out_broadcasts", 4, 0x13, },
{ "out_multicasts", 4, 0x12, },
{ "out_pause", 4, 0x15, },
{ "excessive", 4, 0x11, },
{ "collisions", 4, 0x1e, },
{ "deferred", 4, 0x05, },
{ "single", 4, 0x14, },
{ "multiple", 4, 0x17, },
{ "out_fcs_error", 4, 0x03, },
{ "late", 4, 0x1f, },
{ "hist_64bytes", 4, 0x08, },
{ "hist_65_127bytes", 4, 0x09, },
{ "hist_128_255bytes", 4, 0x0a, },
{ "hist_256_511bytes", 4, 0x0b, },
{ "hist_512_1023bytes", 4, 0x0c, },
{ "hist_1024_max_bytes", 4, 0x0d, },
{ "sw_in_discards", 4, 0x110, },
{ "sw_in_filtered", 2, 0x112, },
{ "sw_out_filtered", 2, 0x113, },
};
static int mv88e6352_read_eeprom_word(struct dsa_switch *ds, int addr)
{
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
int ret;
mutex_lock(&ps->eeprom_mutex);
ret = mv88e6xxx_reg_write(ds, REG_GLOBAL2, 0x14,
0xc000 | (addr & 0xff));
if (ret < 0)
goto error;
ret = mv88e6xxx_eeprom_busy_wait(ds);
if (ret < 0)
goto error;
ret = mv88e6xxx_reg_read(ds, REG_GLOBAL2, 0x15);
error:
mutex_unlock(&ps->eeprom_mutex);
return ret;
}
static int mv88e6352_get_eeprom(struct dsa_switch *ds,
struct ethtool_eeprom *eeprom, u8 *data)
{
int offset;
int len;
int ret;
offset = eeprom->offset;
len = eeprom->len;
eeprom->len = 0;
eeprom->magic = 0xc3ec4951;
ret = mv88e6xxx_eeprom_load_wait(ds);
if (ret < 0)
return ret;
if (offset & 1) {
int word;
word = mv88e6352_read_eeprom_word(ds, offset >> 1);
if (word < 0)
return word;
*data++ = (word >> 8) & 0xff;
offset++;
len--;
eeprom->len++;
}
while (len >= 2) {
int word;
word = mv88e6352_read_eeprom_word(ds, offset >> 1);
if (word < 0)
return word;
*data++ = word & 0xff;
*data++ = (word >> 8) & 0xff;
offset += 2;
len -= 2;
eeprom->len += 2;
}
if (len) {
int word;
word = mv88e6352_read_eeprom_word(ds, offset >> 1);
if (word < 0)
return word;
*data++ = word & 0xff;
offset++;
len--;
eeprom->len++;
}
return 0;
}
static int mv88e6352_eeprom_is_readonly(struct dsa_switch *ds)
{
int ret;
ret = mv88e6xxx_reg_read(ds, REG_GLOBAL2, 0x14);
if (ret < 0)
return ret;
if (!(ret & 0x0400))
return -EROFS;
return 0;
}
static int mv88e6352_write_eeprom_word(struct dsa_switch *ds, int addr,
u16 data)
{
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
int ret;
mutex_lock(&ps->eeprom_mutex);
ret = mv88e6xxx_reg_write(ds, REG_GLOBAL2, 0x15, data);
if (ret < 0)
goto error;
ret = mv88e6xxx_reg_write(ds, REG_GLOBAL2, 0x14,
0xb000 | (addr & 0xff));
if (ret < 0)
goto error;
ret = mv88e6xxx_eeprom_busy_wait(ds);
error:
mutex_unlock(&ps->eeprom_mutex);
return ret;
}
static int mv88e6352_set_eeprom(struct dsa_switch *ds,
struct ethtool_eeprom *eeprom, u8 *data)
{
int offset;
int ret;
int len;
if (eeprom->magic != 0xc3ec4951)
return -EINVAL;
ret = mv88e6352_eeprom_is_readonly(ds);
if (ret)
return ret;
offset = eeprom->offset;
len = eeprom->len;
eeprom->len = 0;
ret = mv88e6xxx_eeprom_load_wait(ds);
if (ret < 0)
return ret;
if (offset & 1) {
int word;
word = mv88e6352_read_eeprom_word(ds, offset >> 1);
if (word < 0)
return word;
word = (*data++ << 8) | (word & 0xff);
ret = mv88e6352_write_eeprom_word(ds, offset >> 1, word);
if (ret < 0)
return ret;
offset++;
len--;
eeprom->len++;
}
while (len >= 2) {
int word;
word = *data++;
word |= *data++ << 8;
ret = mv88e6352_write_eeprom_word(ds, offset >> 1, word);
if (ret < 0)
return ret;
offset += 2;
len -= 2;
eeprom->len += 2;
}
if (len) {
int word;
word = mv88e6352_read_eeprom_word(ds, offset >> 1);
if (word < 0)
return word;
word = (word & 0xff00) | *data++;
ret = mv88e6352_write_eeprom_word(ds, offset >> 1, word);
if (ret < 0)
return ret;
offset++;
len--;
eeprom->len++;
}
return 0;
}
static void
mv88e6352_get_strings(struct dsa_switch *ds, int port, uint8_t *data)
{
mv88e6xxx_get_strings(ds, ARRAY_SIZE(mv88e6352_hw_stats),
mv88e6352_hw_stats, port, data);
}
static void
mv88e6352_get_ethtool_stats(struct dsa_switch *ds, int port, uint64_t *data)
{
mv88e6xxx_get_ethtool_stats(ds, ARRAY_SIZE(mv88e6352_hw_stats),
mv88e6352_hw_stats, port, data);
}
static int mv88e6352_get_sset_count(struct dsa_switch *ds)
{
return ARRAY_SIZE(mv88e6352_hw_stats);
}
struct dsa_switch_driver mv88e6352_switch_driver = {
.tag_protocol = DSA_TAG_PROTO_EDSA,
.priv_size = sizeof(struct mv88e6xxx_priv_state),
.probe = mv88e6352_probe,
.setup = mv88e6352_setup,
.set_addr = mv88e6xxx_set_addr_indirect,
.phy_read = mv88e6352_phy_read,
.phy_write = mv88e6352_phy_write,
.poll_link = mv88e6xxx_poll_link,
.get_strings = mv88e6352_get_strings,
.get_ethtool_stats = mv88e6352_get_ethtool_stats,
.get_sset_count = mv88e6352_get_sset_count,
.set_eee = mv88e6xxx_set_eee,
.get_eee = mv88e6xxx_get_eee,
#ifdef CONFIG_NET_DSA_HWMON
.get_temp = mv88e6352_get_temp,
.get_temp_limit = mv88e6352_get_temp_limit,
.set_temp_limit = mv88e6352_set_temp_limit,
.get_temp_alarm = mv88e6352_get_temp_alarm,
#endif
.get_eeprom = mv88e6352_get_eeprom,
.set_eeprom = mv88e6352_set_eeprom,
.get_regs_len = mv88e6xxx_get_regs_len,
.get_regs = mv88e6xxx_get_regs,
};
MODULE_ALIAS("platform:mv88e6352");