5508 lines
156 KiB
C
5508 lines
156 KiB
C
// SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause)
|
|
/*
|
|
* Copyright(c) 2018 Intel Corporation.
|
|
*
|
|
*/
|
|
|
|
#include "hfi.h"
|
|
#include "qp.h"
|
|
#include "rc.h"
|
|
#include "verbs.h"
|
|
#include "tid_rdma.h"
|
|
#include "exp_rcv.h"
|
|
#include "trace.h"
|
|
|
|
/**
|
|
* DOC: TID RDMA READ protocol
|
|
*
|
|
* This is an end-to-end protocol at the hfi1 level between two nodes that
|
|
* improves performance by avoiding data copy on the requester side. It
|
|
* converts a qualified RDMA READ request into a TID RDMA READ request on
|
|
* the requester side and thereafter handles the request and response
|
|
* differently. To be qualified, the RDMA READ request should meet the
|
|
* following:
|
|
* -- The total data length should be greater than 256K;
|
|
* -- The total data length should be a multiple of 4K page size;
|
|
* -- Each local scatter-gather entry should be 4K page aligned;
|
|
* -- Each local scatter-gather entry should be a multiple of 4K page size;
|
|
*/
|
|
|
|
#define RCV_TID_FLOW_TABLE_CTRL_FLOW_VALID_SMASK BIT_ULL(32)
|
|
#define RCV_TID_FLOW_TABLE_CTRL_HDR_SUPP_EN_SMASK BIT_ULL(33)
|
|
#define RCV_TID_FLOW_TABLE_CTRL_KEEP_AFTER_SEQ_ERR_SMASK BIT_ULL(34)
|
|
#define RCV_TID_FLOW_TABLE_CTRL_KEEP_ON_GEN_ERR_SMASK BIT_ULL(35)
|
|
#define RCV_TID_FLOW_TABLE_STATUS_SEQ_MISMATCH_SMASK BIT_ULL(37)
|
|
#define RCV_TID_FLOW_TABLE_STATUS_GEN_MISMATCH_SMASK BIT_ULL(38)
|
|
|
|
/* Maximum number of packets within a flow generation. */
|
|
#define MAX_TID_FLOW_PSN BIT(HFI1_KDETH_BTH_SEQ_SHIFT)
|
|
|
|
#define GENERATION_MASK 0xFFFFF
|
|
|
|
static u32 mask_generation(u32 a)
|
|
{
|
|
return a & GENERATION_MASK;
|
|
}
|
|
|
|
/* Reserved generation value to set to unused flows for kernel contexts */
|
|
#define KERN_GENERATION_RESERVED mask_generation(U32_MAX)
|
|
|
|
/*
|
|
* J_KEY for kernel contexts when TID RDMA is used.
|
|
* See generate_jkey() in hfi.h for more information.
|
|
*/
|
|
#define TID_RDMA_JKEY 32
|
|
#define HFI1_KERNEL_MIN_JKEY HFI1_ADMIN_JKEY_RANGE
|
|
#define HFI1_KERNEL_MAX_JKEY (2 * HFI1_ADMIN_JKEY_RANGE - 1)
|
|
|
|
/* Maximum number of segments in flight per QP request. */
|
|
#define TID_RDMA_MAX_READ_SEGS_PER_REQ 6
|
|
#define TID_RDMA_MAX_WRITE_SEGS_PER_REQ 4
|
|
#define MAX_REQ max_t(u16, TID_RDMA_MAX_READ_SEGS_PER_REQ, \
|
|
TID_RDMA_MAX_WRITE_SEGS_PER_REQ)
|
|
#define MAX_FLOWS roundup_pow_of_two(MAX_REQ + 1)
|
|
|
|
#define MAX_EXPECTED_PAGES (MAX_EXPECTED_BUFFER / PAGE_SIZE)
|
|
|
|
#define TID_RDMA_DESTQP_FLOW_SHIFT 11
|
|
#define TID_RDMA_DESTQP_FLOW_MASK 0x1f
|
|
|
|
#define TID_OPFN_QP_CTXT_MASK 0xff
|
|
#define TID_OPFN_QP_CTXT_SHIFT 56
|
|
#define TID_OPFN_QP_KDETH_MASK 0xff
|
|
#define TID_OPFN_QP_KDETH_SHIFT 48
|
|
#define TID_OPFN_MAX_LEN_MASK 0x7ff
|
|
#define TID_OPFN_MAX_LEN_SHIFT 37
|
|
#define TID_OPFN_TIMEOUT_MASK 0x1f
|
|
#define TID_OPFN_TIMEOUT_SHIFT 32
|
|
#define TID_OPFN_RESERVED_MASK 0x3f
|
|
#define TID_OPFN_RESERVED_SHIFT 26
|
|
#define TID_OPFN_URG_MASK 0x1
|
|
#define TID_OPFN_URG_SHIFT 25
|
|
#define TID_OPFN_VER_MASK 0x7
|
|
#define TID_OPFN_VER_SHIFT 22
|
|
#define TID_OPFN_JKEY_MASK 0x3f
|
|
#define TID_OPFN_JKEY_SHIFT 16
|
|
#define TID_OPFN_MAX_READ_MASK 0x3f
|
|
#define TID_OPFN_MAX_READ_SHIFT 10
|
|
#define TID_OPFN_MAX_WRITE_MASK 0x3f
|
|
#define TID_OPFN_MAX_WRITE_SHIFT 4
|
|
|
|
/*
|
|
* OPFN TID layout
|
|
*
|
|
* 63 47 31 15
|
|
* NNNNNNNNKKKKKKKK MMMMMMMMMMMTTTTT DDDDDDUVVVJJJJJJ RRRRRRWWWWWWCCCC
|
|
* 3210987654321098 7654321098765432 1098765432109876 5432109876543210
|
|
* N - the context Number
|
|
* K - the Kdeth_qp
|
|
* M - Max_len
|
|
* T - Timeout
|
|
* D - reserveD
|
|
* V - version
|
|
* U - Urg capable
|
|
* J - Jkey
|
|
* R - max_Read
|
|
* W - max_Write
|
|
* C - Capcode
|
|
*/
|
|
|
|
static void tid_rdma_trigger_resume(struct work_struct *work);
|
|
static void hfi1_kern_exp_rcv_free_flows(struct tid_rdma_request *req);
|
|
static int hfi1_kern_exp_rcv_alloc_flows(struct tid_rdma_request *req,
|
|
gfp_t gfp);
|
|
static void hfi1_init_trdma_req(struct rvt_qp *qp,
|
|
struct tid_rdma_request *req);
|
|
static void hfi1_tid_write_alloc_resources(struct rvt_qp *qp, bool intr_ctx);
|
|
static void hfi1_tid_timeout(struct timer_list *t);
|
|
static void hfi1_add_tid_reap_timer(struct rvt_qp *qp);
|
|
static void hfi1_mod_tid_reap_timer(struct rvt_qp *qp);
|
|
static void hfi1_mod_tid_retry_timer(struct rvt_qp *qp);
|
|
static int hfi1_stop_tid_retry_timer(struct rvt_qp *qp);
|
|
static void hfi1_tid_retry_timeout(struct timer_list *t);
|
|
static int make_tid_rdma_ack(struct rvt_qp *qp,
|
|
struct ib_other_headers *ohdr,
|
|
struct hfi1_pkt_state *ps);
|
|
static void hfi1_do_tid_send(struct rvt_qp *qp);
|
|
static u32 read_r_next_psn(struct hfi1_devdata *dd, u8 ctxt, u8 fidx);
|
|
static void tid_rdma_rcv_err(struct hfi1_packet *packet,
|
|
struct ib_other_headers *ohdr,
|
|
struct rvt_qp *qp, u32 psn, int diff, bool fecn);
|
|
static void update_r_next_psn_fecn(struct hfi1_packet *packet,
|
|
struct hfi1_qp_priv *priv,
|
|
struct hfi1_ctxtdata *rcd,
|
|
struct tid_rdma_flow *flow,
|
|
bool fecn);
|
|
|
|
static void validate_r_tid_ack(struct hfi1_qp_priv *priv)
|
|
{
|
|
if (priv->r_tid_ack == HFI1_QP_WQE_INVALID)
|
|
priv->r_tid_ack = priv->r_tid_tail;
|
|
}
|
|
|
|
static void tid_rdma_schedule_ack(struct rvt_qp *qp)
|
|
{
|
|
struct hfi1_qp_priv *priv = qp->priv;
|
|
|
|
priv->s_flags |= RVT_S_ACK_PENDING;
|
|
hfi1_schedule_tid_send(qp);
|
|
}
|
|
|
|
static void tid_rdma_trigger_ack(struct rvt_qp *qp)
|
|
{
|
|
validate_r_tid_ack(qp->priv);
|
|
tid_rdma_schedule_ack(qp);
|
|
}
|
|
|
|
static u64 tid_rdma_opfn_encode(struct tid_rdma_params *p)
|
|
{
|
|
return
|
|
(((u64)p->qp & TID_OPFN_QP_CTXT_MASK) <<
|
|
TID_OPFN_QP_CTXT_SHIFT) |
|
|
((((u64)p->qp >> 16) & TID_OPFN_QP_KDETH_MASK) <<
|
|
TID_OPFN_QP_KDETH_SHIFT) |
|
|
(((u64)((p->max_len >> PAGE_SHIFT) - 1) &
|
|
TID_OPFN_MAX_LEN_MASK) << TID_OPFN_MAX_LEN_SHIFT) |
|
|
(((u64)p->timeout & TID_OPFN_TIMEOUT_MASK) <<
|
|
TID_OPFN_TIMEOUT_SHIFT) |
|
|
(((u64)p->urg & TID_OPFN_URG_MASK) << TID_OPFN_URG_SHIFT) |
|
|
(((u64)p->jkey & TID_OPFN_JKEY_MASK) << TID_OPFN_JKEY_SHIFT) |
|
|
(((u64)p->max_read & TID_OPFN_MAX_READ_MASK) <<
|
|
TID_OPFN_MAX_READ_SHIFT) |
|
|
(((u64)p->max_write & TID_OPFN_MAX_WRITE_MASK) <<
|
|
TID_OPFN_MAX_WRITE_SHIFT);
|
|
}
|
|
|
|
static void tid_rdma_opfn_decode(struct tid_rdma_params *p, u64 data)
|
|
{
|
|
p->max_len = (((data >> TID_OPFN_MAX_LEN_SHIFT) &
|
|
TID_OPFN_MAX_LEN_MASK) + 1) << PAGE_SHIFT;
|
|
p->jkey = (data >> TID_OPFN_JKEY_SHIFT) & TID_OPFN_JKEY_MASK;
|
|
p->max_write = (data >> TID_OPFN_MAX_WRITE_SHIFT) &
|
|
TID_OPFN_MAX_WRITE_MASK;
|
|
p->max_read = (data >> TID_OPFN_MAX_READ_SHIFT) &
|
|
TID_OPFN_MAX_READ_MASK;
|
|
p->qp =
|
|
((((data >> TID_OPFN_QP_KDETH_SHIFT) & TID_OPFN_QP_KDETH_MASK)
|
|
<< 16) |
|
|
((data >> TID_OPFN_QP_CTXT_SHIFT) & TID_OPFN_QP_CTXT_MASK));
|
|
p->urg = (data >> TID_OPFN_URG_SHIFT) & TID_OPFN_URG_MASK;
|
|
p->timeout = (data >> TID_OPFN_TIMEOUT_SHIFT) & TID_OPFN_TIMEOUT_MASK;
|
|
}
|
|
|
|
void tid_rdma_opfn_init(struct rvt_qp *qp, struct tid_rdma_params *p)
|
|
{
|
|
struct hfi1_qp_priv *priv = qp->priv;
|
|
|
|
p->qp = (kdeth_qp << 16) | priv->rcd->ctxt;
|
|
p->max_len = TID_RDMA_MAX_SEGMENT_SIZE;
|
|
p->jkey = priv->rcd->jkey;
|
|
p->max_read = TID_RDMA_MAX_READ_SEGS_PER_REQ;
|
|
p->max_write = TID_RDMA_MAX_WRITE_SEGS_PER_REQ;
|
|
p->timeout = qp->timeout;
|
|
p->urg = is_urg_masked(priv->rcd);
|
|
}
|
|
|
|
bool tid_rdma_conn_req(struct rvt_qp *qp, u64 *data)
|
|
{
|
|
struct hfi1_qp_priv *priv = qp->priv;
|
|
|
|
*data = tid_rdma_opfn_encode(&priv->tid_rdma.local);
|
|
return true;
|
|
}
|
|
|
|
bool tid_rdma_conn_reply(struct rvt_qp *qp, u64 data)
|
|
{
|
|
struct hfi1_qp_priv *priv = qp->priv;
|
|
struct tid_rdma_params *remote, *old;
|
|
bool ret = true;
|
|
|
|
old = rcu_dereference_protected(priv->tid_rdma.remote,
|
|
lockdep_is_held(&priv->opfn.lock));
|
|
data &= ~0xfULL;
|
|
/*
|
|
* If data passed in is zero, return true so as not to continue the
|
|
* negotiation process
|
|
*/
|
|
if (!data || !HFI1_CAP_IS_KSET(TID_RDMA))
|
|
goto null;
|
|
/*
|
|
* If kzalloc fails, return false. This will result in:
|
|
* * at the requester a new OPFN request being generated to retry
|
|
* the negotiation
|
|
* * at the responder, 0 being returned to the requester so as to
|
|
* disable TID RDMA at both the requester and the responder
|
|
*/
|
|
remote = kzalloc(sizeof(*remote), GFP_ATOMIC);
|
|
if (!remote) {
|
|
ret = false;
|
|
goto null;
|
|
}
|
|
|
|
tid_rdma_opfn_decode(remote, data);
|
|
priv->tid_timer_timeout_jiffies =
|
|
usecs_to_jiffies((((4096UL * (1UL << remote->timeout)) /
|
|
1000UL) << 3) * 7);
|
|
trace_hfi1_opfn_param(qp, 0, &priv->tid_rdma.local);
|
|
trace_hfi1_opfn_param(qp, 1, remote);
|
|
rcu_assign_pointer(priv->tid_rdma.remote, remote);
|
|
/*
|
|
* A TID RDMA READ request's segment size is not equal to
|
|
* remote->max_len only when the request's data length is smaller
|
|
* than remote->max_len. In that case, there will be only one segment.
|
|
* Therefore, when priv->pkts_ps is used to calculate req->cur_seg
|
|
* during retry, it will lead to req->cur_seg = 0, which is exactly
|
|
* what is expected.
|
|
*/
|
|
priv->pkts_ps = (u16)rvt_div_mtu(qp, remote->max_len);
|
|
priv->timeout_shift = ilog2(priv->pkts_ps - 1) + 1;
|
|
goto free;
|
|
null:
|
|
RCU_INIT_POINTER(priv->tid_rdma.remote, NULL);
|
|
priv->timeout_shift = 0;
|
|
free:
|
|
if (old)
|
|
kfree_rcu(old, rcu_head);
|
|
return ret;
|
|
}
|
|
|
|
bool tid_rdma_conn_resp(struct rvt_qp *qp, u64 *data)
|
|
{
|
|
bool ret;
|
|
|
|
ret = tid_rdma_conn_reply(qp, *data);
|
|
*data = 0;
|
|
/*
|
|
* If tid_rdma_conn_reply() returns error, set *data as 0 to indicate
|
|
* TID RDMA could not be enabled. This will result in TID RDMA being
|
|
* disabled at the requester too.
|
|
*/
|
|
if (ret)
|
|
(void)tid_rdma_conn_req(qp, data);
|
|
return ret;
|
|
}
|
|
|
|
void tid_rdma_conn_error(struct rvt_qp *qp)
|
|
{
|
|
struct hfi1_qp_priv *priv = qp->priv;
|
|
struct tid_rdma_params *old;
|
|
|
|
old = rcu_dereference_protected(priv->tid_rdma.remote,
|
|
lockdep_is_held(&priv->opfn.lock));
|
|
RCU_INIT_POINTER(priv->tid_rdma.remote, NULL);
|
|
if (old)
|
|
kfree_rcu(old, rcu_head);
|
|
}
|
|
|
|
/* This is called at context initialization time */
|
|
int hfi1_kern_exp_rcv_init(struct hfi1_ctxtdata *rcd, int reinit)
|
|
{
|
|
if (reinit)
|
|
return 0;
|
|
|
|
BUILD_BUG_ON(TID_RDMA_JKEY < HFI1_KERNEL_MIN_JKEY);
|
|
BUILD_BUG_ON(TID_RDMA_JKEY > HFI1_KERNEL_MAX_JKEY);
|
|
rcd->jkey = TID_RDMA_JKEY;
|
|
hfi1_set_ctxt_jkey(rcd->dd, rcd, rcd->jkey);
|
|
return hfi1_alloc_ctxt_rcv_groups(rcd);
|
|
}
|
|
|
|
/**
|
|
* qp_to_rcd - determine the receive context used by a qp
|
|
* @qp - the qp
|
|
*
|
|
* This routine returns the receive context associated
|
|
* with a a qp's qpn.
|
|
*
|
|
* Returns the context.
|
|
*/
|
|
static struct hfi1_ctxtdata *qp_to_rcd(struct rvt_dev_info *rdi,
|
|
struct rvt_qp *qp)
|
|
{
|
|
struct hfi1_ibdev *verbs_dev = container_of(rdi,
|
|
struct hfi1_ibdev,
|
|
rdi);
|
|
struct hfi1_devdata *dd = container_of(verbs_dev,
|
|
struct hfi1_devdata,
|
|
verbs_dev);
|
|
unsigned int ctxt;
|
|
|
|
if (qp->ibqp.qp_num == 0)
|
|
ctxt = 0;
|
|
else
|
|
ctxt = hfi1_get_qp_map(dd, qp->ibqp.qp_num >> dd->qos_shift);
|
|
return dd->rcd[ctxt];
|
|
}
|
|
|
|
int hfi1_qp_priv_init(struct rvt_dev_info *rdi, struct rvt_qp *qp,
|
|
struct ib_qp_init_attr *init_attr)
|
|
{
|
|
struct hfi1_qp_priv *qpriv = qp->priv;
|
|
int i, ret;
|
|
|
|
qpriv->rcd = qp_to_rcd(rdi, qp);
|
|
|
|
spin_lock_init(&qpriv->opfn.lock);
|
|
INIT_WORK(&qpriv->opfn.opfn_work, opfn_send_conn_request);
|
|
INIT_WORK(&qpriv->tid_rdma.trigger_work, tid_rdma_trigger_resume);
|
|
qpriv->flow_state.psn = 0;
|
|
qpriv->flow_state.index = RXE_NUM_TID_FLOWS;
|
|
qpriv->flow_state.last_index = RXE_NUM_TID_FLOWS;
|
|
qpriv->flow_state.generation = KERN_GENERATION_RESERVED;
|
|
qpriv->s_state = TID_OP(WRITE_RESP);
|
|
qpriv->s_tid_cur = HFI1_QP_WQE_INVALID;
|
|
qpriv->s_tid_head = HFI1_QP_WQE_INVALID;
|
|
qpriv->s_tid_tail = HFI1_QP_WQE_INVALID;
|
|
qpriv->rnr_nak_state = TID_RNR_NAK_INIT;
|
|
qpriv->r_tid_head = HFI1_QP_WQE_INVALID;
|
|
qpriv->r_tid_tail = HFI1_QP_WQE_INVALID;
|
|
qpriv->r_tid_ack = HFI1_QP_WQE_INVALID;
|
|
qpriv->r_tid_alloc = HFI1_QP_WQE_INVALID;
|
|
atomic_set(&qpriv->n_requests, 0);
|
|
atomic_set(&qpriv->n_tid_requests, 0);
|
|
timer_setup(&qpriv->s_tid_timer, hfi1_tid_timeout, 0);
|
|
timer_setup(&qpriv->s_tid_retry_timer, hfi1_tid_retry_timeout, 0);
|
|
INIT_LIST_HEAD(&qpriv->tid_wait);
|
|
|
|
if (init_attr->qp_type == IB_QPT_RC && HFI1_CAP_IS_KSET(TID_RDMA)) {
|
|
struct hfi1_devdata *dd = qpriv->rcd->dd;
|
|
|
|
qpriv->pages = kzalloc_node(TID_RDMA_MAX_PAGES *
|
|
sizeof(*qpriv->pages),
|
|
GFP_KERNEL, dd->node);
|
|
if (!qpriv->pages)
|
|
return -ENOMEM;
|
|
for (i = 0; i < qp->s_size; i++) {
|
|
struct hfi1_swqe_priv *priv;
|
|
struct rvt_swqe *wqe = rvt_get_swqe_ptr(qp, i);
|
|
|
|
priv = kzalloc_node(sizeof(*priv), GFP_KERNEL,
|
|
dd->node);
|
|
if (!priv)
|
|
return -ENOMEM;
|
|
|
|
hfi1_init_trdma_req(qp, &priv->tid_req);
|
|
priv->tid_req.e.swqe = wqe;
|
|
wqe->priv = priv;
|
|
}
|
|
for (i = 0; i < rvt_max_atomic(rdi); i++) {
|
|
struct hfi1_ack_priv *priv;
|
|
|
|
priv = kzalloc_node(sizeof(*priv), GFP_KERNEL,
|
|
dd->node);
|
|
if (!priv)
|
|
return -ENOMEM;
|
|
|
|
hfi1_init_trdma_req(qp, &priv->tid_req);
|
|
priv->tid_req.e.ack = &qp->s_ack_queue[i];
|
|
|
|
ret = hfi1_kern_exp_rcv_alloc_flows(&priv->tid_req,
|
|
GFP_KERNEL);
|
|
if (ret) {
|
|
kfree(priv);
|
|
return ret;
|
|
}
|
|
qp->s_ack_queue[i].priv = priv;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
void hfi1_qp_priv_tid_free(struct rvt_dev_info *rdi, struct rvt_qp *qp)
|
|
{
|
|
struct hfi1_qp_priv *qpriv = qp->priv;
|
|
struct rvt_swqe *wqe;
|
|
u32 i;
|
|
|
|
if (qp->ibqp.qp_type == IB_QPT_RC && HFI1_CAP_IS_KSET(TID_RDMA)) {
|
|
for (i = 0; i < qp->s_size; i++) {
|
|
wqe = rvt_get_swqe_ptr(qp, i);
|
|
kfree(wqe->priv);
|
|
wqe->priv = NULL;
|
|
}
|
|
for (i = 0; i < rvt_max_atomic(rdi); i++) {
|
|
struct hfi1_ack_priv *priv = qp->s_ack_queue[i].priv;
|
|
|
|
if (priv)
|
|
hfi1_kern_exp_rcv_free_flows(&priv->tid_req);
|
|
kfree(priv);
|
|
qp->s_ack_queue[i].priv = NULL;
|
|
}
|
|
cancel_work_sync(&qpriv->opfn.opfn_work);
|
|
kfree(qpriv->pages);
|
|
qpriv->pages = NULL;
|
|
}
|
|
}
|
|
|
|
/* Flow and tid waiter functions */
|
|
/**
|
|
* DOC: lock ordering
|
|
*
|
|
* There are two locks involved with the queuing
|
|
* routines: the qp s_lock and the exp_lock.
|
|
*
|
|
* Since the tid space allocation is called from
|
|
* the send engine, the qp s_lock is already held.
|
|
*
|
|
* The allocation routines will get the exp_lock.
|
|
*
|
|
* The first_qp() call is provided to allow the head of
|
|
* the rcd wait queue to be fetched under the exp_lock and
|
|
* followed by a drop of the exp_lock.
|
|
*
|
|
* Any qp in the wait list will have the qp reference count held
|
|
* to hold the qp in memory.
|
|
*/
|
|
|
|
/*
|
|
* return head of rcd wait list
|
|
*
|
|
* Must hold the exp_lock.
|
|
*
|
|
* Get a reference to the QP to hold the QP in memory.
|
|
*
|
|
* The caller must release the reference when the local
|
|
* is no longer being used.
|
|
*/
|
|
static struct rvt_qp *first_qp(struct hfi1_ctxtdata *rcd,
|
|
struct tid_queue *queue)
|
|
__must_hold(&rcd->exp_lock)
|
|
{
|
|
struct hfi1_qp_priv *priv;
|
|
|
|
lockdep_assert_held(&rcd->exp_lock);
|
|
priv = list_first_entry_or_null(&queue->queue_head,
|
|
struct hfi1_qp_priv,
|
|
tid_wait);
|
|
if (!priv)
|
|
return NULL;
|
|
rvt_get_qp(priv->owner);
|
|
return priv->owner;
|
|
}
|
|
|
|
/**
|
|
* kernel_tid_waiters - determine rcd wait
|
|
* @rcd: the receive context
|
|
* @qp: the head of the qp being processed
|
|
*
|
|
* This routine will return false IFF
|
|
* the list is NULL or the head of the
|
|
* list is the indicated qp.
|
|
*
|
|
* Must hold the qp s_lock and the exp_lock.
|
|
*
|
|
* Return:
|
|
* false if either of the conditions below are satisfied:
|
|
* 1. The list is empty or
|
|
* 2. The indicated qp is at the head of the list and the
|
|
* HFI1_S_WAIT_TID_SPACE bit is set in qp->s_flags.
|
|
* true is returned otherwise.
|
|
*/
|
|
static bool kernel_tid_waiters(struct hfi1_ctxtdata *rcd,
|
|
struct tid_queue *queue, struct rvt_qp *qp)
|
|
__must_hold(&rcd->exp_lock) __must_hold(&qp->s_lock)
|
|
{
|
|
struct rvt_qp *fqp;
|
|
bool ret = true;
|
|
|
|
lockdep_assert_held(&qp->s_lock);
|
|
lockdep_assert_held(&rcd->exp_lock);
|
|
fqp = first_qp(rcd, queue);
|
|
if (!fqp || (fqp == qp && (qp->s_flags & HFI1_S_WAIT_TID_SPACE)))
|
|
ret = false;
|
|
rvt_put_qp(fqp);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* dequeue_tid_waiter - dequeue the qp from the list
|
|
* @qp - the qp to remove the wait list
|
|
*
|
|
* This routine removes the indicated qp from the
|
|
* wait list if it is there.
|
|
*
|
|
* This should be done after the hardware flow and
|
|
* tid array resources have been allocated.
|
|
*
|
|
* Must hold the qp s_lock and the rcd exp_lock.
|
|
*
|
|
* It assumes the s_lock to protect the s_flags
|
|
* field and to reliably test the HFI1_S_WAIT_TID_SPACE flag.
|
|
*/
|
|
static void dequeue_tid_waiter(struct hfi1_ctxtdata *rcd,
|
|
struct tid_queue *queue, struct rvt_qp *qp)
|
|
__must_hold(&rcd->exp_lock) __must_hold(&qp->s_lock)
|
|
{
|
|
struct hfi1_qp_priv *priv = qp->priv;
|
|
|
|
lockdep_assert_held(&qp->s_lock);
|
|
lockdep_assert_held(&rcd->exp_lock);
|
|
if (list_empty(&priv->tid_wait))
|
|
return;
|
|
list_del_init(&priv->tid_wait);
|
|
qp->s_flags &= ~HFI1_S_WAIT_TID_SPACE;
|
|
queue->dequeue++;
|
|
rvt_put_qp(qp);
|
|
}
|
|
|
|
/**
|
|
* queue_qp_for_tid_wait - suspend QP on tid space
|
|
* @rcd: the receive context
|
|
* @qp: the qp
|
|
*
|
|
* The qp is inserted at the tail of the rcd
|
|
* wait queue and the HFI1_S_WAIT_TID_SPACE s_flag is set.
|
|
*
|
|
* Must hold the qp s_lock and the exp_lock.
|
|
*/
|
|
static void queue_qp_for_tid_wait(struct hfi1_ctxtdata *rcd,
|
|
struct tid_queue *queue, struct rvt_qp *qp)
|
|
__must_hold(&rcd->exp_lock) __must_hold(&qp->s_lock)
|
|
{
|
|
struct hfi1_qp_priv *priv = qp->priv;
|
|
|
|
lockdep_assert_held(&qp->s_lock);
|
|
lockdep_assert_held(&rcd->exp_lock);
|
|
if (list_empty(&priv->tid_wait)) {
|
|
qp->s_flags |= HFI1_S_WAIT_TID_SPACE;
|
|
list_add_tail(&priv->tid_wait, &queue->queue_head);
|
|
priv->tid_enqueue = ++queue->enqueue;
|
|
rcd->dd->verbs_dev.n_tidwait++;
|
|
trace_hfi1_qpsleep(qp, HFI1_S_WAIT_TID_SPACE);
|
|
rvt_get_qp(qp);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* __trigger_tid_waiter - trigger tid waiter
|
|
* @qp: the qp
|
|
*
|
|
* This is a private entrance to schedule the qp
|
|
* assuming the caller is holding the qp->s_lock.
|
|
*/
|
|
static void __trigger_tid_waiter(struct rvt_qp *qp)
|
|
__must_hold(&qp->s_lock)
|
|
{
|
|
lockdep_assert_held(&qp->s_lock);
|
|
if (!(qp->s_flags & HFI1_S_WAIT_TID_SPACE))
|
|
return;
|
|
trace_hfi1_qpwakeup(qp, HFI1_S_WAIT_TID_SPACE);
|
|
hfi1_schedule_send(qp);
|
|
}
|
|
|
|
/**
|
|
* tid_rdma_schedule_tid_wakeup - schedule wakeup for a qp
|
|
* @qp - the qp
|
|
*
|
|
* trigger a schedule or a waiting qp in a deadlock
|
|
* safe manner. The qp reference is held prior
|
|
* to this call via first_qp().
|
|
*
|
|
* If the qp trigger was already scheduled (!rval)
|
|
* the the reference is dropped, otherwise the resume
|
|
* or the destroy cancel will dispatch the reference.
|
|
*/
|
|
static void tid_rdma_schedule_tid_wakeup(struct rvt_qp *qp)
|
|
{
|
|
struct hfi1_qp_priv *priv;
|
|
struct hfi1_ibport *ibp;
|
|
struct hfi1_pportdata *ppd;
|
|
struct hfi1_devdata *dd;
|
|
bool rval;
|
|
|
|
if (!qp)
|
|
return;
|
|
|
|
priv = qp->priv;
|
|
ibp = to_iport(qp->ibqp.device, qp->port_num);
|
|
ppd = ppd_from_ibp(ibp);
|
|
dd = dd_from_ibdev(qp->ibqp.device);
|
|
|
|
rval = queue_work_on(priv->s_sde ?
|
|
priv->s_sde->cpu :
|
|
cpumask_first(cpumask_of_node(dd->node)),
|
|
ppd->hfi1_wq,
|
|
&priv->tid_rdma.trigger_work);
|
|
if (!rval)
|
|
rvt_put_qp(qp);
|
|
}
|
|
|
|
/**
|
|
* tid_rdma_trigger_resume - field a trigger work request
|
|
* @work - the work item
|
|
*
|
|
* Complete the off qp trigger processing by directly
|
|
* calling the progress routine.
|
|
*/
|
|
static void tid_rdma_trigger_resume(struct work_struct *work)
|
|
{
|
|
struct tid_rdma_qp_params *tr;
|
|
struct hfi1_qp_priv *priv;
|
|
struct rvt_qp *qp;
|
|
|
|
tr = container_of(work, struct tid_rdma_qp_params, trigger_work);
|
|
priv = container_of(tr, struct hfi1_qp_priv, tid_rdma);
|
|
qp = priv->owner;
|
|
spin_lock_irq(&qp->s_lock);
|
|
if (qp->s_flags & HFI1_S_WAIT_TID_SPACE) {
|
|
spin_unlock_irq(&qp->s_lock);
|
|
hfi1_do_send(priv->owner, true);
|
|
} else {
|
|
spin_unlock_irq(&qp->s_lock);
|
|
}
|
|
rvt_put_qp(qp);
|
|
}
|
|
|
|
/**
|
|
* tid_rdma_flush_wait - unwind any tid space wait
|
|
*
|
|
* This is called when resetting a qp to
|
|
* allow a destroy or reset to get rid
|
|
* of any tid space linkage and reference counts.
|
|
*/
|
|
static void _tid_rdma_flush_wait(struct rvt_qp *qp, struct tid_queue *queue)
|
|
__must_hold(&qp->s_lock)
|
|
{
|
|
struct hfi1_qp_priv *priv;
|
|
|
|
if (!qp)
|
|
return;
|
|
lockdep_assert_held(&qp->s_lock);
|
|
priv = qp->priv;
|
|
qp->s_flags &= ~HFI1_S_WAIT_TID_SPACE;
|
|
spin_lock(&priv->rcd->exp_lock);
|
|
if (!list_empty(&priv->tid_wait)) {
|
|
list_del_init(&priv->tid_wait);
|
|
qp->s_flags &= ~HFI1_S_WAIT_TID_SPACE;
|
|
queue->dequeue++;
|
|
rvt_put_qp(qp);
|
|
}
|
|
spin_unlock(&priv->rcd->exp_lock);
|
|
}
|
|
|
|
void hfi1_tid_rdma_flush_wait(struct rvt_qp *qp)
|
|
__must_hold(&qp->s_lock)
|
|
{
|
|
struct hfi1_qp_priv *priv = qp->priv;
|
|
|
|
_tid_rdma_flush_wait(qp, &priv->rcd->flow_queue);
|
|
_tid_rdma_flush_wait(qp, &priv->rcd->rarr_queue);
|
|
}
|
|
|
|
/* Flow functions */
|
|
/**
|
|
* kern_reserve_flow - allocate a hardware flow
|
|
* @rcd - the context to use for allocation
|
|
* @last - the index of the preferred flow. Use RXE_NUM_TID_FLOWS to
|
|
* signify "don't care".
|
|
*
|
|
* Use a bit mask based allocation to reserve a hardware
|
|
* flow for use in receiving KDETH data packets. If a preferred flow is
|
|
* specified the function will attempt to reserve that flow again, if
|
|
* available.
|
|
*
|
|
* The exp_lock must be held.
|
|
*
|
|
* Return:
|
|
* On success: a value postive value between 0 and RXE_NUM_TID_FLOWS - 1
|
|
* On failure: -EAGAIN
|
|
*/
|
|
static int kern_reserve_flow(struct hfi1_ctxtdata *rcd, int last)
|
|
__must_hold(&rcd->exp_lock)
|
|
{
|
|
int nr;
|
|
|
|
/* Attempt to reserve the preferred flow index */
|
|
if (last >= 0 && last < RXE_NUM_TID_FLOWS &&
|
|
!test_and_set_bit(last, &rcd->flow_mask))
|
|
return last;
|
|
|
|
nr = ffz(rcd->flow_mask);
|
|
BUILD_BUG_ON(RXE_NUM_TID_FLOWS >=
|
|
(sizeof(rcd->flow_mask) * BITS_PER_BYTE));
|
|
if (nr > (RXE_NUM_TID_FLOWS - 1))
|
|
return -EAGAIN;
|
|
set_bit(nr, &rcd->flow_mask);
|
|
return nr;
|
|
}
|
|
|
|
static void kern_set_hw_flow(struct hfi1_ctxtdata *rcd, u32 generation,
|
|
u32 flow_idx)
|
|
{
|
|
u64 reg;
|
|
|
|
reg = ((u64)generation << HFI1_KDETH_BTH_SEQ_SHIFT) |
|
|
RCV_TID_FLOW_TABLE_CTRL_FLOW_VALID_SMASK |
|
|
RCV_TID_FLOW_TABLE_CTRL_KEEP_AFTER_SEQ_ERR_SMASK |
|
|
RCV_TID_FLOW_TABLE_CTRL_KEEP_ON_GEN_ERR_SMASK |
|
|
RCV_TID_FLOW_TABLE_STATUS_SEQ_MISMATCH_SMASK |
|
|
RCV_TID_FLOW_TABLE_STATUS_GEN_MISMATCH_SMASK;
|
|
|
|
if (generation != KERN_GENERATION_RESERVED)
|
|
reg |= RCV_TID_FLOW_TABLE_CTRL_HDR_SUPP_EN_SMASK;
|
|
|
|
write_uctxt_csr(rcd->dd, rcd->ctxt,
|
|
RCV_TID_FLOW_TABLE + 8 * flow_idx, reg);
|
|
}
|
|
|
|
static u32 kern_setup_hw_flow(struct hfi1_ctxtdata *rcd, u32 flow_idx)
|
|
__must_hold(&rcd->exp_lock)
|
|
{
|
|
u32 generation = rcd->flows[flow_idx].generation;
|
|
|
|
kern_set_hw_flow(rcd, generation, flow_idx);
|
|
return generation;
|
|
}
|
|
|
|
static u32 kern_flow_generation_next(u32 gen)
|
|
{
|
|
u32 generation = mask_generation(gen + 1);
|
|
|
|
if (generation == KERN_GENERATION_RESERVED)
|
|
generation = mask_generation(generation + 1);
|
|
return generation;
|
|
}
|
|
|
|
static void kern_clear_hw_flow(struct hfi1_ctxtdata *rcd, u32 flow_idx)
|
|
__must_hold(&rcd->exp_lock)
|
|
{
|
|
rcd->flows[flow_idx].generation =
|
|
kern_flow_generation_next(rcd->flows[flow_idx].generation);
|
|
kern_set_hw_flow(rcd, KERN_GENERATION_RESERVED, flow_idx);
|
|
}
|
|
|
|
int hfi1_kern_setup_hw_flow(struct hfi1_ctxtdata *rcd, struct rvt_qp *qp)
|
|
{
|
|
struct hfi1_qp_priv *qpriv = (struct hfi1_qp_priv *)qp->priv;
|
|
struct tid_flow_state *fs = &qpriv->flow_state;
|
|
struct rvt_qp *fqp;
|
|
unsigned long flags;
|
|
int ret = 0;
|
|
|
|
/* The QP already has an allocated flow */
|
|
if (fs->index != RXE_NUM_TID_FLOWS)
|
|
return ret;
|
|
|
|
spin_lock_irqsave(&rcd->exp_lock, flags);
|
|
if (kernel_tid_waiters(rcd, &rcd->flow_queue, qp))
|
|
goto queue;
|
|
|
|
ret = kern_reserve_flow(rcd, fs->last_index);
|
|
if (ret < 0)
|
|
goto queue;
|
|
fs->index = ret;
|
|
fs->last_index = fs->index;
|
|
|
|
/* Generation received in a RESYNC overrides default flow generation */
|
|
if (fs->generation != KERN_GENERATION_RESERVED)
|
|
rcd->flows[fs->index].generation = fs->generation;
|
|
fs->generation = kern_setup_hw_flow(rcd, fs->index);
|
|
fs->psn = 0;
|
|
dequeue_tid_waiter(rcd, &rcd->flow_queue, qp);
|
|
/* get head before dropping lock */
|
|
fqp = first_qp(rcd, &rcd->flow_queue);
|
|
spin_unlock_irqrestore(&rcd->exp_lock, flags);
|
|
|
|
tid_rdma_schedule_tid_wakeup(fqp);
|
|
return 0;
|
|
queue:
|
|
queue_qp_for_tid_wait(rcd, &rcd->flow_queue, qp);
|
|
spin_unlock_irqrestore(&rcd->exp_lock, flags);
|
|
return -EAGAIN;
|
|
}
|
|
|
|
void hfi1_kern_clear_hw_flow(struct hfi1_ctxtdata *rcd, struct rvt_qp *qp)
|
|
{
|
|
struct hfi1_qp_priv *qpriv = (struct hfi1_qp_priv *)qp->priv;
|
|
struct tid_flow_state *fs = &qpriv->flow_state;
|
|
struct rvt_qp *fqp;
|
|
unsigned long flags;
|
|
|
|
if (fs->index >= RXE_NUM_TID_FLOWS)
|
|
return;
|
|
spin_lock_irqsave(&rcd->exp_lock, flags);
|
|
kern_clear_hw_flow(rcd, fs->index);
|
|
clear_bit(fs->index, &rcd->flow_mask);
|
|
fs->index = RXE_NUM_TID_FLOWS;
|
|
fs->psn = 0;
|
|
fs->generation = KERN_GENERATION_RESERVED;
|
|
|
|
/* get head before dropping lock */
|
|
fqp = first_qp(rcd, &rcd->flow_queue);
|
|
spin_unlock_irqrestore(&rcd->exp_lock, flags);
|
|
|
|
if (fqp == qp) {
|
|
__trigger_tid_waiter(fqp);
|
|
rvt_put_qp(fqp);
|
|
} else {
|
|
tid_rdma_schedule_tid_wakeup(fqp);
|
|
}
|
|
}
|
|
|
|
void hfi1_kern_init_ctxt_generations(struct hfi1_ctxtdata *rcd)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < RXE_NUM_TID_FLOWS; i++) {
|
|
rcd->flows[i].generation = mask_generation(prandom_u32());
|
|
kern_set_hw_flow(rcd, KERN_GENERATION_RESERVED, i);
|
|
}
|
|
}
|
|
|
|
/* TID allocation functions */
|
|
static u8 trdma_pset_order(struct tid_rdma_pageset *s)
|
|
{
|
|
u8 count = s->count;
|
|
|
|
return ilog2(count) + 1;
|
|
}
|
|
|
|
/**
|
|
* tid_rdma_find_phys_blocks_4k - get groups base on mr info
|
|
* @npages - number of pages
|
|
* @pages - pointer to an array of page structs
|
|
* @list - page set array to return
|
|
*
|
|
* This routine returns the number of groups associated with
|
|
* the current sge information. This implementation is based
|
|
* on the expected receive find_phys_blocks() adjusted to
|
|
* use the MR information vs. the pfn.
|
|
*
|
|
* Return:
|
|
* the number of RcvArray entries
|
|
*/
|
|
static u32 tid_rdma_find_phys_blocks_4k(struct tid_rdma_flow *flow,
|
|
struct page **pages,
|
|
u32 npages,
|
|
struct tid_rdma_pageset *list)
|
|
{
|
|
u32 pagecount, pageidx, setcount = 0, i;
|
|
void *vaddr, *this_vaddr;
|
|
|
|
if (!npages)
|
|
return 0;
|
|
|
|
/*
|
|
* Look for sets of physically contiguous pages in the user buffer.
|
|
* This will allow us to optimize Expected RcvArray entry usage by
|
|
* using the bigger supported sizes.
|
|
*/
|
|
vaddr = page_address(pages[0]);
|
|
trace_hfi1_tid_flow_page(flow->req->qp, flow, 0, 0, 0, vaddr);
|
|
for (pageidx = 0, pagecount = 1, i = 1; i <= npages; i++) {
|
|
this_vaddr = i < npages ? page_address(pages[i]) : NULL;
|
|
trace_hfi1_tid_flow_page(flow->req->qp, flow, i, 0, 0,
|
|
this_vaddr);
|
|
/*
|
|
* If the vaddr's are not sequential, pages are not physically
|
|
* contiguous.
|
|
*/
|
|
if (this_vaddr != (vaddr + PAGE_SIZE)) {
|
|
/*
|
|
* At this point we have to loop over the set of
|
|
* physically contiguous pages and break them down it
|
|
* sizes supported by the HW.
|
|
* There are two main constraints:
|
|
* 1. The max buffer size is MAX_EXPECTED_BUFFER.
|
|
* If the total set size is bigger than that
|
|
* program only a MAX_EXPECTED_BUFFER chunk.
|
|
* 2. The buffer size has to be a power of two. If
|
|
* it is not, round down to the closes power of
|
|
* 2 and program that size.
|
|
*/
|
|
while (pagecount) {
|
|
int maxpages = pagecount;
|
|
u32 bufsize = pagecount * PAGE_SIZE;
|
|
|
|
if (bufsize > MAX_EXPECTED_BUFFER)
|
|
maxpages =
|
|
MAX_EXPECTED_BUFFER >>
|
|
PAGE_SHIFT;
|
|
else if (!is_power_of_2(bufsize))
|
|
maxpages =
|
|
rounddown_pow_of_two(bufsize) >>
|
|
PAGE_SHIFT;
|
|
|
|
list[setcount].idx = pageidx;
|
|
list[setcount].count = maxpages;
|
|
trace_hfi1_tid_pageset(flow->req->qp, setcount,
|
|
list[setcount].idx,
|
|
list[setcount].count);
|
|
pagecount -= maxpages;
|
|
pageidx += maxpages;
|
|
setcount++;
|
|
}
|
|
pageidx = i;
|
|
pagecount = 1;
|
|
vaddr = this_vaddr;
|
|
} else {
|
|
vaddr += PAGE_SIZE;
|
|
pagecount++;
|
|
}
|
|
}
|
|
/* insure we always return an even number of sets */
|
|
if (setcount & 1)
|
|
list[setcount++].count = 0;
|
|
return setcount;
|
|
}
|
|
|
|
/**
|
|
* tid_flush_pages - dump out pages into pagesets
|
|
* @list - list of pagesets
|
|
* @idx - pointer to current page index
|
|
* @pages - number of pages to dump
|
|
* @sets - current number of pagesset
|
|
*
|
|
* This routine flushes out accumuated pages.
|
|
*
|
|
* To insure an even number of sets the
|
|
* code may add a filler.
|
|
*
|
|
* This can happen with when pages is not
|
|
* a power of 2 or pages is a power of 2
|
|
* less than the maximum pages.
|
|
*
|
|
* Return:
|
|
* The new number of sets
|
|
*/
|
|
|
|
static u32 tid_flush_pages(struct tid_rdma_pageset *list,
|
|
u32 *idx, u32 pages, u32 sets)
|
|
{
|
|
while (pages) {
|
|
u32 maxpages = pages;
|
|
|
|
if (maxpages > MAX_EXPECTED_PAGES)
|
|
maxpages = MAX_EXPECTED_PAGES;
|
|
else if (!is_power_of_2(maxpages))
|
|
maxpages = rounddown_pow_of_two(maxpages);
|
|
list[sets].idx = *idx;
|
|
list[sets++].count = maxpages;
|
|
*idx += maxpages;
|
|
pages -= maxpages;
|
|
}
|
|
/* might need a filler */
|
|
if (sets & 1)
|
|
list[sets++].count = 0;
|
|
return sets;
|
|
}
|
|
|
|
/**
|
|
* tid_rdma_find_phys_blocks_8k - get groups base on mr info
|
|
* @pages - pointer to an array of page structs
|
|
* @npages - number of pages
|
|
* @list - page set array to return
|
|
*
|
|
* This routine parses an array of pages to compute pagesets
|
|
* in an 8k compatible way.
|
|
*
|
|
* pages are tested two at a time, i, i + 1 for contiguous
|
|
* pages and i - 1 and i contiguous pages.
|
|
*
|
|
* If any condition is false, any accumlated pages are flushed and
|
|
* v0,v1 are emitted as separate PAGE_SIZE pagesets
|
|
*
|
|
* Otherwise, the current 8k is totaled for a future flush.
|
|
*
|
|
* Return:
|
|
* The number of pagesets
|
|
* list set with the returned number of pagesets
|
|
*
|
|
*/
|
|
static u32 tid_rdma_find_phys_blocks_8k(struct tid_rdma_flow *flow,
|
|
struct page **pages,
|
|
u32 npages,
|
|
struct tid_rdma_pageset *list)
|
|
{
|
|
u32 idx, sets = 0, i;
|
|
u32 pagecnt = 0;
|
|
void *v0, *v1, *vm1;
|
|
|
|
if (!npages)
|
|
return 0;
|
|
for (idx = 0, i = 0, vm1 = NULL; i < npages; i += 2) {
|
|
/* get a new v0 */
|
|
v0 = page_address(pages[i]);
|
|
trace_hfi1_tid_flow_page(flow->req->qp, flow, i, 1, 0, v0);
|
|
v1 = i + 1 < npages ?
|
|
page_address(pages[i + 1]) : NULL;
|
|
trace_hfi1_tid_flow_page(flow->req->qp, flow, i, 1, 1, v1);
|
|
/* compare i, i + 1 vaddr */
|
|
if (v1 != (v0 + PAGE_SIZE)) {
|
|
/* flush out pages */
|
|
sets = tid_flush_pages(list, &idx, pagecnt, sets);
|
|
/* output v0,v1 as two pagesets */
|
|
list[sets].idx = idx++;
|
|
list[sets++].count = 1;
|
|
if (v1) {
|
|
list[sets].count = 1;
|
|
list[sets++].idx = idx++;
|
|
} else {
|
|
list[sets++].count = 0;
|
|
}
|
|
vm1 = NULL;
|
|
pagecnt = 0;
|
|
continue;
|
|
}
|
|
/* i,i+1 consecutive, look at i-1,i */
|
|
if (vm1 && v0 != (vm1 + PAGE_SIZE)) {
|
|
/* flush out pages */
|
|
sets = tid_flush_pages(list, &idx, pagecnt, sets);
|
|
pagecnt = 0;
|
|
}
|
|
/* pages will always be a multiple of 8k */
|
|
pagecnt += 2;
|
|
/* save i-1 */
|
|
vm1 = v1;
|
|
/* move to next pair */
|
|
}
|
|
/* dump residual pages at end */
|
|
sets = tid_flush_pages(list, &idx, npages - idx, sets);
|
|
/* by design cannot be odd sets */
|
|
WARN_ON(sets & 1);
|
|
return sets;
|
|
}
|
|
|
|
/**
|
|
* Find pages for one segment of a sge array represented by @ss. The function
|
|
* does not check the sge, the sge must have been checked for alignment with a
|
|
* prior call to hfi1_kern_trdma_ok. Other sge checking is done as part of
|
|
* rvt_lkey_ok and rvt_rkey_ok. Also, the function only modifies the local sge
|
|
* copy maintained in @ss->sge, the original sge is not modified.
|
|
*
|
|
* Unlike IB RDMA WRITE, we can't decrement ss->num_sge here because we are not
|
|
* releasing the MR reference count at the same time. Otherwise, we'll "leak"
|
|
* references to the MR. This difference requires that we keep track of progress
|
|
* into the sg_list. This is done by the cur_seg cursor in the tid_rdma_request
|
|
* structure.
|
|
*/
|
|
static u32 kern_find_pages(struct tid_rdma_flow *flow,
|
|
struct page **pages,
|
|
struct rvt_sge_state *ss, bool *last)
|
|
{
|
|
struct tid_rdma_request *req = flow->req;
|
|
struct rvt_sge *sge = &ss->sge;
|
|
u32 length = flow->req->seg_len;
|
|
u32 len = PAGE_SIZE;
|
|
u32 i = 0;
|
|
|
|
while (length && req->isge < ss->num_sge) {
|
|
pages[i++] = virt_to_page(sge->vaddr);
|
|
|
|
sge->vaddr += len;
|
|
sge->length -= len;
|
|
sge->sge_length -= len;
|
|
if (!sge->sge_length) {
|
|
if (++req->isge < ss->num_sge)
|
|
*sge = ss->sg_list[req->isge - 1];
|
|
} else if (sge->length == 0 && sge->mr->lkey) {
|
|
if (++sge->n >= RVT_SEGSZ) {
|
|
++sge->m;
|
|
sge->n = 0;
|
|
}
|
|
sge->vaddr = sge->mr->map[sge->m]->segs[sge->n].vaddr;
|
|
sge->length = sge->mr->map[sge->m]->segs[sge->n].length;
|
|
}
|
|
length -= len;
|
|
}
|
|
|
|
flow->length = flow->req->seg_len - length;
|
|
*last = req->isge == ss->num_sge ? false : true;
|
|
return i;
|
|
}
|
|
|
|
static void dma_unmap_flow(struct tid_rdma_flow *flow)
|
|
{
|
|
struct hfi1_devdata *dd;
|
|
int i;
|
|
struct tid_rdma_pageset *pset;
|
|
|
|
dd = flow->req->rcd->dd;
|
|
for (i = 0, pset = &flow->pagesets[0]; i < flow->npagesets;
|
|
i++, pset++) {
|
|
if (pset->count && pset->addr) {
|
|
dma_unmap_page(&dd->pcidev->dev,
|
|
pset->addr,
|
|
PAGE_SIZE * pset->count,
|
|
DMA_FROM_DEVICE);
|
|
pset->mapped = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
static int dma_map_flow(struct tid_rdma_flow *flow, struct page **pages)
|
|
{
|
|
int i;
|
|
struct hfi1_devdata *dd = flow->req->rcd->dd;
|
|
struct tid_rdma_pageset *pset;
|
|
|
|
for (i = 0, pset = &flow->pagesets[0]; i < flow->npagesets;
|
|
i++, pset++) {
|
|
if (pset->count) {
|
|
pset->addr = dma_map_page(&dd->pcidev->dev,
|
|
pages[pset->idx],
|
|
0,
|
|
PAGE_SIZE * pset->count,
|
|
DMA_FROM_DEVICE);
|
|
|
|
if (dma_mapping_error(&dd->pcidev->dev, pset->addr)) {
|
|
dma_unmap_flow(flow);
|
|
return -ENOMEM;
|
|
}
|
|
pset->mapped = 1;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static inline bool dma_mapped(struct tid_rdma_flow *flow)
|
|
{
|
|
return !!flow->pagesets[0].mapped;
|
|
}
|
|
|
|
/*
|
|
* Get pages pointers and identify contiguous physical memory chunks for a
|
|
* segment. All segments are of length flow->req->seg_len.
|
|
*/
|
|
static int kern_get_phys_blocks(struct tid_rdma_flow *flow,
|
|
struct page **pages,
|
|
struct rvt_sge_state *ss, bool *last)
|
|
{
|
|
u8 npages;
|
|
|
|
/* Reuse previously computed pagesets, if any */
|
|
if (flow->npagesets) {
|
|
trace_hfi1_tid_flow_alloc(flow->req->qp, flow->req->setup_head,
|
|
flow);
|
|
if (!dma_mapped(flow))
|
|
return dma_map_flow(flow, pages);
|
|
return 0;
|
|
}
|
|
|
|
npages = kern_find_pages(flow, pages, ss, last);
|
|
|
|
if (flow->req->qp->pmtu == enum_to_mtu(OPA_MTU_4096))
|
|
flow->npagesets =
|
|
tid_rdma_find_phys_blocks_4k(flow, pages, npages,
|
|
flow->pagesets);
|
|
else
|
|
flow->npagesets =
|
|
tid_rdma_find_phys_blocks_8k(flow, pages, npages,
|
|
flow->pagesets);
|
|
|
|
return dma_map_flow(flow, pages);
|
|
}
|
|
|
|
static inline void kern_add_tid_node(struct tid_rdma_flow *flow,
|
|
struct hfi1_ctxtdata *rcd, char *s,
|
|
struct tid_group *grp, u8 cnt)
|
|
{
|
|
struct kern_tid_node *node = &flow->tnode[flow->tnode_cnt++];
|
|
|
|
WARN_ON_ONCE(flow->tnode_cnt >=
|
|
(TID_RDMA_MAX_SEGMENT_SIZE >> PAGE_SHIFT));
|
|
if (WARN_ON_ONCE(cnt & 1))
|
|
dd_dev_err(rcd->dd,
|
|
"unexpected odd allocation cnt %u map 0x%x used %u",
|
|
cnt, grp->map, grp->used);
|
|
|
|
node->grp = grp;
|
|
node->map = grp->map;
|
|
node->cnt = cnt;
|
|
trace_hfi1_tid_node_add(flow->req->qp, s, flow->tnode_cnt - 1,
|
|
grp->base, grp->map, grp->used, cnt);
|
|
}
|
|
|
|
/*
|
|
* Try to allocate pageset_count TID's from TID groups for a context
|
|
*
|
|
* This function allocates TID's without moving groups between lists or
|
|
* modifying grp->map. This is done as follows, being cogizant of the lists
|
|
* between which the TID groups will move:
|
|
* 1. First allocate complete groups of 8 TID's since this is more efficient,
|
|
* these groups will move from group->full without affecting used
|
|
* 2. If more TID's are needed allocate from used (will move from used->full or
|
|
* stay in used)
|
|
* 3. If we still don't have the required number of TID's go back and look again
|
|
* at a complete group (will move from group->used)
|
|
*/
|
|
static int kern_alloc_tids(struct tid_rdma_flow *flow)
|
|
{
|
|
struct hfi1_ctxtdata *rcd = flow->req->rcd;
|
|
struct hfi1_devdata *dd = rcd->dd;
|
|
u32 ngroups, pageidx = 0;
|
|
struct tid_group *group = NULL, *used;
|
|
u8 use;
|
|
|
|
flow->tnode_cnt = 0;
|
|
ngroups = flow->npagesets / dd->rcv_entries.group_size;
|
|
if (!ngroups)
|
|
goto used_list;
|
|
|
|
/* First look at complete groups */
|
|
list_for_each_entry(group, &rcd->tid_group_list.list, list) {
|
|
kern_add_tid_node(flow, rcd, "complete groups", group,
|
|
group->size);
|
|
|
|
pageidx += group->size;
|
|
if (!--ngroups)
|
|
break;
|
|
}
|
|
|
|
if (pageidx >= flow->npagesets)
|
|
goto ok;
|
|
|
|
used_list:
|
|
/* Now look at partially used groups */
|
|
list_for_each_entry(used, &rcd->tid_used_list.list, list) {
|
|
use = min_t(u32, flow->npagesets - pageidx,
|
|
used->size - used->used);
|
|
kern_add_tid_node(flow, rcd, "used groups", used, use);
|
|
|
|
pageidx += use;
|
|
if (pageidx >= flow->npagesets)
|
|
goto ok;
|
|
}
|
|
|
|
/*
|
|
* Look again at a complete group, continuing from where we left.
|
|
* However, if we are at the head, we have reached the end of the
|
|
* complete groups list from the first loop above
|
|
*/
|
|
if (group && &group->list == &rcd->tid_group_list.list)
|
|
goto bail_eagain;
|
|
group = list_prepare_entry(group, &rcd->tid_group_list.list,
|
|
list);
|
|
if (list_is_last(&group->list, &rcd->tid_group_list.list))
|
|
goto bail_eagain;
|
|
group = list_next_entry(group, list);
|
|
use = min_t(u32, flow->npagesets - pageidx, group->size);
|
|
kern_add_tid_node(flow, rcd, "complete continue", group, use);
|
|
pageidx += use;
|
|
if (pageidx >= flow->npagesets)
|
|
goto ok;
|
|
bail_eagain:
|
|
trace_hfi1_msg_alloc_tids(flow->req->qp, " insufficient tids: needed ",
|
|
(u64)flow->npagesets);
|
|
return -EAGAIN;
|
|
ok:
|
|
return 0;
|
|
}
|
|
|
|
static void kern_program_rcv_group(struct tid_rdma_flow *flow, int grp_num,
|
|
u32 *pset_idx)
|
|
{
|
|
struct hfi1_ctxtdata *rcd = flow->req->rcd;
|
|
struct hfi1_devdata *dd = rcd->dd;
|
|
struct kern_tid_node *node = &flow->tnode[grp_num];
|
|
struct tid_group *grp = node->grp;
|
|
struct tid_rdma_pageset *pset;
|
|
u32 pmtu_pg = flow->req->qp->pmtu >> PAGE_SHIFT;
|
|
u32 rcventry, npages = 0, pair = 0, tidctrl;
|
|
u8 i, cnt = 0;
|
|
|
|
for (i = 0; i < grp->size; i++) {
|
|
rcventry = grp->base + i;
|
|
|
|
if (node->map & BIT(i) || cnt >= node->cnt) {
|
|
rcv_array_wc_fill(dd, rcventry);
|
|
continue;
|
|
}
|
|
pset = &flow->pagesets[(*pset_idx)++];
|
|
if (pset->count) {
|
|
hfi1_put_tid(dd, rcventry, PT_EXPECTED,
|
|
pset->addr, trdma_pset_order(pset));
|
|
} else {
|
|
hfi1_put_tid(dd, rcventry, PT_INVALID, 0, 0);
|
|
}
|
|
npages += pset->count;
|
|
|
|
rcventry -= rcd->expected_base;
|
|
tidctrl = pair ? 0x3 : rcventry & 0x1 ? 0x2 : 0x1;
|
|
/*
|
|
* A single TID entry will be used to use a rcvarr pair (with
|
|
* tidctrl 0x3), if ALL these are true (a) the bit pos is even
|
|
* (b) the group map shows current and the next bits as free
|
|
* indicating two consecutive rcvarry entries are available (c)
|
|
* we actually need 2 more entries
|
|
*/
|
|
pair = !(i & 0x1) && !((node->map >> i) & 0x3) &&
|
|
node->cnt >= cnt + 2;
|
|
if (!pair) {
|
|
if (!pset->count)
|
|
tidctrl = 0x1;
|
|
flow->tid_entry[flow->tidcnt++] =
|
|
EXP_TID_SET(IDX, rcventry >> 1) |
|
|
EXP_TID_SET(CTRL, tidctrl) |
|
|
EXP_TID_SET(LEN, npages);
|
|
trace_hfi1_tid_entry_alloc(/* entry */
|
|
flow->req->qp, flow->tidcnt - 1,
|
|
flow->tid_entry[flow->tidcnt - 1]);
|
|
|
|
/* Efficient DIV_ROUND_UP(npages, pmtu_pg) */
|
|
flow->npkts += (npages + pmtu_pg - 1) >> ilog2(pmtu_pg);
|
|
npages = 0;
|
|
}
|
|
|
|
if (grp->used == grp->size - 1)
|
|
tid_group_move(grp, &rcd->tid_used_list,
|
|
&rcd->tid_full_list);
|
|
else if (!grp->used)
|
|
tid_group_move(grp, &rcd->tid_group_list,
|
|
&rcd->tid_used_list);
|
|
|
|
grp->used++;
|
|
grp->map |= BIT(i);
|
|
cnt++;
|
|
}
|
|
}
|
|
|
|
static void kern_unprogram_rcv_group(struct tid_rdma_flow *flow, int grp_num)
|
|
{
|
|
struct hfi1_ctxtdata *rcd = flow->req->rcd;
|
|
struct hfi1_devdata *dd = rcd->dd;
|
|
struct kern_tid_node *node = &flow->tnode[grp_num];
|
|
struct tid_group *grp = node->grp;
|
|
u32 rcventry;
|
|
u8 i, cnt = 0;
|
|
|
|
for (i = 0; i < grp->size; i++) {
|
|
rcventry = grp->base + i;
|
|
|
|
if (node->map & BIT(i) || cnt >= node->cnt) {
|
|
rcv_array_wc_fill(dd, rcventry);
|
|
continue;
|
|
}
|
|
|
|
hfi1_put_tid(dd, rcventry, PT_INVALID, 0, 0);
|
|
|
|
grp->used--;
|
|
grp->map &= ~BIT(i);
|
|
cnt++;
|
|
|
|
if (grp->used == grp->size - 1)
|
|
tid_group_move(grp, &rcd->tid_full_list,
|
|
&rcd->tid_used_list);
|
|
else if (!grp->used)
|
|
tid_group_move(grp, &rcd->tid_used_list,
|
|
&rcd->tid_group_list);
|
|
}
|
|
if (WARN_ON_ONCE(cnt & 1)) {
|
|
struct hfi1_ctxtdata *rcd = flow->req->rcd;
|
|
struct hfi1_devdata *dd = rcd->dd;
|
|
|
|
dd_dev_err(dd, "unexpected odd free cnt %u map 0x%x used %u",
|
|
cnt, grp->map, grp->used);
|
|
}
|
|
}
|
|
|
|
static void kern_program_rcvarray(struct tid_rdma_flow *flow)
|
|
{
|
|
u32 pset_idx = 0;
|
|
int i;
|
|
|
|
flow->npkts = 0;
|
|
flow->tidcnt = 0;
|
|
for (i = 0; i < flow->tnode_cnt; i++)
|
|
kern_program_rcv_group(flow, i, &pset_idx);
|
|
trace_hfi1_tid_flow_alloc(flow->req->qp, flow->req->setup_head, flow);
|
|
}
|
|
|
|
/**
|
|
* hfi1_kern_exp_rcv_setup() - setup TID's and flow for one segment of a
|
|
* TID RDMA request
|
|
*
|
|
* @req: TID RDMA request for which the segment/flow is being set up
|
|
* @ss: sge state, maintains state across successive segments of a sge
|
|
* @last: set to true after the last sge segment has been processed
|
|
*
|
|
* This function
|
|
* (1) finds a free flow entry in the flow circular buffer
|
|
* (2) finds pages and continuous physical chunks constituing one segment
|
|
* of an sge
|
|
* (3) allocates TID group entries for those chunks
|
|
* (4) programs rcvarray entries in the hardware corresponding to those
|
|
* TID's
|
|
* (5) computes a tidarray with formatted TID entries which can be sent
|
|
* to the sender
|
|
* (6) Reserves and programs HW flows.
|
|
* (7) It also manages queing the QP when TID/flow resources are not
|
|
* available.
|
|
*
|
|
* @req points to struct tid_rdma_request of which the segments are a part. The
|
|
* function uses qp, rcd and seg_len members of @req. In the absence of errors,
|
|
* req->flow_idx is the index of the flow which has been prepared in this
|
|
* invocation of function call. With flow = &req->flows[req->flow_idx],
|
|
* flow->tid_entry contains the TID array which the sender can use for TID RDMA
|
|
* sends and flow->npkts contains number of packets required to send the
|
|
* segment.
|
|
*
|
|
* hfi1_check_sge_align should be called prior to calling this function and if
|
|
* it signals error TID RDMA cannot be used for this sge and this function
|
|
* should not be called.
|
|
*
|
|
* For the queuing, caller must hold the flow->req->qp s_lock from the send
|
|
* engine and the function will procure the exp_lock.
|
|
*
|
|
* Return:
|
|
* The function returns -EAGAIN if sufficient number of TID/flow resources to
|
|
* map the segment could not be allocated. In this case the function should be
|
|
* called again with previous arguments to retry the TID allocation. There are
|
|
* no other error returns. The function returns 0 on success.
|
|
*/
|
|
int hfi1_kern_exp_rcv_setup(struct tid_rdma_request *req,
|
|
struct rvt_sge_state *ss, bool *last)
|
|
__must_hold(&req->qp->s_lock)
|
|
{
|
|
struct tid_rdma_flow *flow = &req->flows[req->setup_head];
|
|
struct hfi1_ctxtdata *rcd = req->rcd;
|
|
struct hfi1_qp_priv *qpriv = req->qp->priv;
|
|
unsigned long flags;
|
|
struct rvt_qp *fqp;
|
|
u16 clear_tail = req->clear_tail;
|
|
|
|
lockdep_assert_held(&req->qp->s_lock);
|
|
/*
|
|
* We return error if either (a) we don't have space in the flow
|
|
* circular buffer, or (b) we already have max entries in the buffer.
|
|
* Max entries depend on the type of request we are processing and the
|
|
* negotiated TID RDMA parameters.
|
|
*/
|
|
if (!CIRC_SPACE(req->setup_head, clear_tail, MAX_FLOWS) ||
|
|
CIRC_CNT(req->setup_head, clear_tail, MAX_FLOWS) >=
|
|
req->n_flows)
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* Get pages, identify contiguous physical memory chunks for the segment
|
|
* If we can not determine a DMA address mapping we will treat it just
|
|
* like if we ran out of space above.
|
|
*/
|
|
if (kern_get_phys_blocks(flow, qpriv->pages, ss, last)) {
|
|
hfi1_wait_kmem(flow->req->qp);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
spin_lock_irqsave(&rcd->exp_lock, flags);
|
|
if (kernel_tid_waiters(rcd, &rcd->rarr_queue, flow->req->qp))
|
|
goto queue;
|
|
|
|
/*
|
|
* At this point we know the number of pagesets and hence the number of
|
|
* TID's to map the segment. Allocate the TID's from the TID groups. If
|
|
* we cannot allocate the required number we exit and try again later
|
|
*/
|
|
if (kern_alloc_tids(flow))
|
|
goto queue;
|
|
/*
|
|
* Finally program the TID entries with the pagesets, compute the
|
|
* tidarray and enable the HW flow
|
|
*/
|
|
kern_program_rcvarray(flow);
|
|
|
|
/*
|
|
* Setup the flow state with relevant information.
|
|
* This information is used for tracking the sequence of data packets
|
|
* for the segment.
|
|
* The flow is setup here as this is the most accurate time and place
|
|
* to do so. Doing at a later time runs the risk of the flow data in
|
|
* qpriv getting out of sync.
|
|
*/
|
|
memset(&flow->flow_state, 0x0, sizeof(flow->flow_state));
|
|
flow->idx = qpriv->flow_state.index;
|
|
flow->flow_state.generation = qpriv->flow_state.generation;
|
|
flow->flow_state.spsn = qpriv->flow_state.psn;
|
|
flow->flow_state.lpsn = flow->flow_state.spsn + flow->npkts - 1;
|
|
flow->flow_state.r_next_psn =
|
|
full_flow_psn(flow, flow->flow_state.spsn);
|
|
qpriv->flow_state.psn += flow->npkts;
|
|
|
|
dequeue_tid_waiter(rcd, &rcd->rarr_queue, flow->req->qp);
|
|
/* get head before dropping lock */
|
|
fqp = first_qp(rcd, &rcd->rarr_queue);
|
|
spin_unlock_irqrestore(&rcd->exp_lock, flags);
|
|
tid_rdma_schedule_tid_wakeup(fqp);
|
|
|
|
req->setup_head = (req->setup_head + 1) & (MAX_FLOWS - 1);
|
|
return 0;
|
|
queue:
|
|
queue_qp_for_tid_wait(rcd, &rcd->rarr_queue, flow->req->qp);
|
|
spin_unlock_irqrestore(&rcd->exp_lock, flags);
|
|
return -EAGAIN;
|
|
}
|
|
|
|
static void hfi1_tid_rdma_reset_flow(struct tid_rdma_flow *flow)
|
|
{
|
|
flow->npagesets = 0;
|
|
}
|
|
|
|
/*
|
|
* This function is called after one segment has been successfully sent to
|
|
* release the flow and TID HW/SW resources for that segment. The segments for a
|
|
* TID RDMA request are setup and cleared in FIFO order which is managed using a
|
|
* circular buffer.
|
|
*/
|
|
int hfi1_kern_exp_rcv_clear(struct tid_rdma_request *req)
|
|
__must_hold(&req->qp->s_lock)
|
|
{
|
|
struct tid_rdma_flow *flow = &req->flows[req->clear_tail];
|
|
struct hfi1_ctxtdata *rcd = req->rcd;
|
|
unsigned long flags;
|
|
int i;
|
|
struct rvt_qp *fqp;
|
|
|
|
lockdep_assert_held(&req->qp->s_lock);
|
|
/* Exit if we have nothing in the flow circular buffer */
|
|
if (!CIRC_CNT(req->setup_head, req->clear_tail, MAX_FLOWS))
|
|
return -EINVAL;
|
|
|
|
spin_lock_irqsave(&rcd->exp_lock, flags);
|
|
|
|
for (i = 0; i < flow->tnode_cnt; i++)
|
|
kern_unprogram_rcv_group(flow, i);
|
|
/* To prevent double unprogramming */
|
|
flow->tnode_cnt = 0;
|
|
/* get head before dropping lock */
|
|
fqp = first_qp(rcd, &rcd->rarr_queue);
|
|
spin_unlock_irqrestore(&rcd->exp_lock, flags);
|
|
|
|
dma_unmap_flow(flow);
|
|
|
|
hfi1_tid_rdma_reset_flow(flow);
|
|
req->clear_tail = (req->clear_tail + 1) & (MAX_FLOWS - 1);
|
|
|
|
if (fqp == req->qp) {
|
|
__trigger_tid_waiter(fqp);
|
|
rvt_put_qp(fqp);
|
|
} else {
|
|
tid_rdma_schedule_tid_wakeup(fqp);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* This function is called to release all the tid entries for
|
|
* a request.
|
|
*/
|
|
void hfi1_kern_exp_rcv_clear_all(struct tid_rdma_request *req)
|
|
__must_hold(&req->qp->s_lock)
|
|
{
|
|
/* Use memory barrier for proper ordering */
|
|
while (CIRC_CNT(req->setup_head, req->clear_tail, MAX_FLOWS)) {
|
|
if (hfi1_kern_exp_rcv_clear(req))
|
|
break;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* hfi1_kern_exp_rcv_free_flows - free priviously allocated flow information
|
|
* @req - the tid rdma request to be cleaned
|
|
*/
|
|
static void hfi1_kern_exp_rcv_free_flows(struct tid_rdma_request *req)
|
|
{
|
|
kfree(req->flows);
|
|
req->flows = NULL;
|
|
}
|
|
|
|
/**
|
|
* __trdma_clean_swqe - clean up for large sized QPs
|
|
* @qp: the queue patch
|
|
* @wqe: the send wqe
|
|
*/
|
|
void __trdma_clean_swqe(struct rvt_qp *qp, struct rvt_swqe *wqe)
|
|
{
|
|
struct hfi1_swqe_priv *p = wqe->priv;
|
|
|
|
hfi1_kern_exp_rcv_free_flows(&p->tid_req);
|
|
}
|
|
|
|
/*
|
|
* This can be called at QP create time or in the data path.
|
|
*/
|
|
static int hfi1_kern_exp_rcv_alloc_flows(struct tid_rdma_request *req,
|
|
gfp_t gfp)
|
|
{
|
|
struct tid_rdma_flow *flows;
|
|
int i;
|
|
|
|
if (likely(req->flows))
|
|
return 0;
|
|
flows = kmalloc_node(MAX_FLOWS * sizeof(*flows), gfp,
|
|
req->rcd->numa_id);
|
|
if (!flows)
|
|
return -ENOMEM;
|
|
/* mini init */
|
|
for (i = 0; i < MAX_FLOWS; i++) {
|
|
flows[i].req = req;
|
|
flows[i].npagesets = 0;
|
|
flows[i].pagesets[0].mapped = 0;
|
|
flows[i].resync_npkts = 0;
|
|
}
|
|
req->flows = flows;
|
|
return 0;
|
|
}
|
|
|
|
static void hfi1_init_trdma_req(struct rvt_qp *qp,
|
|
struct tid_rdma_request *req)
|
|
{
|
|
struct hfi1_qp_priv *qpriv = qp->priv;
|
|
|
|
/*
|
|
* Initialize various TID RDMA request variables.
|
|
* These variables are "static", which is why they
|
|
* can be pre-initialized here before the WRs has
|
|
* even been submitted.
|
|
* However, non-NULL values for these variables do not
|
|
* imply that this WQE has been enabled for TID RDMA.
|
|
* Drivers should check the WQE's opcode to determine
|
|
* if a request is a TID RDMA one or not.
|
|
*/
|
|
req->qp = qp;
|
|
req->rcd = qpriv->rcd;
|
|
}
|
|
|
|
u64 hfi1_access_sw_tid_wait(const struct cntr_entry *entry,
|
|
void *context, int vl, int mode, u64 data)
|
|
{
|
|
struct hfi1_devdata *dd = context;
|
|
|
|
return dd->verbs_dev.n_tidwait;
|
|
}
|
|
|
|
static struct tid_rdma_flow *find_flow_ib(struct tid_rdma_request *req,
|
|
u32 psn, u16 *fidx)
|
|
{
|
|
u16 head, tail;
|
|
struct tid_rdma_flow *flow;
|
|
|
|
head = req->setup_head;
|
|
tail = req->clear_tail;
|
|
for ( ; CIRC_CNT(head, tail, MAX_FLOWS);
|
|
tail = CIRC_NEXT(tail, MAX_FLOWS)) {
|
|
flow = &req->flows[tail];
|
|
if (cmp_psn(psn, flow->flow_state.ib_spsn) >= 0 &&
|
|
cmp_psn(psn, flow->flow_state.ib_lpsn) <= 0) {
|
|
if (fidx)
|
|
*fidx = tail;
|
|
return flow;
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
/* TID RDMA READ functions */
|
|
u32 hfi1_build_tid_rdma_read_packet(struct rvt_swqe *wqe,
|
|
struct ib_other_headers *ohdr, u32 *bth1,
|
|
u32 *bth2, u32 *len)
|
|
{
|
|
struct tid_rdma_request *req = wqe_to_tid_req(wqe);
|
|
struct tid_rdma_flow *flow = &req->flows[req->flow_idx];
|
|
struct rvt_qp *qp = req->qp;
|
|
struct hfi1_qp_priv *qpriv = qp->priv;
|
|
struct hfi1_swqe_priv *wpriv = wqe->priv;
|
|
struct tid_rdma_read_req *rreq = &ohdr->u.tid_rdma.r_req;
|
|
struct tid_rdma_params *remote;
|
|
u32 req_len = 0;
|
|
void *req_addr = NULL;
|
|
|
|
/* This is the IB psn used to send the request */
|
|
*bth2 = mask_psn(flow->flow_state.ib_spsn + flow->pkt);
|
|
trace_hfi1_tid_flow_build_read_pkt(qp, req->flow_idx, flow);
|
|
|
|
/* TID Entries for TID RDMA READ payload */
|
|
req_addr = &flow->tid_entry[flow->tid_idx];
|
|
req_len = sizeof(*flow->tid_entry) *
|
|
(flow->tidcnt - flow->tid_idx);
|
|
|
|
memset(&ohdr->u.tid_rdma.r_req, 0, sizeof(ohdr->u.tid_rdma.r_req));
|
|
wpriv->ss.sge.vaddr = req_addr;
|
|
wpriv->ss.sge.sge_length = req_len;
|
|
wpriv->ss.sge.length = wpriv->ss.sge.sge_length;
|
|
/*
|
|
* We can safely zero these out. Since the first SGE covers the
|
|
* entire packet, nothing else should even look at the MR.
|
|
*/
|
|
wpriv->ss.sge.mr = NULL;
|
|
wpriv->ss.sge.m = 0;
|
|
wpriv->ss.sge.n = 0;
|
|
|
|
wpriv->ss.sg_list = NULL;
|
|
wpriv->ss.total_len = wpriv->ss.sge.sge_length;
|
|
wpriv->ss.num_sge = 1;
|
|
|
|
/* Construct the TID RDMA READ REQ packet header */
|
|
rcu_read_lock();
|
|
remote = rcu_dereference(qpriv->tid_rdma.remote);
|
|
|
|
KDETH_RESET(rreq->kdeth0, KVER, 0x1);
|
|
KDETH_RESET(rreq->kdeth1, JKEY, remote->jkey);
|
|
rreq->reth.vaddr = cpu_to_be64(wqe->rdma_wr.remote_addr +
|
|
req->cur_seg * req->seg_len + flow->sent);
|
|
rreq->reth.rkey = cpu_to_be32(wqe->rdma_wr.rkey);
|
|
rreq->reth.length = cpu_to_be32(*len);
|
|
rreq->tid_flow_psn =
|
|
cpu_to_be32((flow->flow_state.generation <<
|
|
HFI1_KDETH_BTH_SEQ_SHIFT) |
|
|
((flow->flow_state.spsn + flow->pkt) &
|
|
HFI1_KDETH_BTH_SEQ_MASK));
|
|
rreq->tid_flow_qp =
|
|
cpu_to_be32(qpriv->tid_rdma.local.qp |
|
|
((flow->idx & TID_RDMA_DESTQP_FLOW_MASK) <<
|
|
TID_RDMA_DESTQP_FLOW_SHIFT) |
|
|
qpriv->rcd->ctxt);
|
|
rreq->verbs_qp = cpu_to_be32(qp->remote_qpn);
|
|
*bth1 &= ~RVT_QPN_MASK;
|
|
*bth1 |= remote->qp;
|
|
*bth2 |= IB_BTH_REQ_ACK;
|
|
rcu_read_unlock();
|
|
|
|
/* We are done with this segment */
|
|
flow->sent += *len;
|
|
req->cur_seg++;
|
|
qp->s_state = TID_OP(READ_REQ);
|
|
req->ack_pending++;
|
|
req->flow_idx = (req->flow_idx + 1) & (MAX_FLOWS - 1);
|
|
qpriv->pending_tid_r_segs++;
|
|
qp->s_num_rd_atomic++;
|
|
|
|
/* Set the TID RDMA READ request payload size */
|
|
*len = req_len;
|
|
|
|
return sizeof(ohdr->u.tid_rdma.r_req) / sizeof(u32);
|
|
}
|
|
|
|
/*
|
|
* @len: contains the data length to read upon entry and the read request
|
|
* payload length upon exit.
|
|
*/
|
|
u32 hfi1_build_tid_rdma_read_req(struct rvt_qp *qp, struct rvt_swqe *wqe,
|
|
struct ib_other_headers *ohdr, u32 *bth1,
|
|
u32 *bth2, u32 *len)
|
|
__must_hold(&qp->s_lock)
|
|
{
|
|
struct hfi1_qp_priv *qpriv = qp->priv;
|
|
struct tid_rdma_request *req = wqe_to_tid_req(wqe);
|
|
struct tid_rdma_flow *flow = NULL;
|
|
u32 hdwords = 0;
|
|
bool last;
|
|
bool retry = true;
|
|
u32 npkts = rvt_div_round_up_mtu(qp, *len);
|
|
|
|
trace_hfi1_tid_req_build_read_req(qp, 0, wqe->wr.opcode, wqe->psn,
|
|
wqe->lpsn, req);
|
|
/*
|
|
* Check sync conditions. Make sure that there are no pending
|
|
* segments before freeing the flow.
|
|
*/
|
|
sync_check:
|
|
if (req->state == TID_REQUEST_SYNC) {
|
|
if (qpriv->pending_tid_r_segs)
|
|
goto done;
|
|
|
|
hfi1_kern_clear_hw_flow(req->rcd, qp);
|
|
qpriv->s_flags &= ~HFI1_R_TID_SW_PSN;
|
|
req->state = TID_REQUEST_ACTIVE;
|
|
}
|
|
|
|
/*
|
|
* If the request for this segment is resent, the tid resources should
|
|
* have been allocated before. In this case, req->flow_idx should
|
|
* fall behind req->setup_head.
|
|
*/
|
|
if (req->flow_idx == req->setup_head) {
|
|
retry = false;
|
|
if (req->state == TID_REQUEST_RESEND) {
|
|
/*
|
|
* This is the first new segment for a request whose
|
|
* earlier segments have been re-sent. We need to
|
|
* set up the sge pointer correctly.
|
|
*/
|
|
restart_sge(&qp->s_sge, wqe, req->s_next_psn,
|
|
qp->pmtu);
|
|
req->isge = 0;
|
|
req->state = TID_REQUEST_ACTIVE;
|
|
}
|
|
|
|
/*
|
|
* Check sync. The last PSN of each generation is reserved for
|
|
* RESYNC.
|
|
*/
|
|
if ((qpriv->flow_state.psn + npkts) > MAX_TID_FLOW_PSN - 1) {
|
|
req->state = TID_REQUEST_SYNC;
|
|
goto sync_check;
|
|
}
|
|
|
|
/* Allocate the flow if not yet */
|
|
if (hfi1_kern_setup_hw_flow(qpriv->rcd, qp))
|
|
goto done;
|
|
|
|
/*
|
|
* The following call will advance req->setup_head after
|
|
* allocating the tid entries.
|
|
*/
|
|
if (hfi1_kern_exp_rcv_setup(req, &qp->s_sge, &last)) {
|
|
req->state = TID_REQUEST_QUEUED;
|
|
|
|
/*
|
|
* We don't have resources for this segment. The QP has
|
|
* already been queued.
|
|
*/
|
|
goto done;
|
|
}
|
|
}
|
|
|
|
/* req->flow_idx should only be one slot behind req->setup_head */
|
|
flow = &req->flows[req->flow_idx];
|
|
flow->pkt = 0;
|
|
flow->tid_idx = 0;
|
|
flow->sent = 0;
|
|
if (!retry) {
|
|
/* Set the first and last IB PSN for the flow in use.*/
|
|
flow->flow_state.ib_spsn = req->s_next_psn;
|
|
flow->flow_state.ib_lpsn =
|
|
flow->flow_state.ib_spsn + flow->npkts - 1;
|
|
}
|
|
|
|
/* Calculate the next segment start psn.*/
|
|
req->s_next_psn += flow->npkts;
|
|
|
|
/* Build the packet header */
|
|
hdwords = hfi1_build_tid_rdma_read_packet(wqe, ohdr, bth1, bth2, len);
|
|
done:
|
|
return hdwords;
|
|
}
|
|
|
|
/*
|
|
* Validate and accept the TID RDMA READ request parameters.
|
|
* Return 0 if the request is accepted successfully;
|
|
* Return 1 otherwise.
|
|
*/
|
|
static int tid_rdma_rcv_read_request(struct rvt_qp *qp,
|
|
struct rvt_ack_entry *e,
|
|
struct hfi1_packet *packet,
|
|
struct ib_other_headers *ohdr,
|
|
u32 bth0, u32 psn, u64 vaddr, u32 len)
|
|
{
|
|
struct hfi1_qp_priv *qpriv = qp->priv;
|
|
struct tid_rdma_request *req;
|
|
struct tid_rdma_flow *flow;
|
|
u32 flow_psn, i, tidlen = 0, pktlen, tlen;
|
|
|
|
req = ack_to_tid_req(e);
|
|
|
|
/* Validate the payload first */
|
|
flow = &req->flows[req->setup_head];
|
|
|
|
/* payload length = packet length - (header length + ICRC length) */
|
|
pktlen = packet->tlen - (packet->hlen + 4);
|
|
if (pktlen > sizeof(flow->tid_entry))
|
|
return 1;
|
|
memcpy(flow->tid_entry, packet->ebuf, pktlen);
|
|
flow->tidcnt = pktlen / sizeof(*flow->tid_entry);
|
|
|
|
/*
|
|
* Walk the TID_ENTRY list to make sure we have enough space for a
|
|
* complete segment. Also calculate the number of required packets.
|
|
*/
|
|
flow->npkts = rvt_div_round_up_mtu(qp, len);
|
|
for (i = 0; i < flow->tidcnt; i++) {
|
|
trace_hfi1_tid_entry_rcv_read_req(qp, i,
|
|
flow->tid_entry[i]);
|
|
tlen = EXP_TID_GET(flow->tid_entry[i], LEN);
|
|
if (!tlen)
|
|
return 1;
|
|
|
|
/*
|
|
* For tid pair (tidctr == 3), the buffer size of the pair
|
|
* should be the sum of the buffer size described by each
|
|
* tid entry. However, only the first entry needs to be
|
|
* specified in the request (see WFR HAS Section 8.5.7.1).
|
|
*/
|
|
tidlen += tlen;
|
|
}
|
|
if (tidlen * PAGE_SIZE < len)
|
|
return 1;
|
|
|
|
/* Empty the flow array */
|
|
req->clear_tail = req->setup_head;
|
|
flow->pkt = 0;
|
|
flow->tid_idx = 0;
|
|
flow->tid_offset = 0;
|
|
flow->sent = 0;
|
|
flow->tid_qpn = be32_to_cpu(ohdr->u.tid_rdma.r_req.tid_flow_qp);
|
|
flow->idx = (flow->tid_qpn >> TID_RDMA_DESTQP_FLOW_SHIFT) &
|
|
TID_RDMA_DESTQP_FLOW_MASK;
|
|
flow_psn = mask_psn(be32_to_cpu(ohdr->u.tid_rdma.r_req.tid_flow_psn));
|
|
flow->flow_state.generation = flow_psn >> HFI1_KDETH_BTH_SEQ_SHIFT;
|
|
flow->flow_state.spsn = flow_psn & HFI1_KDETH_BTH_SEQ_MASK;
|
|
flow->length = len;
|
|
|
|
flow->flow_state.lpsn = flow->flow_state.spsn +
|
|
flow->npkts - 1;
|
|
flow->flow_state.ib_spsn = psn;
|
|
flow->flow_state.ib_lpsn = flow->flow_state.ib_spsn + flow->npkts - 1;
|
|
|
|
trace_hfi1_tid_flow_rcv_read_req(qp, req->setup_head, flow);
|
|
/* Set the initial flow index to the current flow. */
|
|
req->flow_idx = req->setup_head;
|
|
|
|
/* advance circular buffer head */
|
|
req->setup_head = (req->setup_head + 1) & (MAX_FLOWS - 1);
|
|
|
|
/*
|
|
* Compute last PSN for request.
|
|
*/
|
|
e->opcode = (bth0 >> 24) & 0xff;
|
|
e->psn = psn;
|
|
e->lpsn = psn + flow->npkts - 1;
|
|
e->sent = 0;
|
|
|
|
req->n_flows = qpriv->tid_rdma.local.max_read;
|
|
req->state = TID_REQUEST_ACTIVE;
|
|
req->cur_seg = 0;
|
|
req->comp_seg = 0;
|
|
req->ack_seg = 0;
|
|
req->isge = 0;
|
|
req->seg_len = qpriv->tid_rdma.local.max_len;
|
|
req->total_len = len;
|
|
req->total_segs = 1;
|
|
req->r_flow_psn = e->psn;
|
|
|
|
trace_hfi1_tid_req_rcv_read_req(qp, 0, e->opcode, e->psn, e->lpsn,
|
|
req);
|
|
return 0;
|
|
}
|
|
|
|
static int tid_rdma_rcv_error(struct hfi1_packet *packet,
|
|
struct ib_other_headers *ohdr,
|
|
struct rvt_qp *qp, u32 psn, int diff)
|
|
{
|
|
struct hfi1_ibport *ibp = to_iport(qp->ibqp.device, qp->port_num);
|
|
struct hfi1_ctxtdata *rcd = ((struct hfi1_qp_priv *)qp->priv)->rcd;
|
|
struct hfi1_ibdev *dev = to_idev(qp->ibqp.device);
|
|
struct hfi1_qp_priv *qpriv = qp->priv;
|
|
struct rvt_ack_entry *e;
|
|
struct tid_rdma_request *req;
|
|
unsigned long flags;
|
|
u8 prev;
|
|
bool old_req;
|
|
|
|
trace_hfi1_rsp_tid_rcv_error(qp, psn);
|
|
trace_hfi1_tid_rdma_rcv_err(qp, 0, psn, diff);
|
|
if (diff > 0) {
|
|
/* sequence error */
|
|
if (!qp->r_nak_state) {
|
|
ibp->rvp.n_rc_seqnak++;
|
|
qp->r_nak_state = IB_NAK_PSN_ERROR;
|
|
qp->r_ack_psn = qp->r_psn;
|
|
rc_defered_ack(rcd, qp);
|
|
}
|
|
goto done;
|
|
}
|
|
|
|
ibp->rvp.n_rc_dupreq++;
|
|
|
|
spin_lock_irqsave(&qp->s_lock, flags);
|
|
e = find_prev_entry(qp, psn, &prev, NULL, &old_req);
|
|
if (!e || (e->opcode != TID_OP(READ_REQ) &&
|
|
e->opcode != TID_OP(WRITE_REQ)))
|
|
goto unlock;
|
|
|
|
req = ack_to_tid_req(e);
|
|
req->r_flow_psn = psn;
|
|
trace_hfi1_tid_req_rcv_err(qp, 0, e->opcode, e->psn, e->lpsn, req);
|
|
if (e->opcode == TID_OP(READ_REQ)) {
|
|
struct ib_reth *reth;
|
|
u32 len;
|
|
u32 rkey;
|
|
u64 vaddr;
|
|
int ok;
|
|
u32 bth0;
|
|
|
|
reth = &ohdr->u.tid_rdma.r_req.reth;
|
|
/*
|
|
* The requester always restarts from the start of the original
|
|
* request.
|
|
*/
|
|
len = be32_to_cpu(reth->length);
|
|
if (psn != e->psn || len != req->total_len)
|
|
goto unlock;
|
|
|
|
release_rdma_sge_mr(e);
|
|
|
|
rkey = be32_to_cpu(reth->rkey);
|
|
vaddr = get_ib_reth_vaddr(reth);
|
|
|
|
qp->r_len = len;
|
|
ok = rvt_rkey_ok(qp, &e->rdma_sge, len, vaddr, rkey,
|
|
IB_ACCESS_REMOTE_READ);
|
|
if (unlikely(!ok))
|
|
goto unlock;
|
|
|
|
/*
|
|
* If all the response packets for the current request have
|
|
* been sent out and this request is complete (old_request
|
|
* == false) and the TID flow may be unusable (the
|
|
* req->clear_tail is advanced). However, when an earlier
|
|
* request is received, this request will not be complete any
|
|
* more (qp->s_tail_ack_queue is moved back, see below).
|
|
* Consequently, we need to update the TID flow info everytime
|
|
* a duplicate request is received.
|
|
*/
|
|
bth0 = be32_to_cpu(ohdr->bth[0]);
|
|
if (tid_rdma_rcv_read_request(qp, e, packet, ohdr, bth0, psn,
|
|
vaddr, len))
|
|
goto unlock;
|
|
|
|
/*
|
|
* True if the request is already scheduled (between
|
|
* qp->s_tail_ack_queue and qp->r_head_ack_queue);
|
|
*/
|
|
if (old_req)
|
|
goto unlock;
|
|
} else {
|
|
struct flow_state *fstate;
|
|
bool schedule = false;
|
|
u8 i;
|
|
|
|
if (req->state == TID_REQUEST_RESEND) {
|
|
req->state = TID_REQUEST_RESEND_ACTIVE;
|
|
} else if (req->state == TID_REQUEST_INIT_RESEND) {
|
|
req->state = TID_REQUEST_INIT;
|
|
schedule = true;
|
|
}
|
|
|
|
/*
|
|
* True if the request is already scheduled (between
|
|
* qp->s_tail_ack_queue and qp->r_head_ack_queue).
|
|
* Also, don't change requests, which are at the SYNC
|
|
* point and haven't generated any responses yet.
|
|
* There is nothing to retransmit for them yet.
|
|
*/
|
|
if (old_req || req->state == TID_REQUEST_INIT ||
|
|
(req->state == TID_REQUEST_SYNC && !req->cur_seg)) {
|
|
for (i = prev + 1; ; i++) {
|
|
if (i > rvt_size_atomic(&dev->rdi))
|
|
i = 0;
|
|
if (i == qp->r_head_ack_queue)
|
|
break;
|
|
e = &qp->s_ack_queue[i];
|
|
req = ack_to_tid_req(e);
|
|
if (e->opcode == TID_OP(WRITE_REQ) &&
|
|
req->state == TID_REQUEST_INIT)
|
|
req->state = TID_REQUEST_INIT_RESEND;
|
|
}
|
|
/*
|
|
* If the state of the request has been changed,
|
|
* the first leg needs to get scheduled in order to
|
|
* pick up the change. Otherwise, normal response
|
|
* processing should take care of it.
|
|
*/
|
|
if (!schedule)
|
|
goto unlock;
|
|
}
|
|
|
|
/*
|
|
* If there is no more allocated segment, just schedule the qp
|
|
* without changing any state.
|
|
*/
|
|
if (req->clear_tail == req->setup_head)
|
|
goto schedule;
|
|
/*
|
|
* If this request has sent responses for segments, which have
|
|
* not received data yet (flow_idx != clear_tail), the flow_idx
|
|
* pointer needs to be adjusted so the same responses can be
|
|
* re-sent.
|
|
*/
|
|
if (CIRC_CNT(req->flow_idx, req->clear_tail, MAX_FLOWS)) {
|
|
fstate = &req->flows[req->clear_tail].flow_state;
|
|
qpriv->pending_tid_w_segs -=
|
|
CIRC_CNT(req->flow_idx, req->clear_tail,
|
|
MAX_FLOWS);
|
|
req->flow_idx =
|
|
CIRC_ADD(req->clear_tail,
|
|
delta_psn(psn, fstate->resp_ib_psn),
|
|
MAX_FLOWS);
|
|
qpriv->pending_tid_w_segs +=
|
|
delta_psn(psn, fstate->resp_ib_psn);
|
|
/*
|
|
* When flow_idx == setup_head, we've gotten a duplicate
|
|
* request for a segment, which has not been allocated
|
|
* yet. In that case, don't adjust this request.
|
|
* However, we still want to go through the loop below
|
|
* to adjust all subsequent requests.
|
|
*/
|
|
if (CIRC_CNT(req->setup_head, req->flow_idx,
|
|
MAX_FLOWS)) {
|
|
req->cur_seg = delta_psn(psn, e->psn);
|
|
req->state = TID_REQUEST_RESEND_ACTIVE;
|
|
}
|
|
}
|
|
|
|
for (i = prev + 1; ; i++) {
|
|
/*
|
|
* Look at everything up to and including
|
|
* s_tail_ack_queue
|
|
*/
|
|
if (i > rvt_size_atomic(&dev->rdi))
|
|
i = 0;
|
|
if (i == qp->r_head_ack_queue)
|
|
break;
|
|
e = &qp->s_ack_queue[i];
|
|
req = ack_to_tid_req(e);
|
|
trace_hfi1_tid_req_rcv_err(qp, 0, e->opcode, e->psn,
|
|
e->lpsn, req);
|
|
if (e->opcode != TID_OP(WRITE_REQ) ||
|
|
req->cur_seg == req->comp_seg ||
|
|
req->state == TID_REQUEST_INIT ||
|
|
req->state == TID_REQUEST_INIT_RESEND) {
|
|
if (req->state == TID_REQUEST_INIT)
|
|
req->state = TID_REQUEST_INIT_RESEND;
|
|
continue;
|
|
}
|
|
qpriv->pending_tid_w_segs -=
|
|
CIRC_CNT(req->flow_idx,
|
|
req->clear_tail,
|
|
MAX_FLOWS);
|
|
req->flow_idx = req->clear_tail;
|
|
req->state = TID_REQUEST_RESEND;
|
|
req->cur_seg = req->comp_seg;
|
|
}
|
|
qpriv->s_flags &= ~HFI1_R_TID_WAIT_INTERLCK;
|
|
}
|
|
/* Re-process old requests.*/
|
|
if (qp->s_acked_ack_queue == qp->s_tail_ack_queue)
|
|
qp->s_acked_ack_queue = prev;
|
|
qp->s_tail_ack_queue = prev;
|
|
/*
|
|
* Since the qp->s_tail_ack_queue is modified, the
|
|
* qp->s_ack_state must be changed to re-initialize
|
|
* qp->s_ack_rdma_sge; Otherwise, we will end up in
|
|
* wrong memory region.
|
|
*/
|
|
qp->s_ack_state = OP(ACKNOWLEDGE);
|
|
schedule:
|
|
/*
|
|
* It's possible to receive a retry psn that is earlier than an RNRNAK
|
|
* psn. In this case, the rnrnak state should be cleared.
|
|
*/
|
|
if (qpriv->rnr_nak_state) {
|
|
qp->s_nak_state = 0;
|
|
qpriv->rnr_nak_state = TID_RNR_NAK_INIT;
|
|
qp->r_psn = e->lpsn + 1;
|
|
hfi1_tid_write_alloc_resources(qp, true);
|
|
}
|
|
|
|
qp->r_state = e->opcode;
|
|
qp->r_nak_state = 0;
|
|
qp->s_flags |= RVT_S_RESP_PENDING;
|
|
hfi1_schedule_send(qp);
|
|
unlock:
|
|
spin_unlock_irqrestore(&qp->s_lock, flags);
|
|
done:
|
|
return 1;
|
|
}
|
|
|
|
void hfi1_rc_rcv_tid_rdma_read_req(struct hfi1_packet *packet)
|
|
{
|
|
/* HANDLER FOR TID RDMA READ REQUEST packet (Responder side)*/
|
|
|
|
/*
|
|
* 1. Verify TID RDMA READ REQ as per IB_OPCODE_RC_RDMA_READ
|
|
* (see hfi1_rc_rcv())
|
|
* 2. Put TID RDMA READ REQ into the response queueu (s_ack_queue)
|
|
* - Setup struct tid_rdma_req with request info
|
|
* - Initialize struct tid_rdma_flow info;
|
|
* - Copy TID entries;
|
|
* 3. Set the qp->s_ack_state.
|
|
* 4. Set RVT_S_RESP_PENDING in s_flags.
|
|
* 5. Kick the send engine (hfi1_schedule_send())
|
|
*/
|
|
struct hfi1_ctxtdata *rcd = packet->rcd;
|
|
struct rvt_qp *qp = packet->qp;
|
|
struct hfi1_ibport *ibp = to_iport(qp->ibqp.device, qp->port_num);
|
|
struct ib_other_headers *ohdr = packet->ohdr;
|
|
struct rvt_ack_entry *e;
|
|
unsigned long flags;
|
|
struct ib_reth *reth;
|
|
struct hfi1_qp_priv *qpriv = qp->priv;
|
|
u32 bth0, psn, len, rkey;
|
|
bool fecn;
|
|
u8 next;
|
|
u64 vaddr;
|
|
int diff;
|
|
u8 nack_state = IB_NAK_INVALID_REQUEST;
|
|
|
|
bth0 = be32_to_cpu(ohdr->bth[0]);
|
|
if (hfi1_ruc_check_hdr(ibp, packet))
|
|
return;
|
|
|
|
fecn = process_ecn(qp, packet);
|
|
psn = mask_psn(be32_to_cpu(ohdr->bth[2]));
|
|
trace_hfi1_rsp_rcv_tid_read_req(qp, psn);
|
|
|
|
if (qp->state == IB_QPS_RTR && !(qp->r_flags & RVT_R_COMM_EST))
|
|
rvt_comm_est(qp);
|
|
|
|
if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_READ)))
|
|
goto nack_inv;
|
|
|
|
reth = &ohdr->u.tid_rdma.r_req.reth;
|
|
vaddr = be64_to_cpu(reth->vaddr);
|
|
len = be32_to_cpu(reth->length);
|
|
/* The length needs to be in multiples of PAGE_SIZE */
|
|
if (!len || len & ~PAGE_MASK || len > qpriv->tid_rdma.local.max_len)
|
|
goto nack_inv;
|
|
|
|
diff = delta_psn(psn, qp->r_psn);
|
|
if (unlikely(diff)) {
|
|
tid_rdma_rcv_err(packet, ohdr, qp, psn, diff, fecn);
|
|
return;
|
|
}
|
|
|
|
/* We've verified the request, insert it into the ack queue. */
|
|
next = qp->r_head_ack_queue + 1;
|
|
if (next > rvt_size_atomic(ib_to_rvt(qp->ibqp.device)))
|
|
next = 0;
|
|
spin_lock_irqsave(&qp->s_lock, flags);
|
|
if (unlikely(next == qp->s_tail_ack_queue)) {
|
|
if (!qp->s_ack_queue[next].sent) {
|
|
nack_state = IB_NAK_REMOTE_OPERATIONAL_ERROR;
|
|
goto nack_inv_unlock;
|
|
}
|
|
update_ack_queue(qp, next);
|
|
}
|
|
e = &qp->s_ack_queue[qp->r_head_ack_queue];
|
|
release_rdma_sge_mr(e);
|
|
|
|
rkey = be32_to_cpu(reth->rkey);
|
|
qp->r_len = len;
|
|
|
|
if (unlikely(!rvt_rkey_ok(qp, &e->rdma_sge, qp->r_len, vaddr,
|
|
rkey, IB_ACCESS_REMOTE_READ)))
|
|
goto nack_acc;
|
|
|
|
/* Accept the request parameters */
|
|
if (tid_rdma_rcv_read_request(qp, e, packet, ohdr, bth0, psn, vaddr,
|
|
len))
|
|
goto nack_inv_unlock;
|
|
|
|
qp->r_state = e->opcode;
|
|
qp->r_nak_state = 0;
|
|
/*
|
|
* We need to increment the MSN here instead of when we
|
|
* finish sending the result since a duplicate request would
|
|
* increment it more than once.
|
|
*/
|
|
qp->r_msn++;
|
|
qp->r_psn += e->lpsn - e->psn + 1;
|
|
|
|
qp->r_head_ack_queue = next;
|
|
|
|
/*
|
|
* For all requests other than TID WRITE which are added to the ack
|
|
* queue, qpriv->r_tid_alloc follows qp->r_head_ack_queue. It is ok to
|
|
* do this because of interlocks between these and TID WRITE
|
|
* requests. The same change has also been made in hfi1_rc_rcv().
|
|
*/
|
|
qpriv->r_tid_alloc = qp->r_head_ack_queue;
|
|
|
|
/* Schedule the send tasklet. */
|
|
qp->s_flags |= RVT_S_RESP_PENDING;
|
|
if (fecn)
|
|
qp->s_flags |= RVT_S_ECN;
|
|
hfi1_schedule_send(qp);
|
|
|
|
spin_unlock_irqrestore(&qp->s_lock, flags);
|
|
return;
|
|
|
|
nack_inv_unlock:
|
|
spin_unlock_irqrestore(&qp->s_lock, flags);
|
|
nack_inv:
|
|
rvt_rc_error(qp, IB_WC_LOC_QP_OP_ERR);
|
|
qp->r_nak_state = nack_state;
|
|
qp->r_ack_psn = qp->r_psn;
|
|
/* Queue NAK for later */
|
|
rc_defered_ack(rcd, qp);
|
|
return;
|
|
nack_acc:
|
|
spin_unlock_irqrestore(&qp->s_lock, flags);
|
|
rvt_rc_error(qp, IB_WC_LOC_PROT_ERR);
|
|
qp->r_nak_state = IB_NAK_REMOTE_ACCESS_ERROR;
|
|
qp->r_ack_psn = qp->r_psn;
|
|
}
|
|
|
|
u32 hfi1_build_tid_rdma_read_resp(struct rvt_qp *qp, struct rvt_ack_entry *e,
|
|
struct ib_other_headers *ohdr, u32 *bth0,
|
|
u32 *bth1, u32 *bth2, u32 *len, bool *last)
|
|
{
|
|
struct hfi1_ack_priv *epriv = e->priv;
|
|
struct tid_rdma_request *req = &epriv->tid_req;
|
|
struct hfi1_qp_priv *qpriv = qp->priv;
|
|
struct tid_rdma_flow *flow = &req->flows[req->clear_tail];
|
|
u32 tidentry = flow->tid_entry[flow->tid_idx];
|
|
u32 tidlen = EXP_TID_GET(tidentry, LEN) << PAGE_SHIFT;
|
|
struct tid_rdma_read_resp *resp = &ohdr->u.tid_rdma.r_rsp;
|
|
u32 next_offset, om = KDETH_OM_LARGE;
|
|
bool last_pkt;
|
|
u32 hdwords = 0;
|
|
struct tid_rdma_params *remote;
|
|
|
|
*len = min_t(u32, qp->pmtu, tidlen - flow->tid_offset);
|
|
flow->sent += *len;
|
|
next_offset = flow->tid_offset + *len;
|
|
last_pkt = (flow->sent >= flow->length);
|
|
|
|
trace_hfi1_tid_entry_build_read_resp(qp, flow->tid_idx, tidentry);
|
|
trace_hfi1_tid_flow_build_read_resp(qp, req->clear_tail, flow);
|
|
|
|
rcu_read_lock();
|
|
remote = rcu_dereference(qpriv->tid_rdma.remote);
|
|
if (!remote) {
|
|
rcu_read_unlock();
|
|
goto done;
|
|
}
|
|
KDETH_RESET(resp->kdeth0, KVER, 0x1);
|
|
KDETH_SET(resp->kdeth0, SH, !last_pkt);
|
|
KDETH_SET(resp->kdeth0, INTR, !!(!last_pkt && remote->urg));
|
|
KDETH_SET(resp->kdeth0, TIDCTRL, EXP_TID_GET(tidentry, CTRL));
|
|
KDETH_SET(resp->kdeth0, TID, EXP_TID_GET(tidentry, IDX));
|
|
KDETH_SET(resp->kdeth0, OM, om == KDETH_OM_LARGE);
|
|
KDETH_SET(resp->kdeth0, OFFSET, flow->tid_offset / om);
|
|
KDETH_RESET(resp->kdeth1, JKEY, remote->jkey);
|
|
resp->verbs_qp = cpu_to_be32(qp->remote_qpn);
|
|
rcu_read_unlock();
|
|
|
|
resp->aeth = rvt_compute_aeth(qp);
|
|
resp->verbs_psn = cpu_to_be32(mask_psn(flow->flow_state.ib_spsn +
|
|
flow->pkt));
|
|
|
|
*bth0 = TID_OP(READ_RESP) << 24;
|
|
*bth1 = flow->tid_qpn;
|
|
*bth2 = mask_psn(((flow->flow_state.spsn + flow->pkt++) &
|
|
HFI1_KDETH_BTH_SEQ_MASK) |
|
|
(flow->flow_state.generation <<
|
|
HFI1_KDETH_BTH_SEQ_SHIFT));
|
|
*last = last_pkt;
|
|
if (last_pkt)
|
|
/* Advance to next flow */
|
|
req->clear_tail = (req->clear_tail + 1) &
|
|
(MAX_FLOWS - 1);
|
|
|
|
if (next_offset >= tidlen) {
|
|
flow->tid_offset = 0;
|
|
flow->tid_idx++;
|
|
} else {
|
|
flow->tid_offset = next_offset;
|
|
}
|
|
|
|
hdwords = sizeof(ohdr->u.tid_rdma.r_rsp) / sizeof(u32);
|
|
|
|
done:
|
|
return hdwords;
|
|
}
|
|
|
|
static inline struct tid_rdma_request *
|
|
find_tid_request(struct rvt_qp *qp, u32 psn, enum ib_wr_opcode opcode)
|
|
__must_hold(&qp->s_lock)
|
|
{
|
|
struct rvt_swqe *wqe;
|
|
struct tid_rdma_request *req = NULL;
|
|
u32 i, end;
|
|
|
|
end = qp->s_cur + 1;
|
|
if (end == qp->s_size)
|
|
end = 0;
|
|
for (i = qp->s_acked; i != end;) {
|
|
wqe = rvt_get_swqe_ptr(qp, i);
|
|
if (cmp_psn(psn, wqe->psn) >= 0 &&
|
|
cmp_psn(psn, wqe->lpsn) <= 0) {
|
|
if (wqe->wr.opcode == opcode)
|
|
req = wqe_to_tid_req(wqe);
|
|
break;
|
|
}
|
|
if (++i == qp->s_size)
|
|
i = 0;
|
|
}
|
|
|
|
return req;
|
|
}
|
|
|
|
void hfi1_rc_rcv_tid_rdma_read_resp(struct hfi1_packet *packet)
|
|
{
|
|
/* HANDLER FOR TID RDMA READ RESPONSE packet (Requestor side */
|
|
|
|
/*
|
|
* 1. Find matching SWQE
|
|
* 2. Check that the entire segment has been read.
|
|
* 3. Remove HFI1_S_WAIT_TID_RESP from s_flags.
|
|
* 4. Free the TID flow resources.
|
|
* 5. Kick the send engine (hfi1_schedule_send())
|
|
*/
|
|
struct ib_other_headers *ohdr = packet->ohdr;
|
|
struct rvt_qp *qp = packet->qp;
|
|
struct hfi1_qp_priv *priv = qp->priv;
|
|
struct hfi1_ctxtdata *rcd = packet->rcd;
|
|
struct tid_rdma_request *req;
|
|
struct tid_rdma_flow *flow;
|
|
u32 opcode, aeth;
|
|
bool fecn;
|
|
unsigned long flags;
|
|
u32 kpsn, ipsn;
|
|
|
|
trace_hfi1_sender_rcv_tid_read_resp(qp);
|
|
fecn = process_ecn(qp, packet);
|
|
kpsn = mask_psn(be32_to_cpu(ohdr->bth[2]));
|
|
aeth = be32_to_cpu(ohdr->u.tid_rdma.r_rsp.aeth);
|
|
opcode = (be32_to_cpu(ohdr->bth[0]) >> 24) & 0xff;
|
|
|
|
spin_lock_irqsave(&qp->s_lock, flags);
|
|
ipsn = mask_psn(be32_to_cpu(ohdr->u.tid_rdma.r_rsp.verbs_psn));
|
|
req = find_tid_request(qp, ipsn, IB_WR_TID_RDMA_READ);
|
|
if (unlikely(!req))
|
|
goto ack_op_err;
|
|
|
|
flow = &req->flows[req->clear_tail];
|
|
/* When header suppression is disabled */
|
|
if (cmp_psn(ipsn, flow->flow_state.ib_lpsn)) {
|
|
update_r_next_psn_fecn(packet, priv, rcd, flow, fecn);
|
|
|
|
if (cmp_psn(kpsn, flow->flow_state.r_next_psn))
|
|
goto ack_done;
|
|
flow->flow_state.r_next_psn = mask_psn(kpsn + 1);
|
|
/*
|
|
* Copy the payload to destination buffer if this packet is
|
|
* delivered as an eager packet due to RSM rule and FECN.
|
|
* The RSM rule selects FECN bit in BTH and SH bit in
|
|
* KDETH header and therefore will not match the last
|
|
* packet of each segment that has SH bit cleared.
|
|
*/
|
|
if (fecn && packet->etype == RHF_RCV_TYPE_EAGER) {
|
|
struct rvt_sge_state ss;
|
|
u32 len;
|
|
u32 tlen = packet->tlen;
|
|
u16 hdrsize = packet->hlen;
|
|
u8 pad = packet->pad;
|
|
u8 extra_bytes = pad + packet->extra_byte +
|
|
(SIZE_OF_CRC << 2);
|
|
u32 pmtu = qp->pmtu;
|
|
|
|
if (unlikely(tlen != (hdrsize + pmtu + extra_bytes)))
|
|
goto ack_op_err;
|
|
len = restart_sge(&ss, req->e.swqe, ipsn, pmtu);
|
|
if (unlikely(len < pmtu))
|
|
goto ack_op_err;
|
|
rvt_copy_sge(qp, &ss, packet->payload, pmtu, false,
|
|
false);
|
|
/* Raise the sw sequence check flag for next packet */
|
|
priv->s_flags |= HFI1_R_TID_SW_PSN;
|
|
}
|
|
|
|
goto ack_done;
|
|
}
|
|
flow->flow_state.r_next_psn = mask_psn(kpsn + 1);
|
|
req->ack_pending--;
|
|
priv->pending_tid_r_segs--;
|
|
qp->s_num_rd_atomic--;
|
|
if ((qp->s_flags & RVT_S_WAIT_FENCE) &&
|
|
!qp->s_num_rd_atomic) {
|
|
qp->s_flags &= ~(RVT_S_WAIT_FENCE |
|
|
RVT_S_WAIT_ACK);
|
|
hfi1_schedule_send(qp);
|
|
}
|
|
if (qp->s_flags & RVT_S_WAIT_RDMAR) {
|
|
qp->s_flags &= ~(RVT_S_WAIT_RDMAR | RVT_S_WAIT_ACK);
|
|
hfi1_schedule_send(qp);
|
|
}
|
|
|
|
trace_hfi1_ack(qp, ipsn);
|
|
trace_hfi1_tid_req_rcv_read_resp(qp, 0, req->e.swqe->wr.opcode,
|
|
req->e.swqe->psn, req->e.swqe->lpsn,
|
|
req);
|
|
trace_hfi1_tid_flow_rcv_read_resp(qp, req->clear_tail, flow);
|
|
|
|
/* Release the tid resources */
|
|
hfi1_kern_exp_rcv_clear(req);
|
|
|
|
if (!do_rc_ack(qp, aeth, ipsn, opcode, 0, rcd))
|
|
goto ack_done;
|
|
|
|
/* If not done yet, build next read request */
|
|
if (++req->comp_seg >= req->total_segs) {
|
|
priv->tid_r_comp++;
|
|
req->state = TID_REQUEST_COMPLETE;
|
|
}
|
|
|
|
/*
|
|
* Clear the hw flow under two conditions:
|
|
* 1. This request is a sync point and it is complete;
|
|
* 2. Current request is completed and there are no more requests.
|
|
*/
|
|
if ((req->state == TID_REQUEST_SYNC &&
|
|
req->comp_seg == req->cur_seg) ||
|
|
priv->tid_r_comp == priv->tid_r_reqs) {
|
|
hfi1_kern_clear_hw_flow(priv->rcd, qp);
|
|
priv->s_flags &= ~HFI1_R_TID_SW_PSN;
|
|
if (req->state == TID_REQUEST_SYNC)
|
|
req->state = TID_REQUEST_ACTIVE;
|
|
}
|
|
|
|
hfi1_schedule_send(qp);
|
|
goto ack_done;
|
|
|
|
ack_op_err:
|
|
/*
|
|
* The test indicates that the send engine has finished its cleanup
|
|
* after sending the request and it's now safe to put the QP into error
|
|
* state. However, if the wqe queue is empty (qp->s_acked == qp->s_tail
|
|
* == qp->s_head), it would be unsafe to complete the wqe pointed by
|
|
* qp->s_acked here. Putting the qp into error state will safely flush
|
|
* all remaining requests.
|
|
*/
|
|
if (qp->s_last == qp->s_acked)
|
|
rvt_error_qp(qp, IB_WC_WR_FLUSH_ERR);
|
|
|
|
ack_done:
|
|
spin_unlock_irqrestore(&qp->s_lock, flags);
|
|
}
|
|
|
|
void hfi1_kern_read_tid_flow_free(struct rvt_qp *qp)
|
|
__must_hold(&qp->s_lock)
|
|
{
|
|
u32 n = qp->s_acked;
|
|
struct rvt_swqe *wqe;
|
|
struct tid_rdma_request *req;
|
|
struct hfi1_qp_priv *priv = qp->priv;
|
|
|
|
lockdep_assert_held(&qp->s_lock);
|
|
/* Free any TID entries */
|
|
while (n != qp->s_tail) {
|
|
wqe = rvt_get_swqe_ptr(qp, n);
|
|
if (wqe->wr.opcode == IB_WR_TID_RDMA_READ) {
|
|
req = wqe_to_tid_req(wqe);
|
|
hfi1_kern_exp_rcv_clear_all(req);
|
|
}
|
|
|
|
if (++n == qp->s_size)
|
|
n = 0;
|
|
}
|
|
/* Free flow */
|
|
hfi1_kern_clear_hw_flow(priv->rcd, qp);
|
|
}
|
|
|
|
static bool tid_rdma_tid_err(struct hfi1_packet *packet, u8 rcv_type)
|
|
{
|
|
struct rvt_qp *qp = packet->qp;
|
|
|
|
if (rcv_type >= RHF_RCV_TYPE_IB)
|
|
goto done;
|
|
|
|
spin_lock(&qp->s_lock);
|
|
|
|
/*
|
|
* We've ran out of space in the eager buffer.
|
|
* Eagerly received KDETH packets which require space in the
|
|
* Eager buffer (packet that have payload) are TID RDMA WRITE
|
|
* response packets. In this case, we have to re-transmit the
|
|
* TID RDMA WRITE request.
|
|
*/
|
|
if (rcv_type == RHF_RCV_TYPE_EAGER) {
|
|
hfi1_restart_rc(qp, qp->s_last_psn + 1, 1);
|
|
hfi1_schedule_send(qp);
|
|
}
|
|
|
|
/* Since no payload is delivered, just drop the packet */
|
|
spin_unlock(&qp->s_lock);
|
|
done:
|
|
return true;
|
|
}
|
|
|
|
static void restart_tid_rdma_read_req(struct hfi1_ctxtdata *rcd,
|
|
struct rvt_qp *qp, struct rvt_swqe *wqe)
|
|
{
|
|
struct tid_rdma_request *req;
|
|
struct tid_rdma_flow *flow;
|
|
|
|
/* Start from the right segment */
|
|
qp->r_flags |= RVT_R_RDMAR_SEQ;
|
|
req = wqe_to_tid_req(wqe);
|
|
flow = &req->flows[req->clear_tail];
|
|
hfi1_restart_rc(qp, flow->flow_state.ib_spsn, 0);
|
|
if (list_empty(&qp->rspwait)) {
|
|
qp->r_flags |= RVT_R_RSP_SEND;
|
|
rvt_get_qp(qp);
|
|
list_add_tail(&qp->rspwait, &rcd->qp_wait_list);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Handle the KDETH eflags for TID RDMA READ response.
|
|
*
|
|
* Return true if the last packet for a segment has been received and it is
|
|
* time to process the response normally; otherwise, return true.
|
|
*
|
|
* The caller must hold the packet->qp->r_lock and the rcu_read_lock.
|
|
*/
|
|
static bool handle_read_kdeth_eflags(struct hfi1_ctxtdata *rcd,
|
|
struct hfi1_packet *packet, u8 rcv_type,
|
|
u8 rte, u32 psn, u32 ibpsn)
|
|
__must_hold(&packet->qp->r_lock) __must_hold(RCU)
|
|
{
|
|
struct hfi1_pportdata *ppd = rcd->ppd;
|
|
struct hfi1_devdata *dd = ppd->dd;
|
|
struct hfi1_ibport *ibp;
|
|
struct rvt_swqe *wqe;
|
|
struct tid_rdma_request *req;
|
|
struct tid_rdma_flow *flow;
|
|
u32 ack_psn;
|
|
struct rvt_qp *qp = packet->qp;
|
|
struct hfi1_qp_priv *priv = qp->priv;
|
|
bool ret = true;
|
|
int diff = 0;
|
|
u32 fpsn;
|
|
|
|
lockdep_assert_held(&qp->r_lock);
|
|
trace_hfi1_rsp_read_kdeth_eflags(qp, ibpsn);
|
|
trace_hfi1_sender_read_kdeth_eflags(qp);
|
|
trace_hfi1_tid_read_sender_kdeth_eflags(qp, 0);
|
|
spin_lock(&qp->s_lock);
|
|
/* If the psn is out of valid range, drop the packet */
|
|
if (cmp_psn(ibpsn, qp->s_last_psn) < 0 ||
|
|
cmp_psn(ibpsn, qp->s_psn) > 0)
|
|
goto s_unlock;
|
|
|
|
/*
|
|
* Note that NAKs implicitly ACK outstanding SEND and RDMA write
|
|
* requests and implicitly NAK RDMA read and atomic requests issued
|
|
* before the NAK'ed request.
|
|
*/
|
|
ack_psn = ibpsn - 1;
|
|
wqe = rvt_get_swqe_ptr(qp, qp->s_acked);
|
|
ibp = to_iport(qp->ibqp.device, qp->port_num);
|
|
|
|
/* Complete WQEs that the PSN finishes. */
|
|
while ((int)delta_psn(ack_psn, wqe->lpsn) >= 0) {
|
|
/*
|
|
* If this request is a RDMA read or atomic, and the NACK is
|
|
* for a later operation, this NACK NAKs the RDMA read or
|
|
* atomic.
|
|
*/
|
|
if (wqe->wr.opcode == IB_WR_RDMA_READ ||
|
|
wqe->wr.opcode == IB_WR_TID_RDMA_READ ||
|
|
wqe->wr.opcode == IB_WR_ATOMIC_CMP_AND_SWP ||
|
|
wqe->wr.opcode == IB_WR_ATOMIC_FETCH_AND_ADD) {
|
|
/* Retry this request. */
|
|
if (!(qp->r_flags & RVT_R_RDMAR_SEQ)) {
|
|
qp->r_flags |= RVT_R_RDMAR_SEQ;
|
|
if (wqe->wr.opcode == IB_WR_TID_RDMA_READ) {
|
|
restart_tid_rdma_read_req(rcd, qp,
|
|
wqe);
|
|
} else {
|
|
hfi1_restart_rc(qp, qp->s_last_psn + 1,
|
|
0);
|
|
if (list_empty(&qp->rspwait)) {
|
|
qp->r_flags |= RVT_R_RSP_SEND;
|
|
rvt_get_qp(qp);
|
|
list_add_tail(/* wait */
|
|
&qp->rspwait,
|
|
&rcd->qp_wait_list);
|
|
}
|
|
}
|
|
}
|
|
/*
|
|
* No need to process the NAK since we are
|
|
* restarting an earlier request.
|
|
*/
|
|
break;
|
|
}
|
|
|
|
wqe = do_rc_completion(qp, wqe, ibp);
|
|
if (qp->s_acked == qp->s_tail)
|
|
goto s_unlock;
|
|
}
|
|
|
|
if (qp->s_acked == qp->s_tail)
|
|
goto s_unlock;
|
|
|
|
/* Handle the eflags for the request */
|
|
if (wqe->wr.opcode != IB_WR_TID_RDMA_READ)
|
|
goto s_unlock;
|
|
|
|
req = wqe_to_tid_req(wqe);
|
|
trace_hfi1_tid_req_read_kdeth_eflags(qp, 0, wqe->wr.opcode, wqe->psn,
|
|
wqe->lpsn, req);
|
|
switch (rcv_type) {
|
|
case RHF_RCV_TYPE_EXPECTED:
|
|
switch (rte) {
|
|
case RHF_RTE_EXPECTED_FLOW_SEQ_ERR:
|
|
/*
|
|
* On the first occurrence of a Flow Sequence error,
|
|
* the flag TID_FLOW_SW_PSN is set.
|
|
*
|
|
* After that, the flow is *not* reprogrammed and the
|
|
* protocol falls back to SW PSN checking. This is done
|
|
* to prevent continuous Flow Sequence errors for any
|
|
* packets that could be still in the fabric.
|
|
*/
|
|
flow = &req->flows[req->clear_tail];
|
|
trace_hfi1_tid_flow_read_kdeth_eflags(qp,
|
|
req->clear_tail,
|
|
flow);
|
|
if (priv->s_flags & HFI1_R_TID_SW_PSN) {
|
|
diff = cmp_psn(psn,
|
|
flow->flow_state.r_next_psn);
|
|
if (diff > 0) {
|
|
/* Drop the packet.*/
|
|
goto s_unlock;
|
|
} else if (diff < 0) {
|
|
/*
|
|
* If a response packet for a restarted
|
|
* request has come back, reset the
|
|
* restart flag.
|
|
*/
|
|
if (qp->r_flags & RVT_R_RDMAR_SEQ)
|
|
qp->r_flags &=
|
|
~RVT_R_RDMAR_SEQ;
|
|
|
|
/* Drop the packet.*/
|
|
goto s_unlock;
|
|
}
|
|
|
|
/*
|
|
* If SW PSN verification is successful and
|
|
* this is the last packet in the segment, tell
|
|
* the caller to process it as a normal packet.
|
|
*/
|
|
fpsn = full_flow_psn(flow,
|
|
flow->flow_state.lpsn);
|
|
if (cmp_psn(fpsn, psn) == 0) {
|
|
ret = false;
|
|
if (qp->r_flags & RVT_R_RDMAR_SEQ)
|
|
qp->r_flags &=
|
|
~RVT_R_RDMAR_SEQ;
|
|
}
|
|
flow->flow_state.r_next_psn =
|
|
mask_psn(psn + 1);
|
|
} else {
|
|
u32 last_psn;
|
|
|
|
last_psn = read_r_next_psn(dd, rcd->ctxt,
|
|
flow->idx);
|
|
flow->flow_state.r_next_psn = last_psn;
|
|
priv->s_flags |= HFI1_R_TID_SW_PSN;
|
|
/*
|
|
* If no request has been restarted yet,
|
|
* restart the current one.
|
|
*/
|
|
if (!(qp->r_flags & RVT_R_RDMAR_SEQ))
|
|
restart_tid_rdma_read_req(rcd, qp,
|
|
wqe);
|
|
}
|
|
|
|
break;
|
|
|
|
case RHF_RTE_EXPECTED_FLOW_GEN_ERR:
|
|
/*
|
|
* Since the TID flow is able to ride through
|
|
* generation mismatch, drop this stale packet.
|
|
*/
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
break;
|
|
|
|
case RHF_RCV_TYPE_ERROR:
|
|
switch (rte) {
|
|
case RHF_RTE_ERROR_OP_CODE_ERR:
|
|
case RHF_RTE_ERROR_KHDR_MIN_LEN_ERR:
|
|
case RHF_RTE_ERROR_KHDR_HCRC_ERR:
|
|
case RHF_RTE_ERROR_KHDR_KVER_ERR:
|
|
case RHF_RTE_ERROR_CONTEXT_ERR:
|
|
case RHF_RTE_ERROR_KHDR_TID_ERR:
|
|
default:
|
|
break;
|
|
}
|
|
default:
|
|
break;
|
|
}
|
|
s_unlock:
|
|
spin_unlock(&qp->s_lock);
|
|
return ret;
|
|
}
|
|
|
|
bool hfi1_handle_kdeth_eflags(struct hfi1_ctxtdata *rcd,
|
|
struct hfi1_pportdata *ppd,
|
|
struct hfi1_packet *packet)
|
|
{
|
|
struct hfi1_ibport *ibp = &ppd->ibport_data;
|
|
struct hfi1_devdata *dd = ppd->dd;
|
|
struct rvt_dev_info *rdi = &dd->verbs_dev.rdi;
|
|
u8 rcv_type = rhf_rcv_type(packet->rhf);
|
|
u8 rte = rhf_rcv_type_err(packet->rhf);
|
|
struct ib_header *hdr = packet->hdr;
|
|
struct ib_other_headers *ohdr = NULL;
|
|
int lnh = be16_to_cpu(hdr->lrh[0]) & 3;
|
|
u16 lid = be16_to_cpu(hdr->lrh[1]);
|
|
u8 opcode;
|
|
u32 qp_num, psn, ibpsn;
|
|
struct rvt_qp *qp;
|
|
struct hfi1_qp_priv *qpriv;
|
|
unsigned long flags;
|
|
bool ret = true;
|
|
struct rvt_ack_entry *e;
|
|
struct tid_rdma_request *req;
|
|
struct tid_rdma_flow *flow;
|
|
int diff = 0;
|
|
|
|
trace_hfi1_msg_handle_kdeth_eflags(NULL, "Kdeth error: rhf ",
|
|
packet->rhf);
|
|
if (packet->rhf & RHF_ICRC_ERR)
|
|
return ret;
|
|
|
|
packet->ohdr = &hdr->u.oth;
|
|
ohdr = packet->ohdr;
|
|
trace_input_ibhdr(rcd->dd, packet, !!(rhf_dc_info(packet->rhf)));
|
|
|
|
/* Get the destination QP number. */
|
|
qp_num = be32_to_cpu(ohdr->u.tid_rdma.r_rsp.verbs_qp) &
|
|
RVT_QPN_MASK;
|
|
if (lid >= be16_to_cpu(IB_MULTICAST_LID_BASE))
|
|
goto drop;
|
|
|
|
psn = mask_psn(be32_to_cpu(ohdr->bth[2]));
|
|
opcode = (be32_to_cpu(ohdr->bth[0]) >> 24) & 0xff;
|
|
|
|
rcu_read_lock();
|
|
qp = rvt_lookup_qpn(rdi, &ibp->rvp, qp_num);
|
|
if (!qp)
|
|
goto rcu_unlock;
|
|
|
|
packet->qp = qp;
|
|
|
|
/* Check for valid receive state. */
|
|
spin_lock_irqsave(&qp->r_lock, flags);
|
|
if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK)) {
|
|
ibp->rvp.n_pkt_drops++;
|
|
goto r_unlock;
|
|
}
|
|
|
|
if (packet->rhf & RHF_TID_ERR) {
|
|
/* For TIDERR and RC QPs preemptively schedule a NAK */
|
|
u32 tlen = rhf_pkt_len(packet->rhf); /* in bytes */
|
|
|
|
/* Sanity check packet */
|
|
if (tlen < 24)
|
|
goto r_unlock;
|
|
|
|
/*
|
|
* Check for GRH. We should never get packets with GRH in this
|
|
* path.
|
|
*/
|
|
if (lnh == HFI1_LRH_GRH)
|
|
goto r_unlock;
|
|
|
|
if (tid_rdma_tid_err(packet, rcv_type))
|
|
goto r_unlock;
|
|
}
|
|
|
|
/* handle TID RDMA READ */
|
|
if (opcode == TID_OP(READ_RESP)) {
|
|
ibpsn = be32_to_cpu(ohdr->u.tid_rdma.r_rsp.verbs_psn);
|
|
ibpsn = mask_psn(ibpsn);
|
|
ret = handle_read_kdeth_eflags(rcd, packet, rcv_type, rte, psn,
|
|
ibpsn);
|
|
goto r_unlock;
|
|
}
|
|
|
|
/*
|
|
* qp->s_tail_ack_queue points to the rvt_ack_entry currently being
|
|
* processed. These a completed sequentially so we can be sure that
|
|
* the pointer will not change until the entire request has completed.
|
|
*/
|
|
spin_lock(&qp->s_lock);
|
|
qpriv = qp->priv;
|
|
if (qpriv->r_tid_tail == HFI1_QP_WQE_INVALID ||
|
|
qpriv->r_tid_tail == qpriv->r_tid_head)
|
|
goto unlock;
|
|
e = &qp->s_ack_queue[qpriv->r_tid_tail];
|
|
if (e->opcode != TID_OP(WRITE_REQ))
|
|
goto unlock;
|
|
req = ack_to_tid_req(e);
|
|
if (req->comp_seg == req->cur_seg)
|
|
goto unlock;
|
|
flow = &req->flows[req->clear_tail];
|
|
trace_hfi1_eflags_err_write(qp, rcv_type, rte, psn);
|
|
trace_hfi1_rsp_handle_kdeth_eflags(qp, psn);
|
|
trace_hfi1_tid_write_rsp_handle_kdeth_eflags(qp);
|
|
trace_hfi1_tid_req_handle_kdeth_eflags(qp, 0, e->opcode, e->psn,
|
|
e->lpsn, req);
|
|
trace_hfi1_tid_flow_handle_kdeth_eflags(qp, req->clear_tail, flow);
|
|
|
|
switch (rcv_type) {
|
|
case RHF_RCV_TYPE_EXPECTED:
|
|
switch (rte) {
|
|
case RHF_RTE_EXPECTED_FLOW_SEQ_ERR:
|
|
if (!(qpriv->s_flags & HFI1_R_TID_SW_PSN)) {
|
|
qpriv->s_flags |= HFI1_R_TID_SW_PSN;
|
|
flow->flow_state.r_next_psn =
|
|
read_r_next_psn(dd, rcd->ctxt,
|
|
flow->idx);
|
|
qpriv->r_next_psn_kdeth =
|
|
flow->flow_state.r_next_psn;
|
|
goto nak_psn;
|
|
} else {
|
|
/*
|
|
* If the received PSN does not match the next
|
|
* expected PSN, NAK the packet.
|
|
* However, only do that if we know that the a
|
|
* NAK has already been sent. Otherwise, this
|
|
* mismatch could be due to packets that were
|
|
* already in flight.
|
|
*/
|
|
diff = cmp_psn(psn,
|
|
flow->flow_state.r_next_psn);
|
|
if (diff > 0)
|
|
goto nak_psn;
|
|
else if (diff < 0)
|
|
break;
|
|
|
|
qpriv->s_nak_state = 0;
|
|
/*
|
|
* If SW PSN verification is successful and this
|
|
* is the last packet in the segment, tell the
|
|
* caller to process it as a normal packet.
|
|
*/
|
|
if (psn == full_flow_psn(flow,
|
|
flow->flow_state.lpsn))
|
|
ret = false;
|
|
flow->flow_state.r_next_psn =
|
|
mask_psn(psn + 1);
|
|
qpriv->r_next_psn_kdeth =
|
|
flow->flow_state.r_next_psn;
|
|
}
|
|
break;
|
|
|
|
case RHF_RTE_EXPECTED_FLOW_GEN_ERR:
|
|
goto nak_psn;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
break;
|
|
|
|
case RHF_RCV_TYPE_ERROR:
|
|
switch (rte) {
|
|
case RHF_RTE_ERROR_OP_CODE_ERR:
|
|
case RHF_RTE_ERROR_KHDR_MIN_LEN_ERR:
|
|
case RHF_RTE_ERROR_KHDR_HCRC_ERR:
|
|
case RHF_RTE_ERROR_KHDR_KVER_ERR:
|
|
case RHF_RTE_ERROR_CONTEXT_ERR:
|
|
case RHF_RTE_ERROR_KHDR_TID_ERR:
|
|
default:
|
|
break;
|
|
}
|
|
default:
|
|
break;
|
|
}
|
|
|
|
unlock:
|
|
spin_unlock(&qp->s_lock);
|
|
r_unlock:
|
|
spin_unlock_irqrestore(&qp->r_lock, flags);
|
|
rcu_unlock:
|
|
rcu_read_unlock();
|
|
drop:
|
|
return ret;
|
|
nak_psn:
|
|
ibp->rvp.n_rc_seqnak++;
|
|
if (!qpriv->s_nak_state) {
|
|
qpriv->s_nak_state = IB_NAK_PSN_ERROR;
|
|
/* We are NAK'ing the next expected PSN */
|
|
qpriv->s_nak_psn = mask_psn(flow->flow_state.r_next_psn);
|
|
tid_rdma_trigger_ack(qp);
|
|
}
|
|
goto unlock;
|
|
}
|
|
|
|
/*
|
|
* "Rewind" the TID request information.
|
|
* This means that we reset the state back to ACTIVE,
|
|
* find the proper flow, set the flow index to that flow,
|
|
* and reset the flow information.
|
|
*/
|
|
void hfi1_tid_rdma_restart_req(struct rvt_qp *qp, struct rvt_swqe *wqe,
|
|
u32 *bth2)
|
|
{
|
|
struct tid_rdma_request *req = wqe_to_tid_req(wqe);
|
|
struct tid_rdma_flow *flow;
|
|
struct hfi1_qp_priv *qpriv = qp->priv;
|
|
int diff, delta_pkts;
|
|
u32 tididx = 0, i;
|
|
u16 fidx;
|
|
|
|
if (wqe->wr.opcode == IB_WR_TID_RDMA_READ) {
|
|
*bth2 = mask_psn(qp->s_psn);
|
|
flow = find_flow_ib(req, *bth2, &fidx);
|
|
if (!flow) {
|
|
trace_hfi1_msg_tid_restart_req(/* msg */
|
|
qp, "!!!!!! Could not find flow to restart: bth2 ",
|
|
(u64)*bth2);
|
|
trace_hfi1_tid_req_restart_req(qp, 0, wqe->wr.opcode,
|
|
wqe->psn, wqe->lpsn,
|
|
req);
|
|
return;
|
|
}
|
|
} else {
|
|
fidx = req->acked_tail;
|
|
flow = &req->flows[fidx];
|
|
*bth2 = mask_psn(req->r_ack_psn);
|
|
}
|
|
|
|
if (wqe->wr.opcode == IB_WR_TID_RDMA_READ)
|
|
delta_pkts = delta_psn(*bth2, flow->flow_state.ib_spsn);
|
|
else
|
|
delta_pkts = delta_psn(*bth2,
|
|
full_flow_psn(flow,
|
|
flow->flow_state.spsn));
|
|
|
|
trace_hfi1_tid_flow_restart_req(qp, fidx, flow);
|
|
diff = delta_pkts + flow->resync_npkts;
|
|
|
|
flow->sent = 0;
|
|
flow->pkt = 0;
|
|
flow->tid_idx = 0;
|
|
flow->tid_offset = 0;
|
|
if (diff) {
|
|
for (tididx = 0; tididx < flow->tidcnt; tididx++) {
|
|
u32 tidentry = flow->tid_entry[tididx], tidlen,
|
|
tidnpkts, npkts;
|
|
|
|
flow->tid_offset = 0;
|
|
tidlen = EXP_TID_GET(tidentry, LEN) * PAGE_SIZE;
|
|
tidnpkts = rvt_div_round_up_mtu(qp, tidlen);
|
|
npkts = min_t(u32, diff, tidnpkts);
|
|
flow->pkt += npkts;
|
|
flow->sent += (npkts == tidnpkts ? tidlen :
|
|
npkts * qp->pmtu);
|
|
flow->tid_offset += npkts * qp->pmtu;
|
|
diff -= npkts;
|
|
if (!diff)
|
|
break;
|
|
}
|
|
}
|
|
if (wqe->wr.opcode == IB_WR_TID_RDMA_WRITE) {
|
|
rvt_skip_sge(&qpriv->tid_ss, (req->cur_seg * req->seg_len) +
|
|
flow->sent, 0);
|
|
/*
|
|
* Packet PSN is based on flow_state.spsn + flow->pkt. However,
|
|
* during a RESYNC, the generation is incremented and the
|
|
* sequence is reset to 0. Since we've adjusted the npkts in the
|
|
* flow and the SGE has been sufficiently advanced, we have to
|
|
* adjust flow->pkt in order to calculate the correct PSN.
|
|
*/
|
|
flow->pkt -= flow->resync_npkts;
|
|
}
|
|
|
|
if (flow->tid_offset ==
|
|
EXP_TID_GET(flow->tid_entry[tididx], LEN) * PAGE_SIZE) {
|
|
tididx++;
|
|
flow->tid_offset = 0;
|
|
}
|
|
flow->tid_idx = tididx;
|
|
if (wqe->wr.opcode == IB_WR_TID_RDMA_READ)
|
|
/* Move flow_idx to correct index */
|
|
req->flow_idx = fidx;
|
|
else
|
|
req->clear_tail = fidx;
|
|
|
|
trace_hfi1_tid_flow_restart_req(qp, fidx, flow);
|
|
trace_hfi1_tid_req_restart_req(qp, 0, wqe->wr.opcode, wqe->psn,
|
|
wqe->lpsn, req);
|
|
req->state = TID_REQUEST_ACTIVE;
|
|
if (wqe->wr.opcode == IB_WR_TID_RDMA_WRITE) {
|
|
/* Reset all the flows that we are going to resend */
|
|
fidx = CIRC_NEXT(fidx, MAX_FLOWS);
|
|
i = qpriv->s_tid_tail;
|
|
do {
|
|
for (; CIRC_CNT(req->setup_head, fidx, MAX_FLOWS);
|
|
fidx = CIRC_NEXT(fidx, MAX_FLOWS)) {
|
|
req->flows[fidx].sent = 0;
|
|
req->flows[fidx].pkt = 0;
|
|
req->flows[fidx].tid_idx = 0;
|
|
req->flows[fidx].tid_offset = 0;
|
|
req->flows[fidx].resync_npkts = 0;
|
|
}
|
|
if (i == qpriv->s_tid_cur)
|
|
break;
|
|
do {
|
|
i = (++i == qp->s_size ? 0 : i);
|
|
wqe = rvt_get_swqe_ptr(qp, i);
|
|
} while (wqe->wr.opcode != IB_WR_TID_RDMA_WRITE);
|
|
req = wqe_to_tid_req(wqe);
|
|
req->cur_seg = req->ack_seg;
|
|
fidx = req->acked_tail;
|
|
/* Pull req->clear_tail back */
|
|
req->clear_tail = fidx;
|
|
} while (1);
|
|
}
|
|
}
|
|
|
|
void hfi1_qp_kern_exp_rcv_clear_all(struct rvt_qp *qp)
|
|
{
|
|
int i, ret;
|
|
struct hfi1_qp_priv *qpriv = qp->priv;
|
|
struct tid_flow_state *fs;
|
|
|
|
if (qp->ibqp.qp_type != IB_QPT_RC || !HFI1_CAP_IS_KSET(TID_RDMA))
|
|
return;
|
|
|
|
/*
|
|
* First, clear the flow to help prevent any delayed packets from
|
|
* being delivered.
|
|
*/
|
|
fs = &qpriv->flow_state;
|
|
if (fs->index != RXE_NUM_TID_FLOWS)
|
|
hfi1_kern_clear_hw_flow(qpriv->rcd, qp);
|
|
|
|
for (i = qp->s_acked; i != qp->s_head;) {
|
|
struct rvt_swqe *wqe = rvt_get_swqe_ptr(qp, i);
|
|
|
|
if (++i == qp->s_size)
|
|
i = 0;
|
|
/* Free only locally allocated TID entries */
|
|
if (wqe->wr.opcode != IB_WR_TID_RDMA_READ)
|
|
continue;
|
|
do {
|
|
struct hfi1_swqe_priv *priv = wqe->priv;
|
|
|
|
ret = hfi1_kern_exp_rcv_clear(&priv->tid_req);
|
|
} while (!ret);
|
|
}
|
|
for (i = qp->s_acked_ack_queue; i != qp->r_head_ack_queue;) {
|
|
struct rvt_ack_entry *e = &qp->s_ack_queue[i];
|
|
|
|
if (++i == rvt_max_atomic(ib_to_rvt(qp->ibqp.device)))
|
|
i = 0;
|
|
/* Free only locally allocated TID entries */
|
|
if (e->opcode != TID_OP(WRITE_REQ))
|
|
continue;
|
|
do {
|
|
struct hfi1_ack_priv *priv = e->priv;
|
|
|
|
ret = hfi1_kern_exp_rcv_clear(&priv->tid_req);
|
|
} while (!ret);
|
|
}
|
|
}
|
|
|
|
bool hfi1_tid_rdma_wqe_interlock(struct rvt_qp *qp, struct rvt_swqe *wqe)
|
|
{
|
|
struct rvt_swqe *prev;
|
|
struct hfi1_qp_priv *priv = qp->priv;
|
|
u32 s_prev;
|
|
struct tid_rdma_request *req;
|
|
|
|
s_prev = (qp->s_cur == 0 ? qp->s_size : qp->s_cur) - 1;
|
|
prev = rvt_get_swqe_ptr(qp, s_prev);
|
|
|
|
switch (wqe->wr.opcode) {
|
|
case IB_WR_SEND:
|
|
case IB_WR_SEND_WITH_IMM:
|
|
case IB_WR_SEND_WITH_INV:
|
|
case IB_WR_ATOMIC_CMP_AND_SWP:
|
|
case IB_WR_ATOMIC_FETCH_AND_ADD:
|
|
case IB_WR_RDMA_WRITE:
|
|
switch (prev->wr.opcode) {
|
|
case IB_WR_TID_RDMA_WRITE:
|
|
req = wqe_to_tid_req(prev);
|
|
if (req->ack_seg != req->total_segs)
|
|
goto interlock;
|
|
default:
|
|
break;
|
|
}
|
|
break;
|
|
case IB_WR_RDMA_READ:
|
|
if (prev->wr.opcode != IB_WR_TID_RDMA_WRITE)
|
|
break;
|
|
/* fall through */
|
|
case IB_WR_TID_RDMA_READ:
|
|
switch (prev->wr.opcode) {
|
|
case IB_WR_RDMA_READ:
|
|
if (qp->s_acked != qp->s_cur)
|
|
goto interlock;
|
|
break;
|
|
case IB_WR_TID_RDMA_WRITE:
|
|
req = wqe_to_tid_req(prev);
|
|
if (req->ack_seg != req->total_segs)
|
|
goto interlock;
|
|
default:
|
|
break;
|
|
}
|
|
default:
|
|
break;
|
|
}
|
|
return false;
|
|
|
|
interlock:
|
|
priv->s_flags |= HFI1_S_TID_WAIT_INTERLCK;
|
|
return true;
|
|
}
|
|
|
|
/* Does @sge meet the alignment requirements for tid rdma? */
|
|
static inline bool hfi1_check_sge_align(struct rvt_qp *qp,
|
|
struct rvt_sge *sge, int num_sge)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < num_sge; i++, sge++) {
|
|
trace_hfi1_sge_check_align(qp, i, sge);
|
|
if ((u64)sge->vaddr & ~PAGE_MASK ||
|
|
sge->sge_length & ~PAGE_MASK)
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
void setup_tid_rdma_wqe(struct rvt_qp *qp, struct rvt_swqe *wqe)
|
|
{
|
|
struct hfi1_qp_priv *qpriv = (struct hfi1_qp_priv *)qp->priv;
|
|
struct hfi1_swqe_priv *priv = wqe->priv;
|
|
struct tid_rdma_params *remote;
|
|
enum ib_wr_opcode new_opcode;
|
|
bool do_tid_rdma = false;
|
|
struct hfi1_pportdata *ppd = qpriv->rcd->ppd;
|
|
|
|
if ((rdma_ah_get_dlid(&qp->remote_ah_attr) & ~((1 << ppd->lmc) - 1)) ==
|
|
ppd->lid)
|
|
return;
|
|
if (qpriv->hdr_type != HFI1_PKT_TYPE_9B)
|
|
return;
|
|
|
|
rcu_read_lock();
|
|
remote = rcu_dereference(qpriv->tid_rdma.remote);
|
|
/*
|
|
* If TID RDMA is disabled by the negotiation, don't
|
|
* use it.
|
|
*/
|
|
if (!remote)
|
|
goto exit;
|
|
|
|
if (wqe->wr.opcode == IB_WR_RDMA_READ) {
|
|
if (hfi1_check_sge_align(qp, &wqe->sg_list[0],
|
|
wqe->wr.num_sge)) {
|
|
new_opcode = IB_WR_TID_RDMA_READ;
|
|
do_tid_rdma = true;
|
|
}
|
|
} else if (wqe->wr.opcode == IB_WR_RDMA_WRITE) {
|
|
/*
|
|
* TID RDMA is enabled for this RDMA WRITE request iff:
|
|
* 1. The remote address is page-aligned,
|
|
* 2. The length is larger than the minimum segment size,
|
|
* 3. The length is page-multiple.
|
|
*/
|
|
if (!(wqe->rdma_wr.remote_addr & ~PAGE_MASK) &&
|
|
!(wqe->length & ~PAGE_MASK)) {
|
|
new_opcode = IB_WR_TID_RDMA_WRITE;
|
|
do_tid_rdma = true;
|
|
}
|
|
}
|
|
|
|
if (do_tid_rdma) {
|
|
if (hfi1_kern_exp_rcv_alloc_flows(&priv->tid_req, GFP_ATOMIC))
|
|
goto exit;
|
|
wqe->wr.opcode = new_opcode;
|
|
priv->tid_req.seg_len =
|
|
min_t(u32, remote->max_len, wqe->length);
|
|
priv->tid_req.total_segs =
|
|
DIV_ROUND_UP(wqe->length, priv->tid_req.seg_len);
|
|
/* Compute the last PSN of the request */
|
|
wqe->lpsn = wqe->psn;
|
|
if (wqe->wr.opcode == IB_WR_TID_RDMA_READ) {
|
|
priv->tid_req.n_flows = remote->max_read;
|
|
qpriv->tid_r_reqs++;
|
|
wqe->lpsn += rvt_div_round_up_mtu(qp, wqe->length) - 1;
|
|
} else {
|
|
wqe->lpsn += priv->tid_req.total_segs - 1;
|
|
atomic_inc(&qpriv->n_requests);
|
|
}
|
|
|
|
priv->tid_req.cur_seg = 0;
|
|
priv->tid_req.comp_seg = 0;
|
|
priv->tid_req.ack_seg = 0;
|
|
priv->tid_req.state = TID_REQUEST_INACTIVE;
|
|
/*
|
|
* Reset acked_tail.
|
|
* TID RDMA READ does not have ACKs so it does not
|
|
* update the pointer. We have to reset it so TID RDMA
|
|
* WRITE does not get confused.
|
|
*/
|
|
priv->tid_req.acked_tail = priv->tid_req.setup_head;
|
|
trace_hfi1_tid_req_setup_tid_wqe(qp, 1, wqe->wr.opcode,
|
|
wqe->psn, wqe->lpsn,
|
|
&priv->tid_req);
|
|
}
|
|
exit:
|
|
rcu_read_unlock();
|
|
}
|
|
|
|
/* TID RDMA WRITE functions */
|
|
|
|
u32 hfi1_build_tid_rdma_write_req(struct rvt_qp *qp, struct rvt_swqe *wqe,
|
|
struct ib_other_headers *ohdr,
|
|
u32 *bth1, u32 *bth2, u32 *len)
|
|
{
|
|
struct hfi1_qp_priv *qpriv = qp->priv;
|
|
struct tid_rdma_request *req = wqe_to_tid_req(wqe);
|
|
struct tid_rdma_params *remote;
|
|
|
|
rcu_read_lock();
|
|
remote = rcu_dereference(qpriv->tid_rdma.remote);
|
|
/*
|
|
* Set the number of flow to be used based on negotiated
|
|
* parameters.
|
|
*/
|
|
req->n_flows = remote->max_write;
|
|
req->state = TID_REQUEST_ACTIVE;
|
|
|
|
KDETH_RESET(ohdr->u.tid_rdma.w_req.kdeth0, KVER, 0x1);
|
|
KDETH_RESET(ohdr->u.tid_rdma.w_req.kdeth1, JKEY, remote->jkey);
|
|
ohdr->u.tid_rdma.w_req.reth.vaddr =
|
|
cpu_to_be64(wqe->rdma_wr.remote_addr + (wqe->length - *len));
|
|
ohdr->u.tid_rdma.w_req.reth.rkey =
|
|
cpu_to_be32(wqe->rdma_wr.rkey);
|
|
ohdr->u.tid_rdma.w_req.reth.length = cpu_to_be32(*len);
|
|
ohdr->u.tid_rdma.w_req.verbs_qp = cpu_to_be32(qp->remote_qpn);
|
|
*bth1 &= ~RVT_QPN_MASK;
|
|
*bth1 |= remote->qp;
|
|
qp->s_state = TID_OP(WRITE_REQ);
|
|
qp->s_flags |= HFI1_S_WAIT_TID_RESP;
|
|
*bth2 |= IB_BTH_REQ_ACK;
|
|
*len = 0;
|
|
|
|
rcu_read_unlock();
|
|
return sizeof(ohdr->u.tid_rdma.w_req) / sizeof(u32);
|
|
}
|
|
|
|
static u32 hfi1_compute_tid_rdma_flow_wt(struct rvt_qp *qp)
|
|
{
|
|
/*
|
|
* Heuristic for computing the RNR timeout when waiting on the flow
|
|
* queue. Rather than a computationaly expensive exact estimate of when
|
|
* a flow will be available, we assume that if a QP is at position N in
|
|
* the flow queue it has to wait approximately (N + 1) * (number of
|
|
* segments between two sync points). The rationale for this is that
|
|
* flows are released and recycled at each sync point.
|
|
*/
|
|
return (MAX_TID_FLOW_PSN * qp->pmtu) >> TID_RDMA_SEGMENT_SHIFT;
|
|
}
|
|
|
|
static u32 position_in_queue(struct hfi1_qp_priv *qpriv,
|
|
struct tid_queue *queue)
|
|
{
|
|
return qpriv->tid_enqueue - queue->dequeue;
|
|
}
|
|
|
|
/*
|
|
* @qp: points to rvt_qp context.
|
|
* @to_seg: desired RNR timeout in segments.
|
|
* Return: index of the next highest timeout in the ib_hfi1_rnr_table[]
|
|
*/
|
|
static u32 hfi1_compute_tid_rnr_timeout(struct rvt_qp *qp, u32 to_seg)
|
|
{
|
|
struct hfi1_qp_priv *qpriv = qp->priv;
|
|
u64 timeout;
|
|
u32 bytes_per_us;
|
|
u8 i;
|
|
|
|
bytes_per_us = active_egress_rate(qpriv->rcd->ppd) / 8;
|
|
timeout = (to_seg * TID_RDMA_MAX_SEGMENT_SIZE) / bytes_per_us;
|
|
/*
|
|
* Find the next highest value in the RNR table to the required
|
|
* timeout. This gives the responder some padding.
|
|
*/
|
|
for (i = 1; i <= IB_AETH_CREDIT_MASK; i++)
|
|
if (rvt_rnr_tbl_to_usec(i) >= timeout)
|
|
return i;
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Central place for resource allocation at TID write responder,
|
|
* is called from write_req and write_data interrupt handlers as
|
|
* well as the send thread when a queued QP is scheduled for
|
|
* resource allocation.
|
|
*
|
|
* Iterates over (a) segments of a request and then (b) queued requests
|
|
* themselves to allocate resources for up to local->max_write
|
|
* segments across multiple requests. Stop allocating when we
|
|
* hit a sync point, resume allocating after data packets at
|
|
* sync point have been received.
|
|
*
|
|
* Resource allocation and sending of responses is decoupled. The
|
|
* request/segment which are being allocated and sent are as follows.
|
|
* Resources are allocated for:
|
|
* [request: qpriv->r_tid_alloc, segment: req->alloc_seg]
|
|
* The send thread sends:
|
|
* [request: qp->s_tail_ack_queue, segment:req->cur_seg]
|
|
*/
|
|
static void hfi1_tid_write_alloc_resources(struct rvt_qp *qp, bool intr_ctx)
|
|
{
|
|
struct tid_rdma_request *req;
|
|
struct hfi1_qp_priv *qpriv = qp->priv;
|
|
struct hfi1_ctxtdata *rcd = qpriv->rcd;
|
|
struct tid_rdma_params *local = &qpriv->tid_rdma.local;
|
|
struct rvt_ack_entry *e;
|
|
u32 npkts, to_seg;
|
|
bool last;
|
|
int ret = 0;
|
|
|
|
lockdep_assert_held(&qp->s_lock);
|
|
|
|
while (1) {
|
|
trace_hfi1_rsp_tid_write_alloc_res(qp, 0);
|
|
trace_hfi1_tid_write_rsp_alloc_res(qp);
|
|
/*
|
|
* Don't allocate more segments if a RNR NAK has already been
|
|
* scheduled to avoid messing up qp->r_psn: the RNR NAK will
|
|
* be sent only when all allocated segments have been sent.
|
|
* However, if more segments are allocated before that, TID RDMA
|
|
* WRITE RESP packets will be sent out for these new segments
|
|
* before the RNR NAK packet. When the requester receives the
|
|
* RNR NAK packet, it will restart with qp->s_last_psn + 1,
|
|
* which does not match qp->r_psn and will be dropped.
|
|
* Consequently, the requester will exhaust its retries and
|
|
* put the qp into error state.
|
|
*/
|
|
if (qpriv->rnr_nak_state == TID_RNR_NAK_SEND)
|
|
break;
|
|
|
|
/* No requests left to process */
|
|
if (qpriv->r_tid_alloc == qpriv->r_tid_head) {
|
|
/* If all data has been received, clear the flow */
|
|
if (qpriv->flow_state.index < RXE_NUM_TID_FLOWS &&
|
|
!qpriv->alloc_w_segs) {
|
|
hfi1_kern_clear_hw_flow(rcd, qp);
|
|
qpriv->s_flags &= ~HFI1_R_TID_SW_PSN;
|
|
}
|
|
break;
|
|
}
|
|
|
|
e = &qp->s_ack_queue[qpriv->r_tid_alloc];
|
|
if (e->opcode != TID_OP(WRITE_REQ))
|
|
goto next_req;
|
|
req = ack_to_tid_req(e);
|
|
trace_hfi1_tid_req_write_alloc_res(qp, 0, e->opcode, e->psn,
|
|
e->lpsn, req);
|
|
/* Finished allocating for all segments of this request */
|
|
if (req->alloc_seg >= req->total_segs)
|
|
goto next_req;
|
|
|
|
/* Can allocate only a maximum of local->max_write for a QP */
|
|
if (qpriv->alloc_w_segs >= local->max_write)
|
|
break;
|
|
|
|
/* Don't allocate at a sync point with data packets pending */
|
|
if (qpriv->sync_pt && qpriv->alloc_w_segs)
|
|
break;
|
|
|
|
/* All data received at the sync point, continue */
|
|
if (qpriv->sync_pt && !qpriv->alloc_w_segs) {
|
|
hfi1_kern_clear_hw_flow(rcd, qp);
|
|
qpriv->sync_pt = false;
|
|
qpriv->s_flags &= ~HFI1_R_TID_SW_PSN;
|
|
}
|
|
|
|
/* Allocate flow if we don't have one */
|
|
if (qpriv->flow_state.index >= RXE_NUM_TID_FLOWS) {
|
|
ret = hfi1_kern_setup_hw_flow(qpriv->rcd, qp);
|
|
if (ret) {
|
|
to_seg = hfi1_compute_tid_rdma_flow_wt(qp) *
|
|
position_in_queue(qpriv,
|
|
&rcd->flow_queue);
|
|
break;
|
|
}
|
|
}
|
|
|
|
npkts = rvt_div_round_up_mtu(qp, req->seg_len);
|
|
|
|
/*
|
|
* We are at a sync point if we run out of KDETH PSN space.
|
|
* Last PSN of every generation is reserved for RESYNC.
|
|
*/
|
|
if (qpriv->flow_state.psn + npkts > MAX_TID_FLOW_PSN - 1) {
|
|
qpriv->sync_pt = true;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* If overtaking req->acked_tail, send an RNR NAK. Because the
|
|
* QP is not queued in this case, and the issue can only be
|
|
* caused by a delay in scheduling the second leg which we
|
|
* cannot estimate, we use a rather arbitrary RNR timeout of
|
|
* (MAX_FLOWS / 2) segments
|
|
*/
|
|
if (!CIRC_SPACE(req->setup_head, req->acked_tail,
|
|
MAX_FLOWS)) {
|
|
ret = -EAGAIN;
|
|
to_seg = MAX_FLOWS >> 1;
|
|
tid_rdma_trigger_ack(qp);
|
|
break;
|
|
}
|
|
|
|
/* Try to allocate rcv array / TID entries */
|
|
ret = hfi1_kern_exp_rcv_setup(req, &req->ss, &last);
|
|
if (ret == -EAGAIN)
|
|
to_seg = position_in_queue(qpriv, &rcd->rarr_queue);
|
|
if (ret)
|
|
break;
|
|
|
|
qpriv->alloc_w_segs++;
|
|
req->alloc_seg++;
|
|
continue;
|
|
next_req:
|
|
/* Begin processing the next request */
|
|
if (++qpriv->r_tid_alloc >
|
|
rvt_size_atomic(ib_to_rvt(qp->ibqp.device)))
|
|
qpriv->r_tid_alloc = 0;
|
|
}
|
|
|
|
/*
|
|
* Schedule an RNR NAK to be sent if (a) flow or rcv array allocation
|
|
* has failed (b) we are called from the rcv handler interrupt context
|
|
* (c) an RNR NAK has not already been scheduled
|
|
*/
|
|
if (ret == -EAGAIN && intr_ctx && !qp->r_nak_state)
|
|
goto send_rnr_nak;
|
|
|
|
return;
|
|
|
|
send_rnr_nak:
|
|
lockdep_assert_held(&qp->r_lock);
|
|
|
|
/* Set r_nak_state to prevent unrelated events from generating NAK's */
|
|
qp->r_nak_state = hfi1_compute_tid_rnr_timeout(qp, to_seg) | IB_RNR_NAK;
|
|
|
|
/* Pull back r_psn to the segment being RNR NAK'd */
|
|
qp->r_psn = e->psn + req->alloc_seg;
|
|
qp->r_ack_psn = qp->r_psn;
|
|
/*
|
|
* Pull back r_head_ack_queue to the ack entry following the request
|
|
* being RNR NAK'd. This allows resources to be allocated to the request
|
|
* if the queued QP is scheduled.
|
|
*/
|
|
qp->r_head_ack_queue = qpriv->r_tid_alloc + 1;
|
|
if (qp->r_head_ack_queue > rvt_size_atomic(ib_to_rvt(qp->ibqp.device)))
|
|
qp->r_head_ack_queue = 0;
|
|
qpriv->r_tid_head = qp->r_head_ack_queue;
|
|
/*
|
|
* These send side fields are used in make_rc_ack(). They are set in
|
|
* hfi1_send_rc_ack() but must be set here before dropping qp->s_lock
|
|
* for consistency
|
|
*/
|
|
qp->s_nak_state = qp->r_nak_state;
|
|
qp->s_ack_psn = qp->r_ack_psn;
|
|
/*
|
|
* Clear the ACK PENDING flag to prevent unwanted ACK because we
|
|
* have modified qp->s_ack_psn here.
|
|
*/
|
|
qp->s_flags &= ~(RVT_S_ACK_PENDING);
|
|
|
|
trace_hfi1_rsp_tid_write_alloc_res(qp, qp->r_psn);
|
|
/*
|
|
* qpriv->rnr_nak_state is used to determine when the scheduled RNR NAK
|
|
* has actually been sent. qp->s_flags RVT_S_ACK_PENDING bit cannot be
|
|
* used for this because qp->s_lock is dropped before calling
|
|
* hfi1_send_rc_ack() leading to inconsistency between the receive
|
|
* interrupt handlers and the send thread in make_rc_ack()
|
|
*/
|
|
qpriv->rnr_nak_state = TID_RNR_NAK_SEND;
|
|
|
|
/*
|
|
* Schedule RNR NAK to be sent. RNR NAK's are scheduled from the receive
|
|
* interrupt handlers but will be sent from the send engine behind any
|
|
* previous responses that may have been scheduled
|
|
*/
|
|
rc_defered_ack(rcd, qp);
|
|
}
|
|
|
|
void hfi1_rc_rcv_tid_rdma_write_req(struct hfi1_packet *packet)
|
|
{
|
|
/* HANDLER FOR TID RDMA WRITE REQUEST packet (Responder side)*/
|
|
|
|
/*
|
|
* 1. Verify TID RDMA WRITE REQ as per IB_OPCODE_RC_RDMA_WRITE_FIRST
|
|
* (see hfi1_rc_rcv())
|
|
* - Don't allow 0-length requests.
|
|
* 2. Put TID RDMA WRITE REQ into the response queueu (s_ack_queue)
|
|
* - Setup struct tid_rdma_req with request info
|
|
* - Prepare struct tid_rdma_flow array?
|
|
* 3. Set the qp->s_ack_state as state diagram in design doc.
|
|
* 4. Set RVT_S_RESP_PENDING in s_flags.
|
|
* 5. Kick the send engine (hfi1_schedule_send())
|
|
*/
|
|
struct hfi1_ctxtdata *rcd = packet->rcd;
|
|
struct rvt_qp *qp = packet->qp;
|
|
struct hfi1_ibport *ibp = to_iport(qp->ibqp.device, qp->port_num);
|
|
struct ib_other_headers *ohdr = packet->ohdr;
|
|
struct rvt_ack_entry *e;
|
|
unsigned long flags;
|
|
struct ib_reth *reth;
|
|
struct hfi1_qp_priv *qpriv = qp->priv;
|
|
struct tid_rdma_request *req;
|
|
u32 bth0, psn, len, rkey, num_segs;
|
|
bool fecn;
|
|
u8 next;
|
|
u64 vaddr;
|
|
int diff;
|
|
|
|
bth0 = be32_to_cpu(ohdr->bth[0]);
|
|
if (hfi1_ruc_check_hdr(ibp, packet))
|
|
return;
|
|
|
|
fecn = process_ecn(qp, packet);
|
|
psn = mask_psn(be32_to_cpu(ohdr->bth[2]));
|
|
trace_hfi1_rsp_rcv_tid_write_req(qp, psn);
|
|
|
|
if (qp->state == IB_QPS_RTR && !(qp->r_flags & RVT_R_COMM_EST))
|
|
rvt_comm_est(qp);
|
|
|
|
if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_WRITE)))
|
|
goto nack_inv;
|
|
|
|
reth = &ohdr->u.tid_rdma.w_req.reth;
|
|
vaddr = be64_to_cpu(reth->vaddr);
|
|
len = be32_to_cpu(reth->length);
|
|
|
|
num_segs = DIV_ROUND_UP(len, qpriv->tid_rdma.local.max_len);
|
|
diff = delta_psn(psn, qp->r_psn);
|
|
if (unlikely(diff)) {
|
|
tid_rdma_rcv_err(packet, ohdr, qp, psn, diff, fecn);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* The resent request which was previously RNR NAK'd is inserted at the
|
|
* location of the original request, which is one entry behind
|
|
* r_head_ack_queue
|
|
*/
|
|
if (qpriv->rnr_nak_state)
|
|
qp->r_head_ack_queue = qp->r_head_ack_queue ?
|
|
qp->r_head_ack_queue - 1 :
|
|
rvt_size_atomic(ib_to_rvt(qp->ibqp.device));
|
|
|
|
/* We've verified the request, insert it into the ack queue. */
|
|
next = qp->r_head_ack_queue + 1;
|
|
if (next > rvt_size_atomic(ib_to_rvt(qp->ibqp.device)))
|
|
next = 0;
|
|
spin_lock_irqsave(&qp->s_lock, flags);
|
|
if (unlikely(next == qp->s_acked_ack_queue)) {
|
|
if (!qp->s_ack_queue[next].sent)
|
|
goto nack_inv_unlock;
|
|
update_ack_queue(qp, next);
|
|
}
|
|
e = &qp->s_ack_queue[qp->r_head_ack_queue];
|
|
req = ack_to_tid_req(e);
|
|
|
|
/* Bring previously RNR NAK'd request back to life */
|
|
if (qpriv->rnr_nak_state) {
|
|
qp->r_nak_state = 0;
|
|
qp->s_nak_state = 0;
|
|
qpriv->rnr_nak_state = TID_RNR_NAK_INIT;
|
|
qp->r_psn = e->lpsn + 1;
|
|
req->state = TID_REQUEST_INIT;
|
|
goto update_head;
|
|
}
|
|
|
|
release_rdma_sge_mr(e);
|
|
|
|
/* The length needs to be in multiples of PAGE_SIZE */
|
|
if (!len || len & ~PAGE_MASK)
|
|
goto nack_inv_unlock;
|
|
|
|
rkey = be32_to_cpu(reth->rkey);
|
|
qp->r_len = len;
|
|
|
|
if (e->opcode == TID_OP(WRITE_REQ) &&
|
|
(req->setup_head != req->clear_tail ||
|
|
req->clear_tail != req->acked_tail))
|
|
goto nack_inv_unlock;
|
|
|
|
if (unlikely(!rvt_rkey_ok(qp, &e->rdma_sge, qp->r_len, vaddr,
|
|
rkey, IB_ACCESS_REMOTE_WRITE)))
|
|
goto nack_acc;
|
|
|
|
qp->r_psn += num_segs - 1;
|
|
|
|
e->opcode = (bth0 >> 24) & 0xff;
|
|
e->psn = psn;
|
|
e->lpsn = qp->r_psn;
|
|
e->sent = 0;
|
|
|
|
req->n_flows = min_t(u16, num_segs, qpriv->tid_rdma.local.max_write);
|
|
req->state = TID_REQUEST_INIT;
|
|
req->cur_seg = 0;
|
|
req->comp_seg = 0;
|
|
req->ack_seg = 0;
|
|
req->alloc_seg = 0;
|
|
req->isge = 0;
|
|
req->seg_len = qpriv->tid_rdma.local.max_len;
|
|
req->total_len = len;
|
|
req->total_segs = num_segs;
|
|
req->r_flow_psn = e->psn;
|
|
req->ss.sge = e->rdma_sge;
|
|
req->ss.num_sge = 1;
|
|
|
|
req->flow_idx = req->setup_head;
|
|
req->clear_tail = req->setup_head;
|
|
req->acked_tail = req->setup_head;
|
|
|
|
qp->r_state = e->opcode;
|
|
qp->r_nak_state = 0;
|
|
/*
|
|
* We need to increment the MSN here instead of when we
|
|
* finish sending the result since a duplicate request would
|
|
* increment it more than once.
|
|
*/
|
|
qp->r_msn++;
|
|
qp->r_psn++;
|
|
|
|
trace_hfi1_tid_req_rcv_write_req(qp, 0, e->opcode, e->psn, e->lpsn,
|
|
req);
|
|
|
|
if (qpriv->r_tid_tail == HFI1_QP_WQE_INVALID) {
|
|
qpriv->r_tid_tail = qp->r_head_ack_queue;
|
|
} else if (qpriv->r_tid_tail == qpriv->r_tid_head) {
|
|
struct tid_rdma_request *ptr;
|
|
|
|
e = &qp->s_ack_queue[qpriv->r_tid_tail];
|
|
ptr = ack_to_tid_req(e);
|
|
|
|
if (e->opcode != TID_OP(WRITE_REQ) ||
|
|
ptr->comp_seg == ptr->total_segs) {
|
|
if (qpriv->r_tid_tail == qpriv->r_tid_ack)
|
|
qpriv->r_tid_ack = qp->r_head_ack_queue;
|
|
qpriv->r_tid_tail = qp->r_head_ack_queue;
|
|
}
|
|
}
|
|
update_head:
|
|
qp->r_head_ack_queue = next;
|
|
qpriv->r_tid_head = qp->r_head_ack_queue;
|
|
|
|
hfi1_tid_write_alloc_resources(qp, true);
|
|
trace_hfi1_tid_write_rsp_rcv_req(qp);
|
|
|
|
/* Schedule the send tasklet. */
|
|
qp->s_flags |= RVT_S_RESP_PENDING;
|
|
if (fecn)
|
|
qp->s_flags |= RVT_S_ECN;
|
|
hfi1_schedule_send(qp);
|
|
|
|
spin_unlock_irqrestore(&qp->s_lock, flags);
|
|
return;
|
|
|
|
nack_inv_unlock:
|
|
spin_unlock_irqrestore(&qp->s_lock, flags);
|
|
nack_inv:
|
|
rvt_rc_error(qp, IB_WC_LOC_QP_OP_ERR);
|
|
qp->r_nak_state = IB_NAK_INVALID_REQUEST;
|
|
qp->r_ack_psn = qp->r_psn;
|
|
/* Queue NAK for later */
|
|
rc_defered_ack(rcd, qp);
|
|
return;
|
|
nack_acc:
|
|
spin_unlock_irqrestore(&qp->s_lock, flags);
|
|
rvt_rc_error(qp, IB_WC_LOC_PROT_ERR);
|
|
qp->r_nak_state = IB_NAK_REMOTE_ACCESS_ERROR;
|
|
qp->r_ack_psn = qp->r_psn;
|
|
}
|
|
|
|
u32 hfi1_build_tid_rdma_write_resp(struct rvt_qp *qp, struct rvt_ack_entry *e,
|
|
struct ib_other_headers *ohdr, u32 *bth1,
|
|
u32 bth2, u32 *len,
|
|
struct rvt_sge_state **ss)
|
|
{
|
|
struct hfi1_ack_priv *epriv = e->priv;
|
|
struct tid_rdma_request *req = &epriv->tid_req;
|
|
struct hfi1_qp_priv *qpriv = qp->priv;
|
|
struct tid_rdma_flow *flow = NULL;
|
|
u32 resp_len = 0, hdwords = 0;
|
|
void *resp_addr = NULL;
|
|
struct tid_rdma_params *remote;
|
|
|
|
trace_hfi1_tid_req_build_write_resp(qp, 0, e->opcode, e->psn, e->lpsn,
|
|
req);
|
|
trace_hfi1_tid_write_rsp_build_resp(qp);
|
|
trace_hfi1_rsp_build_tid_write_resp(qp, bth2);
|
|
flow = &req->flows[req->flow_idx];
|
|
switch (req->state) {
|
|
default:
|
|
/*
|
|
* Try to allocate resources here in case QP was queued and was
|
|
* later scheduled when resources became available
|
|
*/
|
|
hfi1_tid_write_alloc_resources(qp, false);
|
|
|
|
/* We've already sent everything which is ready */
|
|
if (req->cur_seg >= req->alloc_seg)
|
|
goto done;
|
|
|
|
/*
|
|
* Resources can be assigned but responses cannot be sent in
|
|
* rnr_nak state, till the resent request is received
|
|
*/
|
|
if (qpriv->rnr_nak_state == TID_RNR_NAK_SENT)
|
|
goto done;
|
|
|
|
req->state = TID_REQUEST_ACTIVE;
|
|
trace_hfi1_tid_flow_build_write_resp(qp, req->flow_idx, flow);
|
|
req->flow_idx = CIRC_NEXT(req->flow_idx, MAX_FLOWS);
|
|
hfi1_add_tid_reap_timer(qp);
|
|
break;
|
|
|
|
case TID_REQUEST_RESEND_ACTIVE:
|
|
case TID_REQUEST_RESEND:
|
|
trace_hfi1_tid_flow_build_write_resp(qp, req->flow_idx, flow);
|
|
req->flow_idx = CIRC_NEXT(req->flow_idx, MAX_FLOWS);
|
|
if (!CIRC_CNT(req->setup_head, req->flow_idx, MAX_FLOWS))
|
|
req->state = TID_REQUEST_ACTIVE;
|
|
|
|
hfi1_mod_tid_reap_timer(qp);
|
|
break;
|
|
}
|
|
flow->flow_state.resp_ib_psn = bth2;
|
|
resp_addr = (void *)flow->tid_entry;
|
|
resp_len = sizeof(*flow->tid_entry) * flow->tidcnt;
|
|
req->cur_seg++;
|
|
|
|
memset(&ohdr->u.tid_rdma.w_rsp, 0, sizeof(ohdr->u.tid_rdma.w_rsp));
|
|
epriv->ss.sge.vaddr = resp_addr;
|
|
epriv->ss.sge.sge_length = resp_len;
|
|
epriv->ss.sge.length = epriv->ss.sge.sge_length;
|
|
/*
|
|
* We can safely zero these out. Since the first SGE covers the
|
|
* entire packet, nothing else should even look at the MR.
|
|
*/
|
|
epriv->ss.sge.mr = NULL;
|
|
epriv->ss.sge.m = 0;
|
|
epriv->ss.sge.n = 0;
|
|
|
|
epriv->ss.sg_list = NULL;
|
|
epriv->ss.total_len = epriv->ss.sge.sge_length;
|
|
epriv->ss.num_sge = 1;
|
|
|
|
*ss = &epriv->ss;
|
|
*len = epriv->ss.total_len;
|
|
|
|
/* Construct the TID RDMA WRITE RESP packet header */
|
|
rcu_read_lock();
|
|
remote = rcu_dereference(qpriv->tid_rdma.remote);
|
|
|
|
KDETH_RESET(ohdr->u.tid_rdma.w_rsp.kdeth0, KVER, 0x1);
|
|
KDETH_RESET(ohdr->u.tid_rdma.w_rsp.kdeth1, JKEY, remote->jkey);
|
|
ohdr->u.tid_rdma.w_rsp.aeth = rvt_compute_aeth(qp);
|
|
ohdr->u.tid_rdma.w_rsp.tid_flow_psn =
|
|
cpu_to_be32((flow->flow_state.generation <<
|
|
HFI1_KDETH_BTH_SEQ_SHIFT) |
|
|
(flow->flow_state.spsn &
|
|
HFI1_KDETH_BTH_SEQ_MASK));
|
|
ohdr->u.tid_rdma.w_rsp.tid_flow_qp =
|
|
cpu_to_be32(qpriv->tid_rdma.local.qp |
|
|
((flow->idx & TID_RDMA_DESTQP_FLOW_MASK) <<
|
|
TID_RDMA_DESTQP_FLOW_SHIFT) |
|
|
qpriv->rcd->ctxt);
|
|
ohdr->u.tid_rdma.w_rsp.verbs_qp = cpu_to_be32(qp->remote_qpn);
|
|
*bth1 = remote->qp;
|
|
rcu_read_unlock();
|
|
hdwords = sizeof(ohdr->u.tid_rdma.w_rsp) / sizeof(u32);
|
|
qpriv->pending_tid_w_segs++;
|
|
done:
|
|
return hdwords;
|
|
}
|
|
|
|
static void hfi1_add_tid_reap_timer(struct rvt_qp *qp)
|
|
{
|
|
struct hfi1_qp_priv *qpriv = qp->priv;
|
|
|
|
lockdep_assert_held(&qp->s_lock);
|
|
if (!(qpriv->s_flags & HFI1_R_TID_RSC_TIMER)) {
|
|
qpriv->s_flags |= HFI1_R_TID_RSC_TIMER;
|
|
qpriv->s_tid_timer.expires = jiffies +
|
|
qpriv->tid_timer_timeout_jiffies;
|
|
add_timer(&qpriv->s_tid_timer);
|
|
}
|
|
}
|
|
|
|
static void hfi1_mod_tid_reap_timer(struct rvt_qp *qp)
|
|
{
|
|
struct hfi1_qp_priv *qpriv = qp->priv;
|
|
|
|
lockdep_assert_held(&qp->s_lock);
|
|
qpriv->s_flags |= HFI1_R_TID_RSC_TIMER;
|
|
mod_timer(&qpriv->s_tid_timer, jiffies +
|
|
qpriv->tid_timer_timeout_jiffies);
|
|
}
|
|
|
|
static int hfi1_stop_tid_reap_timer(struct rvt_qp *qp)
|
|
{
|
|
struct hfi1_qp_priv *qpriv = qp->priv;
|
|
int rval = 0;
|
|
|
|
lockdep_assert_held(&qp->s_lock);
|
|
if (qpriv->s_flags & HFI1_R_TID_RSC_TIMER) {
|
|
rval = del_timer(&qpriv->s_tid_timer);
|
|
qpriv->s_flags &= ~HFI1_R_TID_RSC_TIMER;
|
|
}
|
|
return rval;
|
|
}
|
|
|
|
void hfi1_del_tid_reap_timer(struct rvt_qp *qp)
|
|
{
|
|
struct hfi1_qp_priv *qpriv = qp->priv;
|
|
|
|
del_timer_sync(&qpriv->s_tid_timer);
|
|
qpriv->s_flags &= ~HFI1_R_TID_RSC_TIMER;
|
|
}
|
|
|
|
static void hfi1_tid_timeout(struct timer_list *t)
|
|
{
|
|
struct hfi1_qp_priv *qpriv = from_timer(qpriv, t, s_tid_timer);
|
|
struct rvt_qp *qp = qpriv->owner;
|
|
struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
|
|
unsigned long flags;
|
|
u32 i;
|
|
|
|
spin_lock_irqsave(&qp->r_lock, flags);
|
|
spin_lock(&qp->s_lock);
|
|
if (qpriv->s_flags & HFI1_R_TID_RSC_TIMER) {
|
|
dd_dev_warn(dd_from_ibdev(qp->ibqp.device), "[QP%u] %s %d\n",
|
|
qp->ibqp.qp_num, __func__, __LINE__);
|
|
trace_hfi1_msg_tid_timeout(/* msg */
|
|
qp, "resource timeout = ",
|
|
(u64)qpriv->tid_timer_timeout_jiffies);
|
|
hfi1_stop_tid_reap_timer(qp);
|
|
/*
|
|
* Go though the entire ack queue and clear any outstanding
|
|
* HW flow and RcvArray resources.
|
|
*/
|
|
hfi1_kern_clear_hw_flow(qpriv->rcd, qp);
|
|
for (i = 0; i < rvt_max_atomic(rdi); i++) {
|
|
struct tid_rdma_request *req =
|
|
ack_to_tid_req(&qp->s_ack_queue[i]);
|
|
|
|
hfi1_kern_exp_rcv_clear_all(req);
|
|
}
|
|
spin_unlock(&qp->s_lock);
|
|
if (qp->ibqp.event_handler) {
|
|
struct ib_event ev;
|
|
|
|
ev.device = qp->ibqp.device;
|
|
ev.element.qp = &qp->ibqp;
|
|
ev.event = IB_EVENT_QP_FATAL;
|
|
qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
|
|
}
|
|
rvt_rc_error(qp, IB_WC_RESP_TIMEOUT_ERR);
|
|
goto unlock_r_lock;
|
|
}
|
|
spin_unlock(&qp->s_lock);
|
|
unlock_r_lock:
|
|
spin_unlock_irqrestore(&qp->r_lock, flags);
|
|
}
|
|
|
|
void hfi1_rc_rcv_tid_rdma_write_resp(struct hfi1_packet *packet)
|
|
{
|
|
/* HANDLER FOR TID RDMA WRITE RESPONSE packet (Requestor side */
|
|
|
|
/*
|
|
* 1. Find matching SWQE
|
|
* 2. Check that TIDENTRY array has enough space for a complete
|
|
* segment. If not, put QP in error state.
|
|
* 3. Save response data in struct tid_rdma_req and struct tid_rdma_flow
|
|
* 4. Remove HFI1_S_WAIT_TID_RESP from s_flags.
|
|
* 5. Set qp->s_state
|
|
* 6. Kick the send engine (hfi1_schedule_send())
|
|
*/
|
|
struct ib_other_headers *ohdr = packet->ohdr;
|
|
struct rvt_qp *qp = packet->qp;
|
|
struct hfi1_qp_priv *qpriv = qp->priv;
|
|
struct hfi1_ctxtdata *rcd = packet->rcd;
|
|
struct rvt_swqe *wqe;
|
|
struct tid_rdma_request *req;
|
|
struct tid_rdma_flow *flow;
|
|
enum ib_wc_status status;
|
|
u32 opcode, aeth, psn, flow_psn, i, tidlen = 0, pktlen;
|
|
bool fecn;
|
|
unsigned long flags;
|
|
|
|
fecn = process_ecn(qp, packet);
|
|
psn = mask_psn(be32_to_cpu(ohdr->bth[2]));
|
|
aeth = be32_to_cpu(ohdr->u.tid_rdma.w_rsp.aeth);
|
|
opcode = (be32_to_cpu(ohdr->bth[0]) >> 24) & 0xff;
|
|
|
|
spin_lock_irqsave(&qp->s_lock, flags);
|
|
|
|
/* Ignore invalid responses */
|
|
if (cmp_psn(psn, qp->s_next_psn) >= 0)
|
|
goto ack_done;
|
|
|
|
/* Ignore duplicate responses. */
|
|
if (unlikely(cmp_psn(psn, qp->s_last_psn) <= 0))
|
|
goto ack_done;
|
|
|
|
if (unlikely(qp->s_acked == qp->s_tail))
|
|
goto ack_done;
|
|
|
|
/*
|
|
* If we are waiting for a particular packet sequence number
|
|
* due to a request being resent, check for it. Otherwise,
|
|
* ensure that we haven't missed anything.
|
|
*/
|
|
if (qp->r_flags & RVT_R_RDMAR_SEQ) {
|
|
if (cmp_psn(psn, qp->s_last_psn + 1) != 0)
|
|
goto ack_done;
|
|
qp->r_flags &= ~RVT_R_RDMAR_SEQ;
|
|
}
|
|
|
|
wqe = rvt_get_swqe_ptr(qp, qpriv->s_tid_cur);
|
|
if (unlikely(wqe->wr.opcode != IB_WR_TID_RDMA_WRITE))
|
|
goto ack_op_err;
|
|
|
|
req = wqe_to_tid_req(wqe);
|
|
/*
|
|
* If we've lost ACKs and our acked_tail pointer is too far
|
|
* behind, don't overwrite segments. Just drop the packet and
|
|
* let the reliability protocol take care of it.
|
|
*/
|
|
if (!CIRC_SPACE(req->setup_head, req->acked_tail, MAX_FLOWS))
|
|
goto ack_done;
|
|
|
|
/*
|
|
* The call to do_rc_ack() should be last in the chain of
|
|
* packet checks because it will end up updating the QP state.
|
|
* Therefore, anything that would prevent the packet from
|
|
* being accepted as a successful response should be prior
|
|
* to it.
|
|
*/
|
|
if (!do_rc_ack(qp, aeth, psn, opcode, 0, rcd))
|
|
goto ack_done;
|
|
|
|
trace_hfi1_ack(qp, psn);
|
|
|
|
flow = &req->flows[req->setup_head];
|
|
flow->pkt = 0;
|
|
flow->tid_idx = 0;
|
|
flow->tid_offset = 0;
|
|
flow->sent = 0;
|
|
flow->resync_npkts = 0;
|
|
flow->tid_qpn = be32_to_cpu(ohdr->u.tid_rdma.w_rsp.tid_flow_qp);
|
|
flow->idx = (flow->tid_qpn >> TID_RDMA_DESTQP_FLOW_SHIFT) &
|
|
TID_RDMA_DESTQP_FLOW_MASK;
|
|
flow_psn = mask_psn(be32_to_cpu(ohdr->u.tid_rdma.w_rsp.tid_flow_psn));
|
|
flow->flow_state.generation = flow_psn >> HFI1_KDETH_BTH_SEQ_SHIFT;
|
|
flow->flow_state.spsn = flow_psn & HFI1_KDETH_BTH_SEQ_MASK;
|
|
flow->flow_state.resp_ib_psn = psn;
|
|
flow->length = min_t(u32, req->seg_len,
|
|
(wqe->length - (req->comp_seg * req->seg_len)));
|
|
|
|
flow->npkts = rvt_div_round_up_mtu(qp, flow->length);
|
|
flow->flow_state.lpsn = flow->flow_state.spsn +
|
|
flow->npkts - 1;
|
|
/* payload length = packet length - (header length + ICRC length) */
|
|
pktlen = packet->tlen - (packet->hlen + 4);
|
|
if (pktlen > sizeof(flow->tid_entry)) {
|
|
status = IB_WC_LOC_LEN_ERR;
|
|
goto ack_err;
|
|
}
|
|
memcpy(flow->tid_entry, packet->ebuf, pktlen);
|
|
flow->tidcnt = pktlen / sizeof(*flow->tid_entry);
|
|
trace_hfi1_tid_flow_rcv_write_resp(qp, req->setup_head, flow);
|
|
|
|
req->comp_seg++;
|
|
trace_hfi1_tid_write_sender_rcv_resp(qp, 0);
|
|
/*
|
|
* Walk the TID_ENTRY list to make sure we have enough space for a
|
|
* complete segment.
|
|
*/
|
|
for (i = 0; i < flow->tidcnt; i++) {
|
|
trace_hfi1_tid_entry_rcv_write_resp(/* entry */
|
|
qp, i, flow->tid_entry[i]);
|
|
if (!EXP_TID_GET(flow->tid_entry[i], LEN)) {
|
|
status = IB_WC_LOC_LEN_ERR;
|
|
goto ack_err;
|
|
}
|
|
tidlen += EXP_TID_GET(flow->tid_entry[i], LEN);
|
|
}
|
|
if (tidlen * PAGE_SIZE < flow->length) {
|
|
status = IB_WC_LOC_LEN_ERR;
|
|
goto ack_err;
|
|
}
|
|
|
|
trace_hfi1_tid_req_rcv_write_resp(qp, 0, wqe->wr.opcode, wqe->psn,
|
|
wqe->lpsn, req);
|
|
/*
|
|
* If this is the first response for this request, set the initial
|
|
* flow index to the current flow.
|
|
*/
|
|
if (!cmp_psn(psn, wqe->psn)) {
|
|
req->r_last_acked = mask_psn(wqe->psn - 1);
|
|
/* Set acked flow index to head index */
|
|
req->acked_tail = req->setup_head;
|
|
}
|
|
|
|
/* advance circular buffer head */
|
|
req->setup_head = CIRC_NEXT(req->setup_head, MAX_FLOWS);
|
|
req->state = TID_REQUEST_ACTIVE;
|
|
|
|
/*
|
|
* If all responses for this TID RDMA WRITE request have been received
|
|
* advance the pointer to the next one.
|
|
* Since TID RDMA requests could be mixed in with regular IB requests,
|
|
* they might not appear sequentially in the queue. Therefore, the
|
|
* next request needs to be "found".
|
|
*/
|
|
if (qpriv->s_tid_cur != qpriv->s_tid_head &&
|
|
req->comp_seg == req->total_segs) {
|
|
for (i = qpriv->s_tid_cur + 1; ; i++) {
|
|
if (i == qp->s_size)
|
|
i = 0;
|
|
wqe = rvt_get_swqe_ptr(qp, i);
|
|
if (i == qpriv->s_tid_head)
|
|
break;
|
|
if (wqe->wr.opcode == IB_WR_TID_RDMA_WRITE)
|
|
break;
|
|
}
|
|
qpriv->s_tid_cur = i;
|
|
}
|
|
qp->s_flags &= ~HFI1_S_WAIT_TID_RESP;
|
|
hfi1_schedule_tid_send(qp);
|
|
goto ack_done;
|
|
|
|
ack_op_err:
|
|
status = IB_WC_LOC_QP_OP_ERR;
|
|
ack_err:
|
|
rvt_error_qp(qp, status);
|
|
ack_done:
|
|
if (fecn)
|
|
qp->s_flags |= RVT_S_ECN;
|
|
spin_unlock_irqrestore(&qp->s_lock, flags);
|
|
}
|
|
|
|
bool hfi1_build_tid_rdma_packet(struct rvt_swqe *wqe,
|
|
struct ib_other_headers *ohdr,
|
|
u32 *bth1, u32 *bth2, u32 *len)
|
|
{
|
|
struct tid_rdma_request *req = wqe_to_tid_req(wqe);
|
|
struct tid_rdma_flow *flow = &req->flows[req->clear_tail];
|
|
struct tid_rdma_params *remote;
|
|
struct rvt_qp *qp = req->qp;
|
|
struct hfi1_qp_priv *qpriv = qp->priv;
|
|
u32 tidentry = flow->tid_entry[flow->tid_idx];
|
|
u32 tidlen = EXP_TID_GET(tidentry, LEN) << PAGE_SHIFT;
|
|
struct tid_rdma_write_data *wd = &ohdr->u.tid_rdma.w_data;
|
|
u32 next_offset, om = KDETH_OM_LARGE;
|
|
bool last_pkt;
|
|
|
|
if (!tidlen) {
|
|
hfi1_trdma_send_complete(qp, wqe, IB_WC_REM_INV_RD_REQ_ERR);
|
|
rvt_error_qp(qp, IB_WC_REM_INV_RD_REQ_ERR);
|
|
}
|
|
|
|
*len = min_t(u32, qp->pmtu, tidlen - flow->tid_offset);
|
|
flow->sent += *len;
|
|
next_offset = flow->tid_offset + *len;
|
|
last_pkt = (flow->tid_idx == (flow->tidcnt - 1) &&
|
|
next_offset >= tidlen) || (flow->sent >= flow->length);
|
|
trace_hfi1_tid_entry_build_write_data(qp, flow->tid_idx, tidentry);
|
|
trace_hfi1_tid_flow_build_write_data(qp, req->clear_tail, flow);
|
|
|
|
rcu_read_lock();
|
|
remote = rcu_dereference(qpriv->tid_rdma.remote);
|
|
KDETH_RESET(wd->kdeth0, KVER, 0x1);
|
|
KDETH_SET(wd->kdeth0, SH, !last_pkt);
|
|
KDETH_SET(wd->kdeth0, INTR, !!(!last_pkt && remote->urg));
|
|
KDETH_SET(wd->kdeth0, TIDCTRL, EXP_TID_GET(tidentry, CTRL));
|
|
KDETH_SET(wd->kdeth0, TID, EXP_TID_GET(tidentry, IDX));
|
|
KDETH_SET(wd->kdeth0, OM, om == KDETH_OM_LARGE);
|
|
KDETH_SET(wd->kdeth0, OFFSET, flow->tid_offset / om);
|
|
KDETH_RESET(wd->kdeth1, JKEY, remote->jkey);
|
|
wd->verbs_qp = cpu_to_be32(qp->remote_qpn);
|
|
rcu_read_unlock();
|
|
|
|
*bth1 = flow->tid_qpn;
|
|
*bth2 = mask_psn(((flow->flow_state.spsn + flow->pkt++) &
|
|
HFI1_KDETH_BTH_SEQ_MASK) |
|
|
(flow->flow_state.generation <<
|
|
HFI1_KDETH_BTH_SEQ_SHIFT));
|
|
if (last_pkt) {
|
|
/* PSNs are zero-based, so +1 to count number of packets */
|
|
if (flow->flow_state.lpsn + 1 +
|
|
rvt_div_round_up_mtu(qp, req->seg_len) >
|
|
MAX_TID_FLOW_PSN)
|
|
req->state = TID_REQUEST_SYNC;
|
|
*bth2 |= IB_BTH_REQ_ACK;
|
|
}
|
|
|
|
if (next_offset >= tidlen) {
|
|
flow->tid_offset = 0;
|
|
flow->tid_idx++;
|
|
} else {
|
|
flow->tid_offset = next_offset;
|
|
}
|
|
return last_pkt;
|
|
}
|
|
|
|
void hfi1_rc_rcv_tid_rdma_write_data(struct hfi1_packet *packet)
|
|
{
|
|
struct rvt_qp *qp = packet->qp;
|
|
struct hfi1_qp_priv *priv = qp->priv;
|
|
struct hfi1_ctxtdata *rcd = priv->rcd;
|
|
struct ib_other_headers *ohdr = packet->ohdr;
|
|
struct rvt_ack_entry *e;
|
|
struct tid_rdma_request *req;
|
|
struct tid_rdma_flow *flow;
|
|
struct hfi1_ibdev *dev = to_idev(qp->ibqp.device);
|
|
unsigned long flags;
|
|
u32 psn, next;
|
|
u8 opcode;
|
|
bool fecn;
|
|
|
|
fecn = process_ecn(qp, packet);
|
|
psn = mask_psn(be32_to_cpu(ohdr->bth[2]));
|
|
opcode = (be32_to_cpu(ohdr->bth[0]) >> 24) & 0xff;
|
|
|
|
/*
|
|
* All error handling should be done by now. If we are here, the packet
|
|
* is either good or been accepted by the error handler.
|
|
*/
|
|
spin_lock_irqsave(&qp->s_lock, flags);
|
|
e = &qp->s_ack_queue[priv->r_tid_tail];
|
|
req = ack_to_tid_req(e);
|
|
flow = &req->flows[req->clear_tail];
|
|
if (cmp_psn(psn, full_flow_psn(flow, flow->flow_state.lpsn))) {
|
|
update_r_next_psn_fecn(packet, priv, rcd, flow, fecn);
|
|
|
|
if (cmp_psn(psn, flow->flow_state.r_next_psn))
|
|
goto send_nak;
|
|
|
|
flow->flow_state.r_next_psn = mask_psn(psn + 1);
|
|
/*
|
|
* Copy the payload to destination buffer if this packet is
|
|
* delivered as an eager packet due to RSM rule and FECN.
|
|
* The RSM rule selects FECN bit in BTH and SH bit in
|
|
* KDETH header and therefore will not match the last
|
|
* packet of each segment that has SH bit cleared.
|
|
*/
|
|
if (fecn && packet->etype == RHF_RCV_TYPE_EAGER) {
|
|
struct rvt_sge_state ss;
|
|
u32 len;
|
|
u32 tlen = packet->tlen;
|
|
u16 hdrsize = packet->hlen;
|
|
u8 pad = packet->pad;
|
|
u8 extra_bytes = pad + packet->extra_byte +
|
|
(SIZE_OF_CRC << 2);
|
|
u32 pmtu = qp->pmtu;
|
|
|
|
if (unlikely(tlen != (hdrsize + pmtu + extra_bytes)))
|
|
goto send_nak;
|
|
len = req->comp_seg * req->seg_len;
|
|
len += delta_psn(psn,
|
|
full_flow_psn(flow, flow->flow_state.spsn)) *
|
|
pmtu;
|
|
if (unlikely(req->total_len - len < pmtu))
|
|
goto send_nak;
|
|
|
|
/*
|
|
* The e->rdma_sge field is set when TID RDMA WRITE REQ
|
|
* is first received and is never modified thereafter.
|
|
*/
|
|
ss.sge = e->rdma_sge;
|
|
ss.sg_list = NULL;
|
|
ss.num_sge = 1;
|
|
ss.total_len = req->total_len;
|
|
rvt_skip_sge(&ss, len, false);
|
|
rvt_copy_sge(qp, &ss, packet->payload, pmtu, false,
|
|
false);
|
|
/* Raise the sw sequence check flag for next packet */
|
|
priv->r_next_psn_kdeth = mask_psn(psn + 1);
|
|
priv->s_flags |= HFI1_R_TID_SW_PSN;
|
|
}
|
|
goto exit;
|
|
}
|
|
flow->flow_state.r_next_psn = mask_psn(psn + 1);
|
|
hfi1_kern_exp_rcv_clear(req);
|
|
priv->alloc_w_segs--;
|
|
rcd->flows[flow->idx].psn = psn & HFI1_KDETH_BTH_SEQ_MASK;
|
|
req->comp_seg++;
|
|
priv->s_nak_state = 0;
|
|
|
|
/*
|
|
* Release the flow if one of the following conditions has been met:
|
|
* - The request has reached a sync point AND all outstanding
|
|
* segments have been completed, or
|
|
* - The entire request is complete and there are no more requests
|
|
* (of any kind) in the queue.
|
|
*/
|
|
trace_hfi1_rsp_rcv_tid_write_data(qp, psn);
|
|
trace_hfi1_tid_req_rcv_write_data(qp, 0, e->opcode, e->psn, e->lpsn,
|
|
req);
|
|
trace_hfi1_tid_write_rsp_rcv_data(qp);
|
|
validate_r_tid_ack(priv);
|
|
|
|
if (opcode == TID_OP(WRITE_DATA_LAST)) {
|
|
release_rdma_sge_mr(e);
|
|
for (next = priv->r_tid_tail + 1; ; next++) {
|
|
if (next > rvt_size_atomic(&dev->rdi))
|
|
next = 0;
|
|
if (next == priv->r_tid_head)
|
|
break;
|
|
e = &qp->s_ack_queue[next];
|
|
if (e->opcode == TID_OP(WRITE_REQ))
|
|
break;
|
|
}
|
|
priv->r_tid_tail = next;
|
|
if (++qp->s_acked_ack_queue > rvt_size_atomic(&dev->rdi))
|
|
qp->s_acked_ack_queue = 0;
|
|
}
|
|
|
|
hfi1_tid_write_alloc_resources(qp, true);
|
|
|
|
/*
|
|
* If we need to generate more responses, schedule the
|
|
* send engine.
|
|
*/
|
|
if (req->cur_seg < req->total_segs ||
|
|
qp->s_tail_ack_queue != qp->r_head_ack_queue) {
|
|
qp->s_flags |= RVT_S_RESP_PENDING;
|
|
hfi1_schedule_send(qp);
|
|
}
|
|
|
|
priv->pending_tid_w_segs--;
|
|
if (priv->s_flags & HFI1_R_TID_RSC_TIMER) {
|
|
if (priv->pending_tid_w_segs)
|
|
hfi1_mod_tid_reap_timer(req->qp);
|
|
else
|
|
hfi1_stop_tid_reap_timer(req->qp);
|
|
}
|
|
|
|
done:
|
|
tid_rdma_schedule_ack(qp);
|
|
exit:
|
|
priv->r_next_psn_kdeth = flow->flow_state.r_next_psn;
|
|
if (fecn)
|
|
qp->s_flags |= RVT_S_ECN;
|
|
spin_unlock_irqrestore(&qp->s_lock, flags);
|
|
return;
|
|
|
|
send_nak:
|
|
if (!priv->s_nak_state) {
|
|
priv->s_nak_state = IB_NAK_PSN_ERROR;
|
|
priv->s_nak_psn = flow->flow_state.r_next_psn;
|
|
tid_rdma_trigger_ack(qp);
|
|
}
|
|
goto done;
|
|
}
|
|
|
|
static bool hfi1_tid_rdma_is_resync_psn(u32 psn)
|
|
{
|
|
return (bool)((psn & HFI1_KDETH_BTH_SEQ_MASK) ==
|
|
HFI1_KDETH_BTH_SEQ_MASK);
|
|
}
|
|
|
|
u32 hfi1_build_tid_rdma_write_ack(struct rvt_qp *qp, struct rvt_ack_entry *e,
|
|
struct ib_other_headers *ohdr, u16 iflow,
|
|
u32 *bth1, u32 *bth2)
|
|
{
|
|
struct hfi1_qp_priv *qpriv = qp->priv;
|
|
struct tid_flow_state *fs = &qpriv->flow_state;
|
|
struct tid_rdma_request *req = ack_to_tid_req(e);
|
|
struct tid_rdma_flow *flow = &req->flows[iflow];
|
|
struct tid_rdma_params *remote;
|
|
|
|
rcu_read_lock();
|
|
remote = rcu_dereference(qpriv->tid_rdma.remote);
|
|
KDETH_RESET(ohdr->u.tid_rdma.ack.kdeth1, JKEY, remote->jkey);
|
|
ohdr->u.tid_rdma.ack.verbs_qp = cpu_to_be32(qp->remote_qpn);
|
|
*bth1 = remote->qp;
|
|
rcu_read_unlock();
|
|
|
|
if (qpriv->resync) {
|
|
*bth2 = mask_psn((fs->generation <<
|
|
HFI1_KDETH_BTH_SEQ_SHIFT) - 1);
|
|
ohdr->u.tid_rdma.ack.aeth = rvt_compute_aeth(qp);
|
|
} else if (qpriv->s_nak_state) {
|
|
*bth2 = mask_psn(qpriv->s_nak_psn);
|
|
ohdr->u.tid_rdma.ack.aeth =
|
|
cpu_to_be32((qp->r_msn & IB_MSN_MASK) |
|
|
(qpriv->s_nak_state <<
|
|
IB_AETH_CREDIT_SHIFT));
|
|
} else {
|
|
*bth2 = full_flow_psn(flow, flow->flow_state.lpsn);
|
|
ohdr->u.tid_rdma.ack.aeth = rvt_compute_aeth(qp);
|
|
}
|
|
KDETH_RESET(ohdr->u.tid_rdma.ack.kdeth0, KVER, 0x1);
|
|
ohdr->u.tid_rdma.ack.tid_flow_qp =
|
|
cpu_to_be32(qpriv->tid_rdma.local.qp |
|
|
((flow->idx & TID_RDMA_DESTQP_FLOW_MASK) <<
|
|
TID_RDMA_DESTQP_FLOW_SHIFT) |
|
|
qpriv->rcd->ctxt);
|
|
|
|
ohdr->u.tid_rdma.ack.tid_flow_psn = 0;
|
|
ohdr->u.tid_rdma.ack.verbs_psn =
|
|
cpu_to_be32(flow->flow_state.resp_ib_psn);
|
|
|
|
if (qpriv->resync) {
|
|
/*
|
|
* If the PSN before the current expect KDETH PSN is the
|
|
* RESYNC PSN, then we never received a good TID RDMA WRITE
|
|
* DATA packet after a previous RESYNC.
|
|
* In this case, the next expected KDETH PSN stays the same.
|
|
*/
|
|
if (hfi1_tid_rdma_is_resync_psn(qpriv->r_next_psn_kdeth - 1)) {
|
|
ohdr->u.tid_rdma.ack.tid_flow_psn =
|
|
cpu_to_be32(qpriv->r_next_psn_kdeth_save);
|
|
} else {
|
|
/*
|
|
* Because the KDETH PSNs jump during a RESYNC, it's
|
|
* not possible to infer (or compute) the previous value
|
|
* of r_next_psn_kdeth in the case of back-to-back
|
|
* RESYNC packets. Therefore, we save it.
|
|
*/
|
|
qpriv->r_next_psn_kdeth_save =
|
|
qpriv->r_next_psn_kdeth - 1;
|
|
ohdr->u.tid_rdma.ack.tid_flow_psn =
|
|
cpu_to_be32(qpriv->r_next_psn_kdeth_save);
|
|
qpriv->r_next_psn_kdeth = mask_psn(*bth2 + 1);
|
|
}
|
|
qpriv->resync = false;
|
|
}
|
|
|
|
return sizeof(ohdr->u.tid_rdma.ack) / sizeof(u32);
|
|
}
|
|
|
|
void hfi1_rc_rcv_tid_rdma_ack(struct hfi1_packet *packet)
|
|
{
|
|
struct ib_other_headers *ohdr = packet->ohdr;
|
|
struct rvt_qp *qp = packet->qp;
|
|
struct hfi1_qp_priv *qpriv = qp->priv;
|
|
struct rvt_swqe *wqe;
|
|
struct tid_rdma_request *req;
|
|
struct tid_rdma_flow *flow;
|
|
u32 aeth, psn, req_psn, ack_psn, flpsn, resync_psn, ack_kpsn;
|
|
unsigned long flags;
|
|
u16 fidx;
|
|
|
|
trace_hfi1_tid_write_sender_rcv_tid_ack(qp, 0);
|
|
process_ecn(qp, packet);
|
|
psn = mask_psn(be32_to_cpu(ohdr->bth[2]));
|
|
aeth = be32_to_cpu(ohdr->u.tid_rdma.ack.aeth);
|
|
req_psn = mask_psn(be32_to_cpu(ohdr->u.tid_rdma.ack.verbs_psn));
|
|
resync_psn = mask_psn(be32_to_cpu(ohdr->u.tid_rdma.ack.tid_flow_psn));
|
|
|
|
spin_lock_irqsave(&qp->s_lock, flags);
|
|
trace_hfi1_rcv_tid_ack(qp, aeth, psn, req_psn, resync_psn);
|
|
|
|
/* If we are waiting for an ACK to RESYNC, drop any other packets */
|
|
if ((qp->s_flags & HFI1_S_WAIT_HALT) &&
|
|
cmp_psn(psn, qpriv->s_resync_psn))
|
|
goto ack_op_err;
|
|
|
|
ack_psn = req_psn;
|
|
if (hfi1_tid_rdma_is_resync_psn(psn))
|
|
ack_kpsn = resync_psn;
|
|
else
|
|
ack_kpsn = psn;
|
|
if (aeth >> 29) {
|
|
ack_psn--;
|
|
ack_kpsn--;
|
|
}
|
|
|
|
if (unlikely(qp->s_acked == qp->s_tail))
|
|
goto ack_op_err;
|
|
|
|
wqe = rvt_get_swqe_ptr(qp, qp->s_acked);
|
|
|
|
if (wqe->wr.opcode != IB_WR_TID_RDMA_WRITE)
|
|
goto ack_op_err;
|
|
|
|
req = wqe_to_tid_req(wqe);
|
|
trace_hfi1_tid_req_rcv_tid_ack(qp, 0, wqe->wr.opcode, wqe->psn,
|
|
wqe->lpsn, req);
|
|
flow = &req->flows[req->acked_tail];
|
|
trace_hfi1_tid_flow_rcv_tid_ack(qp, req->acked_tail, flow);
|
|
|
|
/* Drop stale ACK/NAK */
|
|
if (cmp_psn(psn, full_flow_psn(flow, flow->flow_state.spsn)) < 0 ||
|
|
cmp_psn(req_psn, flow->flow_state.resp_ib_psn) < 0)
|
|
goto ack_op_err;
|
|
|
|
while (cmp_psn(ack_kpsn,
|
|
full_flow_psn(flow, flow->flow_state.lpsn)) >= 0 &&
|
|
req->ack_seg < req->cur_seg) {
|
|
req->ack_seg++;
|
|
/* advance acked segment pointer */
|
|
req->acked_tail = CIRC_NEXT(req->acked_tail, MAX_FLOWS);
|
|
req->r_last_acked = flow->flow_state.resp_ib_psn;
|
|
trace_hfi1_tid_req_rcv_tid_ack(qp, 0, wqe->wr.opcode, wqe->psn,
|
|
wqe->lpsn, req);
|
|
if (req->ack_seg == req->total_segs) {
|
|
req->state = TID_REQUEST_COMPLETE;
|
|
wqe = do_rc_completion(qp, wqe,
|
|
to_iport(qp->ibqp.device,
|
|
qp->port_num));
|
|
trace_hfi1_sender_rcv_tid_ack(qp);
|
|
atomic_dec(&qpriv->n_tid_requests);
|
|
if (qp->s_acked == qp->s_tail)
|
|
break;
|
|
if (wqe->wr.opcode != IB_WR_TID_RDMA_WRITE)
|
|
break;
|
|
req = wqe_to_tid_req(wqe);
|
|
}
|
|
flow = &req->flows[req->acked_tail];
|
|
trace_hfi1_tid_flow_rcv_tid_ack(qp, req->acked_tail, flow);
|
|
}
|
|
|
|
trace_hfi1_tid_req_rcv_tid_ack(qp, 0, wqe->wr.opcode, wqe->psn,
|
|
wqe->lpsn, req);
|
|
switch (aeth >> 29) {
|
|
case 0: /* ACK */
|
|
if (qpriv->s_flags & RVT_S_WAIT_ACK)
|
|
qpriv->s_flags &= ~RVT_S_WAIT_ACK;
|
|
if (!hfi1_tid_rdma_is_resync_psn(psn)) {
|
|
/* Check if there is any pending TID ACK */
|
|
if (wqe->wr.opcode == IB_WR_TID_RDMA_WRITE &&
|
|
req->ack_seg < req->cur_seg)
|
|
hfi1_mod_tid_retry_timer(qp);
|
|
else
|
|
hfi1_stop_tid_retry_timer(qp);
|
|
hfi1_schedule_send(qp);
|
|
} else {
|
|
u32 spsn, fpsn, last_acked, generation;
|
|
struct tid_rdma_request *rptr;
|
|
|
|
/* ACK(RESYNC) */
|
|
hfi1_stop_tid_retry_timer(qp);
|
|
/* Allow new requests (see hfi1_make_tid_rdma_pkt) */
|
|
qp->s_flags &= ~HFI1_S_WAIT_HALT;
|
|
/*
|
|
* Clear RVT_S_SEND_ONE flag in case that the TID RDMA
|
|
* ACK is received after the TID retry timer is fired
|
|
* again. In this case, do not send any more TID
|
|
* RESYNC request or wait for any more TID ACK packet.
|
|
*/
|
|
qpriv->s_flags &= ~RVT_S_SEND_ONE;
|
|
hfi1_schedule_send(qp);
|
|
|
|
if ((qp->s_acked == qpriv->s_tid_tail &&
|
|
req->ack_seg == req->total_segs) ||
|
|
qp->s_acked == qp->s_tail) {
|
|
qpriv->s_state = TID_OP(WRITE_DATA_LAST);
|
|
goto done;
|
|
}
|
|
|
|
if (req->ack_seg == req->comp_seg) {
|
|
qpriv->s_state = TID_OP(WRITE_DATA);
|
|
goto done;
|
|
}
|
|
|
|
/*
|
|
* The PSN to start with is the next PSN after the
|
|
* RESYNC PSN.
|
|
*/
|
|
psn = mask_psn(psn + 1);
|
|
generation = psn >> HFI1_KDETH_BTH_SEQ_SHIFT;
|
|
spsn = 0;
|
|
|
|
/*
|
|
* Update to the correct WQE when we get an ACK(RESYNC)
|
|
* in the middle of a request.
|
|
*/
|
|
if (delta_psn(ack_psn, wqe->lpsn))
|
|
wqe = rvt_get_swqe_ptr(qp, qp->s_acked);
|
|
req = wqe_to_tid_req(wqe);
|
|
flow = &req->flows[req->acked_tail];
|
|
/*
|
|
* RESYNC re-numbers the PSN ranges of all remaining
|
|
* segments. Also, PSN's start from 0 in the middle of a
|
|
* segment and the first segment size is less than the
|
|
* default number of packets. flow->resync_npkts is used
|
|
* to track the number of packets from the start of the
|
|
* real segment to the point of 0 PSN after the RESYNC
|
|
* in order to later correctly rewind the SGE.
|
|
*/
|
|
fpsn = full_flow_psn(flow, flow->flow_state.spsn);
|
|
req->r_ack_psn = psn;
|
|
flow->resync_npkts +=
|
|
delta_psn(mask_psn(resync_psn + 1), fpsn);
|
|
/*
|
|
* Renumber all packet sequence number ranges
|
|
* based on the new generation.
|
|
*/
|
|
last_acked = qp->s_acked;
|
|
rptr = req;
|
|
while (1) {
|
|
/* start from last acked segment */
|
|
for (fidx = rptr->acked_tail;
|
|
CIRC_CNT(rptr->setup_head, fidx,
|
|
MAX_FLOWS);
|
|
fidx = CIRC_NEXT(fidx, MAX_FLOWS)) {
|
|
u32 lpsn;
|
|
u32 gen;
|
|
|
|
flow = &rptr->flows[fidx];
|
|
gen = flow->flow_state.generation;
|
|
if (WARN_ON(gen == generation &&
|
|
flow->flow_state.spsn !=
|
|
spsn))
|
|
continue;
|
|
lpsn = flow->flow_state.lpsn;
|
|
lpsn = full_flow_psn(flow, lpsn);
|
|
flow->npkts =
|
|
delta_psn(lpsn,
|
|
mask_psn(resync_psn)
|
|
);
|
|
flow->flow_state.generation =
|
|
generation;
|
|
flow->flow_state.spsn = spsn;
|
|
flow->flow_state.lpsn =
|
|
flow->flow_state.spsn +
|
|
flow->npkts - 1;
|
|
flow->pkt = 0;
|
|
spsn += flow->npkts;
|
|
resync_psn += flow->npkts;
|
|
trace_hfi1_tid_flow_rcv_tid_ack(qp,
|
|
fidx,
|
|
flow);
|
|
}
|
|
if (++last_acked == qpriv->s_tid_cur + 1)
|
|
break;
|
|
if (last_acked == qp->s_size)
|
|
last_acked = 0;
|
|
wqe = rvt_get_swqe_ptr(qp, last_acked);
|
|
rptr = wqe_to_tid_req(wqe);
|
|
}
|
|
req->cur_seg = req->ack_seg;
|
|
qpriv->s_tid_tail = qp->s_acked;
|
|
qpriv->s_state = TID_OP(WRITE_REQ);
|
|
hfi1_schedule_tid_send(qp);
|
|
}
|
|
done:
|
|
qpriv->s_retry = qp->s_retry_cnt;
|
|
break;
|
|
|
|
case 3: /* NAK */
|
|
hfi1_stop_tid_retry_timer(qp);
|
|
switch ((aeth >> IB_AETH_CREDIT_SHIFT) &
|
|
IB_AETH_CREDIT_MASK) {
|
|
case 0: /* PSN sequence error */
|
|
if (!req->flows)
|
|
break;
|
|
flow = &req->flows[req->acked_tail];
|
|
flpsn = full_flow_psn(flow, flow->flow_state.lpsn);
|
|
if (cmp_psn(psn, flpsn) > 0)
|
|
break;
|
|
trace_hfi1_tid_flow_rcv_tid_ack(qp, req->acked_tail,
|
|
flow);
|
|
req->r_ack_psn = mask_psn(be32_to_cpu(ohdr->bth[2]));
|
|
req->cur_seg = req->ack_seg;
|
|
qpriv->s_tid_tail = qp->s_acked;
|
|
qpriv->s_state = TID_OP(WRITE_REQ);
|
|
qpriv->s_retry = qp->s_retry_cnt;
|
|
hfi1_schedule_tid_send(qp);
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
ack_op_err:
|
|
spin_unlock_irqrestore(&qp->s_lock, flags);
|
|
}
|
|
|
|
void hfi1_add_tid_retry_timer(struct rvt_qp *qp)
|
|
{
|
|
struct hfi1_qp_priv *priv = qp->priv;
|
|
struct ib_qp *ibqp = &qp->ibqp;
|
|
struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
|
|
|
|
lockdep_assert_held(&qp->s_lock);
|
|
if (!(priv->s_flags & HFI1_S_TID_RETRY_TIMER)) {
|
|
priv->s_flags |= HFI1_S_TID_RETRY_TIMER;
|
|
priv->s_tid_retry_timer.expires = jiffies +
|
|
priv->tid_retry_timeout_jiffies + rdi->busy_jiffies;
|
|
add_timer(&priv->s_tid_retry_timer);
|
|
}
|
|
}
|
|
|
|
static void hfi1_mod_tid_retry_timer(struct rvt_qp *qp)
|
|
{
|
|
struct hfi1_qp_priv *priv = qp->priv;
|
|
struct ib_qp *ibqp = &qp->ibqp;
|
|
struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
|
|
|
|
lockdep_assert_held(&qp->s_lock);
|
|
priv->s_flags |= HFI1_S_TID_RETRY_TIMER;
|
|
mod_timer(&priv->s_tid_retry_timer, jiffies +
|
|
priv->tid_retry_timeout_jiffies + rdi->busy_jiffies);
|
|
}
|
|
|
|
static int hfi1_stop_tid_retry_timer(struct rvt_qp *qp)
|
|
{
|
|
struct hfi1_qp_priv *priv = qp->priv;
|
|
int rval = 0;
|
|
|
|
lockdep_assert_held(&qp->s_lock);
|
|
if (priv->s_flags & HFI1_S_TID_RETRY_TIMER) {
|
|
rval = del_timer(&priv->s_tid_retry_timer);
|
|
priv->s_flags &= ~HFI1_S_TID_RETRY_TIMER;
|
|
}
|
|
return rval;
|
|
}
|
|
|
|
void hfi1_del_tid_retry_timer(struct rvt_qp *qp)
|
|
{
|
|
struct hfi1_qp_priv *priv = qp->priv;
|
|
|
|
del_timer_sync(&priv->s_tid_retry_timer);
|
|
priv->s_flags &= ~HFI1_S_TID_RETRY_TIMER;
|
|
}
|
|
|
|
static void hfi1_tid_retry_timeout(struct timer_list *t)
|
|
{
|
|
struct hfi1_qp_priv *priv = from_timer(priv, t, s_tid_retry_timer);
|
|
struct rvt_qp *qp = priv->owner;
|
|
struct rvt_swqe *wqe;
|
|
unsigned long flags;
|
|
struct tid_rdma_request *req;
|
|
|
|
spin_lock_irqsave(&qp->r_lock, flags);
|
|
spin_lock(&qp->s_lock);
|
|
trace_hfi1_tid_write_sender_retry_timeout(qp, 0);
|
|
if (priv->s_flags & HFI1_S_TID_RETRY_TIMER) {
|
|
hfi1_stop_tid_retry_timer(qp);
|
|
if (!priv->s_retry) {
|
|
trace_hfi1_msg_tid_retry_timeout(/* msg */
|
|
qp,
|
|
"Exhausted retries. Tid retry timeout = ",
|
|
(u64)priv->tid_retry_timeout_jiffies);
|
|
|
|
wqe = rvt_get_swqe_ptr(qp, qp->s_acked);
|
|
hfi1_trdma_send_complete(qp, wqe, IB_WC_RETRY_EXC_ERR);
|
|
rvt_error_qp(qp, IB_WC_WR_FLUSH_ERR);
|
|
} else {
|
|
wqe = rvt_get_swqe_ptr(qp, qp->s_acked);
|
|
req = wqe_to_tid_req(wqe);
|
|
trace_hfi1_tid_req_tid_retry_timeout(/* req */
|
|
qp, 0, wqe->wr.opcode, wqe->psn, wqe->lpsn, req);
|
|
|
|
priv->s_flags &= ~RVT_S_WAIT_ACK;
|
|
/* Only send one packet (the RESYNC) */
|
|
priv->s_flags |= RVT_S_SEND_ONE;
|
|
/*
|
|
* No additional request shall be made by this QP until
|
|
* the RESYNC has been complete.
|
|
*/
|
|
qp->s_flags |= HFI1_S_WAIT_HALT;
|
|
priv->s_state = TID_OP(RESYNC);
|
|
priv->s_retry--;
|
|
hfi1_schedule_tid_send(qp);
|
|
}
|
|
}
|
|
spin_unlock(&qp->s_lock);
|
|
spin_unlock_irqrestore(&qp->r_lock, flags);
|
|
}
|
|
|
|
u32 hfi1_build_tid_rdma_resync(struct rvt_qp *qp, struct rvt_swqe *wqe,
|
|
struct ib_other_headers *ohdr, u32 *bth1,
|
|
u32 *bth2, u16 fidx)
|
|
{
|
|
struct hfi1_qp_priv *qpriv = qp->priv;
|
|
struct tid_rdma_params *remote;
|
|
struct tid_rdma_request *req = wqe_to_tid_req(wqe);
|
|
struct tid_rdma_flow *flow = &req->flows[fidx];
|
|
u32 generation;
|
|
|
|
rcu_read_lock();
|
|
remote = rcu_dereference(qpriv->tid_rdma.remote);
|
|
KDETH_RESET(ohdr->u.tid_rdma.ack.kdeth1, JKEY, remote->jkey);
|
|
ohdr->u.tid_rdma.ack.verbs_qp = cpu_to_be32(qp->remote_qpn);
|
|
*bth1 = remote->qp;
|
|
rcu_read_unlock();
|
|
|
|
generation = kern_flow_generation_next(flow->flow_state.generation);
|
|
*bth2 = mask_psn((generation << HFI1_KDETH_BTH_SEQ_SHIFT) - 1);
|
|
qpriv->s_resync_psn = *bth2;
|
|
*bth2 |= IB_BTH_REQ_ACK;
|
|
KDETH_RESET(ohdr->u.tid_rdma.ack.kdeth0, KVER, 0x1);
|
|
|
|
return sizeof(ohdr->u.tid_rdma.resync) / sizeof(u32);
|
|
}
|
|
|
|
void hfi1_rc_rcv_tid_rdma_resync(struct hfi1_packet *packet)
|
|
{
|
|
struct ib_other_headers *ohdr = packet->ohdr;
|
|
struct rvt_qp *qp = packet->qp;
|
|
struct hfi1_qp_priv *qpriv = qp->priv;
|
|
struct hfi1_ctxtdata *rcd = qpriv->rcd;
|
|
struct hfi1_ibdev *dev = to_idev(qp->ibqp.device);
|
|
struct rvt_ack_entry *e;
|
|
struct tid_rdma_request *req;
|
|
struct tid_rdma_flow *flow;
|
|
struct tid_flow_state *fs = &qpriv->flow_state;
|
|
u32 psn, generation, idx, gen_next;
|
|
bool fecn;
|
|
unsigned long flags;
|
|
|
|
fecn = process_ecn(qp, packet);
|
|
psn = mask_psn(be32_to_cpu(ohdr->bth[2]));
|
|
|
|
generation = mask_psn(psn + 1) >> HFI1_KDETH_BTH_SEQ_SHIFT;
|
|
spin_lock_irqsave(&qp->s_lock, flags);
|
|
|
|
gen_next = (fs->generation == KERN_GENERATION_RESERVED) ?
|
|
generation : kern_flow_generation_next(fs->generation);
|
|
/*
|
|
* RESYNC packet contains the "next" generation and can only be
|
|
* from the current or previous generations
|
|
*/
|
|
if (generation != mask_generation(gen_next - 1) &&
|
|
generation != gen_next)
|
|
goto bail;
|
|
/* Already processing a resync */
|
|
if (qpriv->resync)
|
|
goto bail;
|
|
|
|
spin_lock(&rcd->exp_lock);
|
|
if (fs->index >= RXE_NUM_TID_FLOWS) {
|
|
/*
|
|
* If we don't have a flow, save the generation so it can be
|
|
* applied when a new flow is allocated
|
|
*/
|
|
fs->generation = generation;
|
|
} else {
|
|
/* Reprogram the QP flow with new generation */
|
|
rcd->flows[fs->index].generation = generation;
|
|
fs->generation = kern_setup_hw_flow(rcd, fs->index);
|
|
}
|
|
fs->psn = 0;
|
|
/*
|
|
* Disable SW PSN checking since a RESYNC is equivalent to a
|
|
* sync point and the flow has/will be reprogrammed
|
|
*/
|
|
qpriv->s_flags &= ~HFI1_R_TID_SW_PSN;
|
|
trace_hfi1_tid_write_rsp_rcv_resync(qp);
|
|
|
|
/*
|
|
* Reset all TID flow information with the new generation.
|
|
* This is done for all requests and segments after the
|
|
* last received segment
|
|
*/
|
|
for (idx = qpriv->r_tid_tail; ; idx++) {
|
|
u16 flow_idx;
|
|
|
|
if (idx > rvt_size_atomic(&dev->rdi))
|
|
idx = 0;
|
|
e = &qp->s_ack_queue[idx];
|
|
if (e->opcode == TID_OP(WRITE_REQ)) {
|
|
req = ack_to_tid_req(e);
|
|
trace_hfi1_tid_req_rcv_resync(qp, 0, e->opcode, e->psn,
|
|
e->lpsn, req);
|
|
|
|
/* start from last unacked segment */
|
|
for (flow_idx = req->clear_tail;
|
|
CIRC_CNT(req->setup_head, flow_idx,
|
|
MAX_FLOWS);
|
|
flow_idx = CIRC_NEXT(flow_idx, MAX_FLOWS)) {
|
|
u32 lpsn;
|
|
u32 next;
|
|
|
|
flow = &req->flows[flow_idx];
|
|
lpsn = full_flow_psn(flow,
|
|
flow->flow_state.lpsn);
|
|
next = flow->flow_state.r_next_psn;
|
|
flow->npkts = delta_psn(lpsn, next - 1);
|
|
flow->flow_state.generation = fs->generation;
|
|
flow->flow_state.spsn = fs->psn;
|
|
flow->flow_state.lpsn =
|
|
flow->flow_state.spsn + flow->npkts - 1;
|
|
flow->flow_state.r_next_psn =
|
|
full_flow_psn(flow,
|
|
flow->flow_state.spsn);
|
|
fs->psn += flow->npkts;
|
|
trace_hfi1_tid_flow_rcv_resync(qp, flow_idx,
|
|
flow);
|
|
}
|
|
}
|
|
if (idx == qp->s_tail_ack_queue)
|
|
break;
|
|
}
|
|
|
|
spin_unlock(&rcd->exp_lock);
|
|
qpriv->resync = true;
|
|
/* RESYNC request always gets a TID RDMA ACK. */
|
|
qpriv->s_nak_state = 0;
|
|
tid_rdma_trigger_ack(qp);
|
|
bail:
|
|
if (fecn)
|
|
qp->s_flags |= RVT_S_ECN;
|
|
spin_unlock_irqrestore(&qp->s_lock, flags);
|
|
}
|
|
|
|
/*
|
|
* Call this function when the last TID RDMA WRITE DATA packet for a request
|
|
* is built.
|
|
*/
|
|
static void update_tid_tail(struct rvt_qp *qp)
|
|
__must_hold(&qp->s_lock)
|
|
{
|
|
struct hfi1_qp_priv *priv = qp->priv;
|
|
u32 i;
|
|
struct rvt_swqe *wqe;
|
|
|
|
lockdep_assert_held(&qp->s_lock);
|
|
/* Can't move beyond s_tid_cur */
|
|
if (priv->s_tid_tail == priv->s_tid_cur)
|
|
return;
|
|
for (i = priv->s_tid_tail + 1; ; i++) {
|
|
if (i == qp->s_size)
|
|
i = 0;
|
|
|
|
if (i == priv->s_tid_cur)
|
|
break;
|
|
wqe = rvt_get_swqe_ptr(qp, i);
|
|
if (wqe->wr.opcode == IB_WR_TID_RDMA_WRITE)
|
|
break;
|
|
}
|
|
priv->s_tid_tail = i;
|
|
priv->s_state = TID_OP(WRITE_RESP);
|
|
}
|
|
|
|
int hfi1_make_tid_rdma_pkt(struct rvt_qp *qp, struct hfi1_pkt_state *ps)
|
|
__must_hold(&qp->s_lock)
|
|
{
|
|
struct hfi1_qp_priv *priv = qp->priv;
|
|
struct rvt_swqe *wqe;
|
|
u32 bth1 = 0, bth2 = 0, hwords = 5, len, middle = 0;
|
|
struct ib_other_headers *ohdr;
|
|
struct rvt_sge_state *ss = &qp->s_sge;
|
|
struct rvt_ack_entry *e = &qp->s_ack_queue[qp->s_tail_ack_queue];
|
|
struct tid_rdma_request *req = ack_to_tid_req(e);
|
|
bool last = false;
|
|
u8 opcode = TID_OP(WRITE_DATA);
|
|
|
|
lockdep_assert_held(&qp->s_lock);
|
|
trace_hfi1_tid_write_sender_make_tid_pkt(qp, 0);
|
|
/*
|
|
* Prioritize the sending of the requests and responses over the
|
|
* sending of the TID RDMA data packets.
|
|
*/
|
|
if (((atomic_read(&priv->n_tid_requests) < HFI1_TID_RDMA_WRITE_CNT) &&
|
|
atomic_read(&priv->n_requests) &&
|
|
!(qp->s_flags & (RVT_S_BUSY | RVT_S_WAIT_ACK |
|
|
HFI1_S_ANY_WAIT_IO))) ||
|
|
(e->opcode == TID_OP(WRITE_REQ) && req->cur_seg < req->alloc_seg &&
|
|
!(qp->s_flags & (RVT_S_BUSY | HFI1_S_ANY_WAIT_IO)))) {
|
|
struct iowait_work *iowork;
|
|
|
|
iowork = iowait_get_ib_work(&priv->s_iowait);
|
|
ps->s_txreq = get_waiting_verbs_txreq(iowork);
|
|
if (ps->s_txreq || hfi1_make_rc_req(qp, ps)) {
|
|
priv->s_flags |= HFI1_S_TID_BUSY_SET;
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
ps->s_txreq = get_txreq(ps->dev, qp);
|
|
if (!ps->s_txreq)
|
|
goto bail_no_tx;
|
|
|
|
ohdr = &ps->s_txreq->phdr.hdr.ibh.u.oth;
|
|
|
|
if ((priv->s_flags & RVT_S_ACK_PENDING) &&
|
|
make_tid_rdma_ack(qp, ohdr, ps))
|
|
return 1;
|
|
|
|
/*
|
|
* Bail out if we can't send data.
|
|
* Be reminded that this check must been done after the call to
|
|
* make_tid_rdma_ack() because the responding QP could be in
|
|
* RTR state where it can send TID RDMA ACK, not TID RDMA WRITE DATA.
|
|
*/
|
|
if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_SEND_OK))
|
|
goto bail;
|
|
|
|
if (priv->s_flags & RVT_S_WAIT_ACK)
|
|
goto bail;
|
|
|
|
/* Check whether there is anything to do. */
|
|
if (priv->s_tid_tail == HFI1_QP_WQE_INVALID)
|
|
goto bail;
|
|
wqe = rvt_get_swqe_ptr(qp, priv->s_tid_tail);
|
|
req = wqe_to_tid_req(wqe);
|
|
trace_hfi1_tid_req_make_tid_pkt(qp, 0, wqe->wr.opcode, wqe->psn,
|
|
wqe->lpsn, req);
|
|
switch (priv->s_state) {
|
|
case TID_OP(WRITE_REQ):
|
|
case TID_OP(WRITE_RESP):
|
|
priv->tid_ss.sge = wqe->sg_list[0];
|
|
priv->tid_ss.sg_list = wqe->sg_list + 1;
|
|
priv->tid_ss.num_sge = wqe->wr.num_sge;
|
|
priv->tid_ss.total_len = wqe->length;
|
|
|
|
if (priv->s_state == TID_OP(WRITE_REQ))
|
|
hfi1_tid_rdma_restart_req(qp, wqe, &bth2);
|
|
priv->s_state = TID_OP(WRITE_DATA);
|
|
/* fall through */
|
|
|
|
case TID_OP(WRITE_DATA):
|
|
/*
|
|
* 1. Check whether TID RDMA WRITE RESP available.
|
|
* 2. If no:
|
|
* 2.1 If have more segments and no TID RDMA WRITE RESP,
|
|
* set HFI1_S_WAIT_TID_RESP
|
|
* 2.2 Return indicating no progress made.
|
|
* 3. If yes:
|
|
* 3.1 Build TID RDMA WRITE DATA packet.
|
|
* 3.2 If last packet in segment:
|
|
* 3.2.1 Change KDETH header bits
|
|
* 3.2.2 Advance RESP pointers.
|
|
* 3.3 Return indicating progress made.
|
|
*/
|
|
trace_hfi1_sender_make_tid_pkt(qp);
|
|
trace_hfi1_tid_write_sender_make_tid_pkt(qp, 0);
|
|
wqe = rvt_get_swqe_ptr(qp, priv->s_tid_tail);
|
|
req = wqe_to_tid_req(wqe);
|
|
len = wqe->length;
|
|
|
|
if (!req->comp_seg || req->cur_seg == req->comp_seg)
|
|
goto bail;
|
|
|
|
trace_hfi1_tid_req_make_tid_pkt(qp, 0, wqe->wr.opcode,
|
|
wqe->psn, wqe->lpsn, req);
|
|
last = hfi1_build_tid_rdma_packet(wqe, ohdr, &bth1, &bth2,
|
|
&len);
|
|
|
|
if (last) {
|
|
/* move pointer to next flow */
|
|
req->clear_tail = CIRC_NEXT(req->clear_tail,
|
|
MAX_FLOWS);
|
|
if (++req->cur_seg < req->total_segs) {
|
|
if (!CIRC_CNT(req->setup_head, req->clear_tail,
|
|
MAX_FLOWS))
|
|
qp->s_flags |= HFI1_S_WAIT_TID_RESP;
|
|
} else {
|
|
priv->s_state = TID_OP(WRITE_DATA_LAST);
|
|
opcode = TID_OP(WRITE_DATA_LAST);
|
|
|
|
/* Advance the s_tid_tail now */
|
|
update_tid_tail(qp);
|
|
}
|
|
}
|
|
hwords += sizeof(ohdr->u.tid_rdma.w_data) / sizeof(u32);
|
|
ss = &priv->tid_ss;
|
|
break;
|
|
|
|
case TID_OP(RESYNC):
|
|
trace_hfi1_sender_make_tid_pkt(qp);
|
|
/* Use generation from the most recently received response */
|
|
wqe = rvt_get_swqe_ptr(qp, priv->s_tid_cur);
|
|
req = wqe_to_tid_req(wqe);
|
|
/* If no responses for this WQE look at the previous one */
|
|
if (!req->comp_seg) {
|
|
wqe = rvt_get_swqe_ptr(qp,
|
|
(!priv->s_tid_cur ? qp->s_size :
|
|
priv->s_tid_cur) - 1);
|
|
req = wqe_to_tid_req(wqe);
|
|
}
|
|
hwords += hfi1_build_tid_rdma_resync(qp, wqe, ohdr, &bth1,
|
|
&bth2,
|
|
CIRC_PREV(req->setup_head,
|
|
MAX_FLOWS));
|
|
ss = NULL;
|
|
len = 0;
|
|
opcode = TID_OP(RESYNC);
|
|
break;
|
|
|
|
default:
|
|
goto bail;
|
|
}
|
|
if (priv->s_flags & RVT_S_SEND_ONE) {
|
|
priv->s_flags &= ~RVT_S_SEND_ONE;
|
|
priv->s_flags |= RVT_S_WAIT_ACK;
|
|
bth2 |= IB_BTH_REQ_ACK;
|
|
}
|
|
qp->s_len -= len;
|
|
ps->s_txreq->hdr_dwords = hwords;
|
|
ps->s_txreq->sde = priv->s_sde;
|
|
ps->s_txreq->ss = ss;
|
|
ps->s_txreq->s_cur_size = len;
|
|
hfi1_make_ruc_header(qp, ohdr, (opcode << 24), bth1, bth2,
|
|
middle, ps);
|
|
return 1;
|
|
bail:
|
|
hfi1_put_txreq(ps->s_txreq);
|
|
bail_no_tx:
|
|
ps->s_txreq = NULL;
|
|
priv->s_flags &= ~RVT_S_BUSY;
|
|
/*
|
|
* If we didn't get a txreq, the QP will be woken up later to try
|
|
* again, set the flags to the the wake up which work item to wake
|
|
* up.
|
|
* (A better algorithm should be found to do this and generalize the
|
|
* sleep/wakeup flags.)
|
|
*/
|
|
iowait_set_flag(&priv->s_iowait, IOWAIT_PENDING_TID);
|
|
return 0;
|
|
}
|
|
|
|
static int make_tid_rdma_ack(struct rvt_qp *qp,
|
|
struct ib_other_headers *ohdr,
|
|
struct hfi1_pkt_state *ps)
|
|
{
|
|
struct rvt_ack_entry *e;
|
|
struct hfi1_qp_priv *qpriv = qp->priv;
|
|
struct hfi1_ibdev *dev = to_idev(qp->ibqp.device);
|
|
u32 hwords, next;
|
|
u32 len = 0;
|
|
u32 bth1 = 0, bth2 = 0;
|
|
int middle = 0;
|
|
u16 flow;
|
|
struct tid_rdma_request *req, *nreq;
|
|
|
|
trace_hfi1_tid_write_rsp_make_tid_ack(qp);
|
|
/* Don't send an ACK if we aren't supposed to. */
|
|
if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK))
|
|
goto bail;
|
|
|
|
/* header size in 32-bit words LRH+BTH = (8+12)/4. */
|
|
hwords = 5;
|
|
|
|
e = &qp->s_ack_queue[qpriv->r_tid_ack];
|
|
req = ack_to_tid_req(e);
|
|
/*
|
|
* In the RESYNC case, we are exactly one segment past the
|
|
* previously sent ack or at the previously sent NAK. So to send
|
|
* the resync ack, we go back one segment (which might be part of
|
|
* the previous request) and let the do-while loop execute again.
|
|
* The advantage of executing the do-while loop is that any data
|
|
* received after the previous ack is automatically acked in the
|
|
* RESYNC ack. It turns out that for the do-while loop we only need
|
|
* to pull back qpriv->r_tid_ack, not the segment
|
|
* indices/counters. The scheme works even if the previous request
|
|
* was not a TID WRITE request.
|
|
*/
|
|
if (qpriv->resync) {
|
|
if (!req->ack_seg || req->ack_seg == req->total_segs)
|
|
qpriv->r_tid_ack = !qpriv->r_tid_ack ?
|
|
rvt_size_atomic(&dev->rdi) :
|
|
qpriv->r_tid_ack - 1;
|
|
e = &qp->s_ack_queue[qpriv->r_tid_ack];
|
|
req = ack_to_tid_req(e);
|
|
}
|
|
|
|
trace_hfi1_rsp_make_tid_ack(qp, e->psn);
|
|
trace_hfi1_tid_req_make_tid_ack(qp, 0, e->opcode, e->psn, e->lpsn,
|
|
req);
|
|
/*
|
|
* If we've sent all the ACKs that we can, we are done
|
|
* until we get more segments...
|
|
*/
|
|
if (!qpriv->s_nak_state && !qpriv->resync &&
|
|
req->ack_seg == req->comp_seg)
|
|
goto bail;
|
|
|
|
do {
|
|
/*
|
|
* To deal with coalesced ACKs, the acked_tail pointer
|
|
* into the flow array is used. The distance between it
|
|
* and the clear_tail is the number of flows that are
|
|
* being ACK'ed.
|
|
*/
|
|
req->ack_seg +=
|
|
/* Get up-to-date value */
|
|
CIRC_CNT(req->clear_tail, req->acked_tail,
|
|
MAX_FLOWS);
|
|
/* Advance acked index */
|
|
req->acked_tail = req->clear_tail;
|
|
|
|
/*
|
|
* req->clear_tail points to the segment currently being
|
|
* received. So, when sending an ACK, the previous
|
|
* segment is being ACK'ed.
|
|
*/
|
|
flow = CIRC_PREV(req->acked_tail, MAX_FLOWS);
|
|
if (req->ack_seg != req->total_segs)
|
|
break;
|
|
req->state = TID_REQUEST_COMPLETE;
|
|
|
|
next = qpriv->r_tid_ack + 1;
|
|
if (next > rvt_size_atomic(&dev->rdi))
|
|
next = 0;
|
|
qpriv->r_tid_ack = next;
|
|
if (qp->s_ack_queue[next].opcode != TID_OP(WRITE_REQ))
|
|
break;
|
|
nreq = ack_to_tid_req(&qp->s_ack_queue[next]);
|
|
if (!nreq->comp_seg || nreq->ack_seg == nreq->comp_seg)
|
|
break;
|
|
|
|
/* Move to the next ack entry now */
|
|
e = &qp->s_ack_queue[qpriv->r_tid_ack];
|
|
req = ack_to_tid_req(e);
|
|
} while (1);
|
|
|
|
/*
|
|
* At this point qpriv->r_tid_ack == qpriv->r_tid_tail but e and
|
|
* req could be pointing at the previous ack queue entry
|
|
*/
|
|
if (qpriv->s_nak_state ||
|
|
(qpriv->resync &&
|
|
!hfi1_tid_rdma_is_resync_psn(qpriv->r_next_psn_kdeth - 1) &&
|
|
(cmp_psn(qpriv->r_next_psn_kdeth - 1,
|
|
full_flow_psn(&req->flows[flow],
|
|
req->flows[flow].flow_state.lpsn)) > 0))) {
|
|
/*
|
|
* A NAK will implicitly acknowledge all previous TID RDMA
|
|
* requests. Therefore, we NAK with the req->acked_tail
|
|
* segment for the request at qpriv->r_tid_ack (same at
|
|
* this point as the req->clear_tail segment for the
|
|
* qpriv->r_tid_tail request)
|
|
*/
|
|
e = &qp->s_ack_queue[qpriv->r_tid_ack];
|
|
req = ack_to_tid_req(e);
|
|
flow = req->acked_tail;
|
|
} else if (req->ack_seg == req->total_segs &&
|
|
qpriv->s_flags & HFI1_R_TID_WAIT_INTERLCK)
|
|
qpriv->s_flags &= ~HFI1_R_TID_WAIT_INTERLCK;
|
|
|
|
trace_hfi1_tid_write_rsp_make_tid_ack(qp);
|
|
trace_hfi1_tid_req_make_tid_ack(qp, 0, e->opcode, e->psn, e->lpsn,
|
|
req);
|
|
hwords += hfi1_build_tid_rdma_write_ack(qp, e, ohdr, flow, &bth1,
|
|
&bth2);
|
|
len = 0;
|
|
qpriv->s_flags &= ~RVT_S_ACK_PENDING;
|
|
ps->s_txreq->hdr_dwords = hwords;
|
|
ps->s_txreq->sde = qpriv->s_sde;
|
|
ps->s_txreq->s_cur_size = len;
|
|
ps->s_txreq->ss = NULL;
|
|
hfi1_make_ruc_header(qp, ohdr, (TID_OP(ACK) << 24), bth1, bth2, middle,
|
|
ps);
|
|
ps->s_txreq->txreq.flags |= SDMA_TXREQ_F_VIP;
|
|
return 1;
|
|
bail:
|
|
/*
|
|
* Ensure s_rdma_ack_cnt changes are committed prior to resetting
|
|
* RVT_S_RESP_PENDING
|
|
*/
|
|
smp_wmb();
|
|
qpriv->s_flags &= ~RVT_S_ACK_PENDING;
|
|
return 0;
|
|
}
|
|
|
|
static int hfi1_send_tid_ok(struct rvt_qp *qp)
|
|
{
|
|
struct hfi1_qp_priv *priv = qp->priv;
|
|
|
|
return !(priv->s_flags & RVT_S_BUSY ||
|
|
qp->s_flags & HFI1_S_ANY_WAIT_IO) &&
|
|
(verbs_txreq_queued(iowait_get_tid_work(&priv->s_iowait)) ||
|
|
(priv->s_flags & RVT_S_RESP_PENDING) ||
|
|
!(qp->s_flags & HFI1_S_ANY_TID_WAIT_SEND));
|
|
}
|
|
|
|
void _hfi1_do_tid_send(struct work_struct *work)
|
|
{
|
|
struct iowait_work *w = container_of(work, struct iowait_work, iowork);
|
|
struct rvt_qp *qp = iowait_to_qp(w->iow);
|
|
|
|
hfi1_do_tid_send(qp);
|
|
}
|
|
|
|
static void hfi1_do_tid_send(struct rvt_qp *qp)
|
|
{
|
|
struct hfi1_pkt_state ps;
|
|
struct hfi1_qp_priv *priv = qp->priv;
|
|
|
|
ps.dev = to_idev(qp->ibqp.device);
|
|
ps.ibp = to_iport(qp->ibqp.device, qp->port_num);
|
|
ps.ppd = ppd_from_ibp(ps.ibp);
|
|
ps.wait = iowait_get_tid_work(&priv->s_iowait);
|
|
ps.in_thread = false;
|
|
ps.timeout_int = qp->timeout_jiffies / 8;
|
|
|
|
trace_hfi1_rc_do_tid_send(qp, false);
|
|
spin_lock_irqsave(&qp->s_lock, ps.flags);
|
|
|
|
/* Return if we are already busy processing a work request. */
|
|
if (!hfi1_send_tid_ok(qp)) {
|
|
if (qp->s_flags & HFI1_S_ANY_WAIT_IO)
|
|
iowait_set_flag(&priv->s_iowait, IOWAIT_PENDING_TID);
|
|
spin_unlock_irqrestore(&qp->s_lock, ps.flags);
|
|
return;
|
|
}
|
|
|
|
priv->s_flags |= RVT_S_BUSY;
|
|
|
|
ps.timeout = jiffies + ps.timeout_int;
|
|
ps.cpu = priv->s_sde ? priv->s_sde->cpu :
|
|
cpumask_first(cpumask_of_node(ps.ppd->dd->node));
|
|
ps.pkts_sent = false;
|
|
|
|
/* insure a pre-built packet is handled */
|
|
ps.s_txreq = get_waiting_verbs_txreq(ps.wait);
|
|
do {
|
|
/* Check for a constructed packet to be sent. */
|
|
if (ps.s_txreq) {
|
|
if (priv->s_flags & HFI1_S_TID_BUSY_SET) {
|
|
qp->s_flags |= RVT_S_BUSY;
|
|
ps.wait = iowait_get_ib_work(&priv->s_iowait);
|
|
}
|
|
spin_unlock_irqrestore(&qp->s_lock, ps.flags);
|
|
|
|
/*
|
|
* If the packet cannot be sent now, return and
|
|
* the send tasklet will be woken up later.
|
|
*/
|
|
if (hfi1_verbs_send(qp, &ps))
|
|
return;
|
|
|
|
/* allow other tasks to run */
|
|
if (hfi1_schedule_send_yield(qp, &ps, true))
|
|
return;
|
|
|
|
spin_lock_irqsave(&qp->s_lock, ps.flags);
|
|
if (priv->s_flags & HFI1_S_TID_BUSY_SET) {
|
|
qp->s_flags &= ~RVT_S_BUSY;
|
|
priv->s_flags &= ~HFI1_S_TID_BUSY_SET;
|
|
ps.wait = iowait_get_tid_work(&priv->s_iowait);
|
|
if (iowait_flag_set(&priv->s_iowait,
|
|
IOWAIT_PENDING_IB))
|
|
hfi1_schedule_send(qp);
|
|
}
|
|
}
|
|
} while (hfi1_make_tid_rdma_pkt(qp, &ps));
|
|
iowait_starve_clear(ps.pkts_sent, &priv->s_iowait);
|
|
spin_unlock_irqrestore(&qp->s_lock, ps.flags);
|
|
}
|
|
|
|
static bool _hfi1_schedule_tid_send(struct rvt_qp *qp)
|
|
{
|
|
struct hfi1_qp_priv *priv = qp->priv;
|
|
struct hfi1_ibport *ibp =
|
|
to_iport(qp->ibqp.device, qp->port_num);
|
|
struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
|
|
struct hfi1_devdata *dd = dd_from_ibdev(qp->ibqp.device);
|
|
|
|
return iowait_tid_schedule(&priv->s_iowait, ppd->hfi1_wq,
|
|
priv->s_sde ?
|
|
priv->s_sde->cpu :
|
|
cpumask_first(cpumask_of_node(dd->node)));
|
|
}
|
|
|
|
/**
|
|
* hfi1_schedule_tid_send - schedule progress on TID RDMA state machine
|
|
* @qp: the QP
|
|
*
|
|
* This schedules qp progress on the TID RDMA state machine. Caller
|
|
* should hold the s_lock.
|
|
* Unlike hfi1_schedule_send(), this cannot use hfi1_send_ok() because
|
|
* the two state machines can step on each other with respect to the
|
|
* RVT_S_BUSY flag.
|
|
* Therefore, a modified test is used.
|
|
* @return true if the second leg is scheduled;
|
|
* false if the second leg is not scheduled.
|
|
*/
|
|
bool hfi1_schedule_tid_send(struct rvt_qp *qp)
|
|
{
|
|
lockdep_assert_held(&qp->s_lock);
|
|
if (hfi1_send_tid_ok(qp)) {
|
|
/*
|
|
* The following call returns true if the qp is not on the
|
|
* queue and false if the qp is already on the queue before
|
|
* this call. Either way, the qp will be on the queue when the
|
|
* call returns.
|
|
*/
|
|
_hfi1_schedule_tid_send(qp);
|
|
return true;
|
|
}
|
|
if (qp->s_flags & HFI1_S_ANY_WAIT_IO)
|
|
iowait_set_flag(&((struct hfi1_qp_priv *)qp->priv)->s_iowait,
|
|
IOWAIT_PENDING_TID);
|
|
return false;
|
|
}
|
|
|
|
bool hfi1_tid_rdma_ack_interlock(struct rvt_qp *qp, struct rvt_ack_entry *e)
|
|
{
|
|
struct rvt_ack_entry *prev;
|
|
struct tid_rdma_request *req;
|
|
struct hfi1_ibdev *dev = to_idev(qp->ibqp.device);
|
|
struct hfi1_qp_priv *priv = qp->priv;
|
|
u32 s_prev;
|
|
|
|
s_prev = qp->s_tail_ack_queue == 0 ? rvt_size_atomic(&dev->rdi) :
|
|
(qp->s_tail_ack_queue - 1);
|
|
prev = &qp->s_ack_queue[s_prev];
|
|
|
|
if ((e->opcode == TID_OP(READ_REQ) ||
|
|
e->opcode == OP(RDMA_READ_REQUEST)) &&
|
|
prev->opcode == TID_OP(WRITE_REQ)) {
|
|
req = ack_to_tid_req(prev);
|
|
if (req->ack_seg != req->total_segs) {
|
|
priv->s_flags |= HFI1_R_TID_WAIT_INTERLCK;
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static u32 read_r_next_psn(struct hfi1_devdata *dd, u8 ctxt, u8 fidx)
|
|
{
|
|
u64 reg;
|
|
|
|
/*
|
|
* The only sane way to get the amount of
|
|
* progress is to read the HW flow state.
|
|
*/
|
|
reg = read_uctxt_csr(dd, ctxt, RCV_TID_FLOW_TABLE + (8 * fidx));
|
|
return mask_psn(reg);
|
|
}
|
|
|
|
static void tid_rdma_rcv_err(struct hfi1_packet *packet,
|
|
struct ib_other_headers *ohdr,
|
|
struct rvt_qp *qp, u32 psn, int diff, bool fecn)
|
|
{
|
|
unsigned long flags;
|
|
|
|
tid_rdma_rcv_error(packet, ohdr, qp, psn, diff);
|
|
if (fecn) {
|
|
spin_lock_irqsave(&qp->s_lock, flags);
|
|
qp->s_flags |= RVT_S_ECN;
|
|
spin_unlock_irqrestore(&qp->s_lock, flags);
|
|
}
|
|
}
|
|
|
|
static void update_r_next_psn_fecn(struct hfi1_packet *packet,
|
|
struct hfi1_qp_priv *priv,
|
|
struct hfi1_ctxtdata *rcd,
|
|
struct tid_rdma_flow *flow,
|
|
bool fecn)
|
|
{
|
|
/*
|
|
* If a start/middle packet is delivered here due to
|
|
* RSM rule and FECN, we need to update the r_next_psn.
|
|
*/
|
|
if (fecn && packet->etype == RHF_RCV_TYPE_EAGER &&
|
|
!(priv->s_flags & HFI1_R_TID_SW_PSN)) {
|
|
struct hfi1_devdata *dd = rcd->dd;
|
|
|
|
flow->flow_state.r_next_psn =
|
|
read_r_next_psn(dd, rcd->ctxt, flow->idx);
|
|
}
|
|
}
|