810 lines
22 KiB
C
810 lines
22 KiB
C
/* QLogic qed NIC Driver
|
|
* Copyright (c) 2015-2017 QLogic Corporation
|
|
*
|
|
* This software is available to you under a choice of one of two
|
|
* licenses. You may choose to be licensed under the terms of the GNU
|
|
* General Public License (GPL) Version 2, available from the file
|
|
* COPYING in the main directory of this source tree, or the
|
|
* OpenIB.org BSD license below:
|
|
*
|
|
* Redistribution and use in source and binary forms, with or
|
|
* without modification, are permitted provided that the following
|
|
* conditions are met:
|
|
*
|
|
* - Redistributions of source code must retain the above
|
|
* copyright notice, this list of conditions and the following
|
|
* disclaimer.
|
|
*
|
|
* - Redistributions in binary form must reproduce the above
|
|
* copyright notice, this list of conditions and the following
|
|
* disclaimer in the documentation and /or other materials
|
|
* provided with the distribution.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
|
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
|
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
|
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
|
|
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
|
|
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
|
|
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
* SOFTWARE.
|
|
*/
|
|
|
|
#include <linux/types.h>
|
|
#include <linux/io.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/dma-mapping.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/list.h>
|
|
#include <linux/mutex.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/string.h>
|
|
#include <linux/qed/qed_chain.h>
|
|
#include "qed.h"
|
|
#include "qed_hsi.h"
|
|
#include "qed_hw.h"
|
|
#include "qed_reg_addr.h"
|
|
#include "qed_sriov.h"
|
|
|
|
#define QED_BAR_ACQUIRE_TIMEOUT 1000
|
|
|
|
/* Invalid values */
|
|
#define QED_BAR_INVALID_OFFSET (cpu_to_le32(-1))
|
|
|
|
struct qed_ptt {
|
|
struct list_head list_entry;
|
|
unsigned int idx;
|
|
struct pxp_ptt_entry pxp;
|
|
u8 hwfn_id;
|
|
};
|
|
|
|
struct qed_ptt_pool {
|
|
struct list_head free_list;
|
|
spinlock_t lock; /* ptt synchronized access */
|
|
struct qed_ptt ptts[PXP_EXTERNAL_BAR_PF_WINDOW_NUM];
|
|
};
|
|
|
|
int qed_ptt_pool_alloc(struct qed_hwfn *p_hwfn)
|
|
{
|
|
struct qed_ptt_pool *p_pool = kmalloc(sizeof(*p_pool), GFP_KERNEL);
|
|
int i;
|
|
|
|
if (!p_pool)
|
|
return -ENOMEM;
|
|
|
|
INIT_LIST_HEAD(&p_pool->free_list);
|
|
for (i = 0; i < PXP_EXTERNAL_BAR_PF_WINDOW_NUM; i++) {
|
|
p_pool->ptts[i].idx = i;
|
|
p_pool->ptts[i].pxp.offset = QED_BAR_INVALID_OFFSET;
|
|
p_pool->ptts[i].pxp.pretend.control = 0;
|
|
p_pool->ptts[i].hwfn_id = p_hwfn->my_id;
|
|
if (i >= RESERVED_PTT_MAX)
|
|
list_add(&p_pool->ptts[i].list_entry,
|
|
&p_pool->free_list);
|
|
}
|
|
|
|
p_hwfn->p_ptt_pool = p_pool;
|
|
spin_lock_init(&p_pool->lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void qed_ptt_invalidate(struct qed_hwfn *p_hwfn)
|
|
{
|
|
struct qed_ptt *p_ptt;
|
|
int i;
|
|
|
|
for (i = 0; i < PXP_EXTERNAL_BAR_PF_WINDOW_NUM; i++) {
|
|
p_ptt = &p_hwfn->p_ptt_pool->ptts[i];
|
|
p_ptt->pxp.offset = QED_BAR_INVALID_OFFSET;
|
|
}
|
|
}
|
|
|
|
void qed_ptt_pool_free(struct qed_hwfn *p_hwfn)
|
|
{
|
|
kfree(p_hwfn->p_ptt_pool);
|
|
p_hwfn->p_ptt_pool = NULL;
|
|
}
|
|
|
|
struct qed_ptt *qed_ptt_acquire(struct qed_hwfn *p_hwfn)
|
|
{
|
|
struct qed_ptt *p_ptt;
|
|
unsigned int i;
|
|
|
|
/* Take the free PTT from the list */
|
|
for (i = 0; i < QED_BAR_ACQUIRE_TIMEOUT; i++) {
|
|
spin_lock_bh(&p_hwfn->p_ptt_pool->lock);
|
|
|
|
if (!list_empty(&p_hwfn->p_ptt_pool->free_list)) {
|
|
p_ptt = list_first_entry(&p_hwfn->p_ptt_pool->free_list,
|
|
struct qed_ptt, list_entry);
|
|
list_del(&p_ptt->list_entry);
|
|
|
|
spin_unlock_bh(&p_hwfn->p_ptt_pool->lock);
|
|
|
|
DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
|
|
"allocated ptt %d\n", p_ptt->idx);
|
|
return p_ptt;
|
|
}
|
|
|
|
spin_unlock_bh(&p_hwfn->p_ptt_pool->lock);
|
|
usleep_range(1000, 2000);
|
|
}
|
|
|
|
DP_NOTICE(p_hwfn, "PTT acquire timeout - failed to allocate PTT\n");
|
|
return NULL;
|
|
}
|
|
|
|
void qed_ptt_release(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
|
|
{
|
|
spin_lock_bh(&p_hwfn->p_ptt_pool->lock);
|
|
list_add(&p_ptt->list_entry, &p_hwfn->p_ptt_pool->free_list);
|
|
spin_unlock_bh(&p_hwfn->p_ptt_pool->lock);
|
|
}
|
|
|
|
u32 qed_ptt_get_hw_addr(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
|
|
{
|
|
/* The HW is using DWORDS and we need to translate it to Bytes */
|
|
return le32_to_cpu(p_ptt->pxp.offset) << 2;
|
|
}
|
|
|
|
static u32 qed_ptt_config_addr(struct qed_ptt *p_ptt)
|
|
{
|
|
return PXP_PF_WINDOW_ADMIN_PER_PF_START +
|
|
p_ptt->idx * sizeof(struct pxp_ptt_entry);
|
|
}
|
|
|
|
u32 qed_ptt_get_bar_addr(struct qed_ptt *p_ptt)
|
|
{
|
|
return PXP_EXTERNAL_BAR_PF_WINDOW_START +
|
|
p_ptt->idx * PXP_EXTERNAL_BAR_PF_WINDOW_SINGLE_SIZE;
|
|
}
|
|
|
|
void qed_ptt_set_win(struct qed_hwfn *p_hwfn,
|
|
struct qed_ptt *p_ptt, u32 new_hw_addr)
|
|
{
|
|
u32 prev_hw_addr;
|
|
|
|
prev_hw_addr = qed_ptt_get_hw_addr(p_hwfn, p_ptt);
|
|
|
|
if (new_hw_addr == prev_hw_addr)
|
|
return;
|
|
|
|
/* Update PTT entery in admin window */
|
|
DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
|
|
"Updating PTT entry %d to offset 0x%x\n",
|
|
p_ptt->idx, new_hw_addr);
|
|
|
|
/* The HW is using DWORDS and the address is in Bytes */
|
|
p_ptt->pxp.offset = cpu_to_le32(new_hw_addr >> 2);
|
|
|
|
REG_WR(p_hwfn,
|
|
qed_ptt_config_addr(p_ptt) +
|
|
offsetof(struct pxp_ptt_entry, offset),
|
|
le32_to_cpu(p_ptt->pxp.offset));
|
|
}
|
|
|
|
static u32 qed_set_ptt(struct qed_hwfn *p_hwfn,
|
|
struct qed_ptt *p_ptt, u32 hw_addr)
|
|
{
|
|
u32 win_hw_addr = qed_ptt_get_hw_addr(p_hwfn, p_ptt);
|
|
u32 offset;
|
|
|
|
offset = hw_addr - win_hw_addr;
|
|
|
|
if (p_ptt->hwfn_id != p_hwfn->my_id)
|
|
DP_NOTICE(p_hwfn,
|
|
"ptt[%d] of hwfn[%02x] is used by hwfn[%02x]!\n",
|
|
p_ptt->idx, p_ptt->hwfn_id, p_hwfn->my_id);
|
|
|
|
/* Verify the address is within the window */
|
|
if (hw_addr < win_hw_addr ||
|
|
offset >= PXP_EXTERNAL_BAR_PF_WINDOW_SINGLE_SIZE) {
|
|
qed_ptt_set_win(p_hwfn, p_ptt, hw_addr);
|
|
offset = 0;
|
|
}
|
|
|
|
return qed_ptt_get_bar_addr(p_ptt) + offset;
|
|
}
|
|
|
|
struct qed_ptt *qed_get_reserved_ptt(struct qed_hwfn *p_hwfn,
|
|
enum reserved_ptts ptt_idx)
|
|
{
|
|
if (ptt_idx >= RESERVED_PTT_MAX) {
|
|
DP_NOTICE(p_hwfn,
|
|
"Requested PTT %d is out of range\n", ptt_idx);
|
|
return NULL;
|
|
}
|
|
|
|
return &p_hwfn->p_ptt_pool->ptts[ptt_idx];
|
|
}
|
|
|
|
void qed_wr(struct qed_hwfn *p_hwfn,
|
|
struct qed_ptt *p_ptt,
|
|
u32 hw_addr, u32 val)
|
|
{
|
|
u32 bar_addr = qed_set_ptt(p_hwfn, p_ptt, hw_addr);
|
|
|
|
REG_WR(p_hwfn, bar_addr, val);
|
|
DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
|
|
"bar_addr 0x%x, hw_addr 0x%x, val 0x%x\n",
|
|
bar_addr, hw_addr, val);
|
|
}
|
|
|
|
u32 qed_rd(struct qed_hwfn *p_hwfn,
|
|
struct qed_ptt *p_ptt,
|
|
u32 hw_addr)
|
|
{
|
|
u32 bar_addr = qed_set_ptt(p_hwfn, p_ptt, hw_addr);
|
|
u32 val = REG_RD(p_hwfn, bar_addr);
|
|
|
|
DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
|
|
"bar_addr 0x%x, hw_addr 0x%x, val 0x%x\n",
|
|
bar_addr, hw_addr, val);
|
|
|
|
return val;
|
|
}
|
|
|
|
static void qed_memcpy_hw(struct qed_hwfn *p_hwfn,
|
|
struct qed_ptt *p_ptt,
|
|
void *addr, u32 hw_addr, size_t n, bool to_device)
|
|
{
|
|
u32 dw_count, *host_addr, hw_offset;
|
|
size_t quota, done = 0;
|
|
u32 __iomem *reg_addr;
|
|
|
|
while (done < n) {
|
|
quota = min_t(size_t, n - done,
|
|
PXP_EXTERNAL_BAR_PF_WINDOW_SINGLE_SIZE);
|
|
|
|
if (IS_PF(p_hwfn->cdev)) {
|
|
qed_ptt_set_win(p_hwfn, p_ptt, hw_addr + done);
|
|
hw_offset = qed_ptt_get_bar_addr(p_ptt);
|
|
} else {
|
|
hw_offset = hw_addr + done;
|
|
}
|
|
|
|
dw_count = quota / 4;
|
|
host_addr = (u32 *)((u8 *)addr + done);
|
|
reg_addr = (u32 __iomem *)REG_ADDR(p_hwfn, hw_offset);
|
|
if (to_device)
|
|
while (dw_count--)
|
|
DIRECT_REG_WR(reg_addr++, *host_addr++);
|
|
else
|
|
while (dw_count--)
|
|
*host_addr++ = DIRECT_REG_RD(reg_addr++);
|
|
|
|
done += quota;
|
|
}
|
|
}
|
|
|
|
void qed_memcpy_from(struct qed_hwfn *p_hwfn,
|
|
struct qed_ptt *p_ptt, void *dest, u32 hw_addr, size_t n)
|
|
{
|
|
DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
|
|
"hw_addr 0x%x, dest %p hw_addr 0x%x, size %lu\n",
|
|
hw_addr, dest, hw_addr, (unsigned long)n);
|
|
|
|
qed_memcpy_hw(p_hwfn, p_ptt, dest, hw_addr, n, false);
|
|
}
|
|
|
|
void qed_memcpy_to(struct qed_hwfn *p_hwfn,
|
|
struct qed_ptt *p_ptt, u32 hw_addr, void *src, size_t n)
|
|
{
|
|
DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
|
|
"hw_addr 0x%x, hw_addr 0x%x, src %p size %lu\n",
|
|
hw_addr, hw_addr, src, (unsigned long)n);
|
|
|
|
qed_memcpy_hw(p_hwfn, p_ptt, src, hw_addr, n, true);
|
|
}
|
|
|
|
void qed_fid_pretend(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, u16 fid)
|
|
{
|
|
u16 control = 0;
|
|
|
|
SET_FIELD(control, PXP_PRETEND_CMD_IS_CONCRETE, 1);
|
|
SET_FIELD(control, PXP_PRETEND_CMD_PRETEND_FUNCTION, 1);
|
|
|
|
/* Every pretend undos previous pretends, including
|
|
* previous port pretend.
|
|
*/
|
|
SET_FIELD(control, PXP_PRETEND_CMD_PORT, 0);
|
|
SET_FIELD(control, PXP_PRETEND_CMD_USE_PORT, 0);
|
|
SET_FIELD(control, PXP_PRETEND_CMD_PRETEND_PORT, 1);
|
|
|
|
if (!GET_FIELD(fid, PXP_CONCRETE_FID_VFVALID))
|
|
fid = GET_FIELD(fid, PXP_CONCRETE_FID_PFID);
|
|
|
|
p_ptt->pxp.pretend.control = cpu_to_le16(control);
|
|
p_ptt->pxp.pretend.fid.concrete_fid.fid = cpu_to_le16(fid);
|
|
|
|
REG_WR(p_hwfn,
|
|
qed_ptt_config_addr(p_ptt) +
|
|
offsetof(struct pxp_ptt_entry, pretend),
|
|
*(u32 *)&p_ptt->pxp.pretend);
|
|
}
|
|
|
|
void qed_port_pretend(struct qed_hwfn *p_hwfn,
|
|
struct qed_ptt *p_ptt, u8 port_id)
|
|
{
|
|
u16 control = 0;
|
|
|
|
SET_FIELD(control, PXP_PRETEND_CMD_PORT, port_id);
|
|
SET_FIELD(control, PXP_PRETEND_CMD_USE_PORT, 1);
|
|
SET_FIELD(control, PXP_PRETEND_CMD_PRETEND_PORT, 1);
|
|
|
|
p_ptt->pxp.pretend.control = cpu_to_le16(control);
|
|
|
|
REG_WR(p_hwfn,
|
|
qed_ptt_config_addr(p_ptt) +
|
|
offsetof(struct pxp_ptt_entry, pretend),
|
|
*(u32 *)&p_ptt->pxp.pretend);
|
|
}
|
|
|
|
void qed_port_unpretend(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
|
|
{
|
|
u16 control = 0;
|
|
|
|
SET_FIELD(control, PXP_PRETEND_CMD_PORT, 0);
|
|
SET_FIELD(control, PXP_PRETEND_CMD_USE_PORT, 0);
|
|
SET_FIELD(control, PXP_PRETEND_CMD_PRETEND_PORT, 1);
|
|
|
|
p_ptt->pxp.pretend.control = cpu_to_le16(control);
|
|
|
|
REG_WR(p_hwfn,
|
|
qed_ptt_config_addr(p_ptt) +
|
|
offsetof(struct pxp_ptt_entry, pretend),
|
|
*(u32 *)&p_ptt->pxp.pretend);
|
|
}
|
|
|
|
u32 qed_vfid_to_concrete(struct qed_hwfn *p_hwfn, u8 vfid)
|
|
{
|
|
u32 concrete_fid = 0;
|
|
|
|
SET_FIELD(concrete_fid, PXP_CONCRETE_FID_PFID, p_hwfn->rel_pf_id);
|
|
SET_FIELD(concrete_fid, PXP_CONCRETE_FID_VFID, vfid);
|
|
SET_FIELD(concrete_fid, PXP_CONCRETE_FID_VFVALID, 1);
|
|
|
|
return concrete_fid;
|
|
}
|
|
|
|
/* DMAE */
|
|
static void qed_dmae_opcode(struct qed_hwfn *p_hwfn,
|
|
const u8 is_src_type_grc,
|
|
const u8 is_dst_type_grc,
|
|
struct qed_dmae_params *p_params)
|
|
{
|
|
u16 opcode_b = 0;
|
|
u32 opcode = 0;
|
|
|
|
/* Whether the source is the PCIe or the GRC.
|
|
* 0- The source is the PCIe
|
|
* 1- The source is the GRC.
|
|
*/
|
|
opcode |= (is_src_type_grc ? DMAE_CMD_SRC_MASK_GRC
|
|
: DMAE_CMD_SRC_MASK_PCIE) <<
|
|
DMAE_CMD_SRC_SHIFT;
|
|
opcode |= ((p_hwfn->rel_pf_id & DMAE_CMD_SRC_PF_ID_MASK) <<
|
|
DMAE_CMD_SRC_PF_ID_SHIFT);
|
|
|
|
/* The destination of the DMA can be: 0-None 1-PCIe 2-GRC 3-None */
|
|
opcode |= (is_dst_type_grc ? DMAE_CMD_DST_MASK_GRC
|
|
: DMAE_CMD_DST_MASK_PCIE) <<
|
|
DMAE_CMD_DST_SHIFT;
|
|
opcode |= ((p_hwfn->rel_pf_id & DMAE_CMD_DST_PF_ID_MASK) <<
|
|
DMAE_CMD_DST_PF_ID_SHIFT);
|
|
|
|
/* Whether to write a completion word to the completion destination:
|
|
* 0-Do not write a completion word
|
|
* 1-Write the completion word
|
|
*/
|
|
opcode |= (DMAE_CMD_COMP_WORD_EN_MASK << DMAE_CMD_COMP_WORD_EN_SHIFT);
|
|
opcode |= (DMAE_CMD_SRC_ADDR_RESET_MASK <<
|
|
DMAE_CMD_SRC_ADDR_RESET_SHIFT);
|
|
|
|
if (p_params->flags & QED_DMAE_FLAG_COMPLETION_DST)
|
|
opcode |= (1 << DMAE_CMD_COMP_FUNC_SHIFT);
|
|
|
|
opcode |= (DMAE_CMD_ENDIANITY << DMAE_CMD_ENDIANITY_MODE_SHIFT);
|
|
|
|
opcode |= ((p_hwfn->port_id) << DMAE_CMD_PORT_ID_SHIFT);
|
|
|
|
/* reset source address in next go */
|
|
opcode |= (DMAE_CMD_SRC_ADDR_RESET_MASK <<
|
|
DMAE_CMD_SRC_ADDR_RESET_SHIFT);
|
|
|
|
/* reset dest address in next go */
|
|
opcode |= (DMAE_CMD_DST_ADDR_RESET_MASK <<
|
|
DMAE_CMD_DST_ADDR_RESET_SHIFT);
|
|
|
|
/* SRC/DST VFID: all 1's - pf, otherwise VF id */
|
|
if (p_params->flags & QED_DMAE_FLAG_VF_SRC) {
|
|
opcode |= 1 << DMAE_CMD_SRC_VF_ID_VALID_SHIFT;
|
|
opcode_b |= p_params->src_vfid << DMAE_CMD_SRC_VF_ID_SHIFT;
|
|
} else {
|
|
opcode_b |= DMAE_CMD_SRC_VF_ID_MASK <<
|
|
DMAE_CMD_SRC_VF_ID_SHIFT;
|
|
}
|
|
|
|
if (p_params->flags & QED_DMAE_FLAG_VF_DST) {
|
|
opcode |= 1 << DMAE_CMD_DST_VF_ID_VALID_SHIFT;
|
|
opcode_b |= p_params->dst_vfid << DMAE_CMD_DST_VF_ID_SHIFT;
|
|
} else {
|
|
opcode_b |= DMAE_CMD_DST_VF_ID_MASK << DMAE_CMD_DST_VF_ID_SHIFT;
|
|
}
|
|
|
|
p_hwfn->dmae_info.p_dmae_cmd->opcode = cpu_to_le32(opcode);
|
|
p_hwfn->dmae_info.p_dmae_cmd->opcode_b = cpu_to_le16(opcode_b);
|
|
}
|
|
|
|
u32 qed_dmae_idx_to_go_cmd(u8 idx)
|
|
{
|
|
/* All the DMAE 'go' registers form an array in internal memory */
|
|
return DMAE_REG_GO_C0 + (idx << 2);
|
|
}
|
|
|
|
static int qed_dmae_post_command(struct qed_hwfn *p_hwfn,
|
|
struct qed_ptt *p_ptt)
|
|
{
|
|
struct dmae_cmd *p_command = p_hwfn->dmae_info.p_dmae_cmd;
|
|
u8 idx_cmd = p_hwfn->dmae_info.channel, i;
|
|
int qed_status = 0;
|
|
|
|
/* verify address is not NULL */
|
|
if ((((!p_command->dst_addr_lo) && (!p_command->dst_addr_hi)) ||
|
|
((!p_command->src_addr_lo) && (!p_command->src_addr_hi)))) {
|
|
DP_NOTICE(p_hwfn,
|
|
"source or destination address 0 idx_cmd=%d\n"
|
|
"opcode = [0x%08x,0x%04x] len=0x%x src=0x%x:%x dst=0x%x:%x\n",
|
|
idx_cmd,
|
|
le32_to_cpu(p_command->opcode),
|
|
le16_to_cpu(p_command->opcode_b),
|
|
le16_to_cpu(p_command->length_dw),
|
|
le32_to_cpu(p_command->src_addr_hi),
|
|
le32_to_cpu(p_command->src_addr_lo),
|
|
le32_to_cpu(p_command->dst_addr_hi),
|
|
le32_to_cpu(p_command->dst_addr_lo));
|
|
|
|
return -EINVAL;
|
|
}
|
|
|
|
DP_VERBOSE(p_hwfn,
|
|
NETIF_MSG_HW,
|
|
"Posting DMAE command [idx %d]: opcode = [0x%08x,0x%04x] len=0x%x src=0x%x:%x dst=0x%x:%x\n",
|
|
idx_cmd,
|
|
le32_to_cpu(p_command->opcode),
|
|
le16_to_cpu(p_command->opcode_b),
|
|
le16_to_cpu(p_command->length_dw),
|
|
le32_to_cpu(p_command->src_addr_hi),
|
|
le32_to_cpu(p_command->src_addr_lo),
|
|
le32_to_cpu(p_command->dst_addr_hi),
|
|
le32_to_cpu(p_command->dst_addr_lo));
|
|
|
|
/* Copy the command to DMAE - need to do it before every call
|
|
* for source/dest address no reset.
|
|
* The first 9 DWs are the command registers, the 10 DW is the
|
|
* GO register, and the rest are result registers
|
|
* (which are read only by the client).
|
|
*/
|
|
for (i = 0; i < DMAE_CMD_SIZE; i++) {
|
|
u32 data = (i < DMAE_CMD_SIZE_TO_FILL) ?
|
|
*(((u32 *)p_command) + i) : 0;
|
|
|
|
qed_wr(p_hwfn, p_ptt,
|
|
DMAE_REG_CMD_MEM +
|
|
(idx_cmd * DMAE_CMD_SIZE * sizeof(u32)) +
|
|
(i * sizeof(u32)), data);
|
|
}
|
|
|
|
qed_wr(p_hwfn, p_ptt, qed_dmae_idx_to_go_cmd(idx_cmd), DMAE_GO_VALUE);
|
|
|
|
return qed_status;
|
|
}
|
|
|
|
int qed_dmae_info_alloc(struct qed_hwfn *p_hwfn)
|
|
{
|
|
dma_addr_t *p_addr = &p_hwfn->dmae_info.completion_word_phys_addr;
|
|
struct dmae_cmd **p_cmd = &p_hwfn->dmae_info.p_dmae_cmd;
|
|
u32 **p_buff = &p_hwfn->dmae_info.p_intermediate_buffer;
|
|
u32 **p_comp = &p_hwfn->dmae_info.p_completion_word;
|
|
|
|
*p_comp = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev,
|
|
sizeof(u32), p_addr, GFP_KERNEL);
|
|
if (!*p_comp)
|
|
goto err;
|
|
|
|
p_addr = &p_hwfn->dmae_info.dmae_cmd_phys_addr;
|
|
*p_cmd = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev,
|
|
sizeof(struct dmae_cmd),
|
|
p_addr, GFP_KERNEL);
|
|
if (!*p_cmd)
|
|
goto err;
|
|
|
|
p_addr = &p_hwfn->dmae_info.intermediate_buffer_phys_addr;
|
|
*p_buff = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev,
|
|
sizeof(u32) * DMAE_MAX_RW_SIZE,
|
|
p_addr, GFP_KERNEL);
|
|
if (!*p_buff)
|
|
goto err;
|
|
|
|
p_hwfn->dmae_info.channel = p_hwfn->rel_pf_id;
|
|
|
|
return 0;
|
|
err:
|
|
qed_dmae_info_free(p_hwfn);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
void qed_dmae_info_free(struct qed_hwfn *p_hwfn)
|
|
{
|
|
dma_addr_t p_phys;
|
|
|
|
/* Just make sure no one is in the middle */
|
|
mutex_lock(&p_hwfn->dmae_info.mutex);
|
|
|
|
if (p_hwfn->dmae_info.p_completion_word) {
|
|
p_phys = p_hwfn->dmae_info.completion_word_phys_addr;
|
|
dma_free_coherent(&p_hwfn->cdev->pdev->dev,
|
|
sizeof(u32),
|
|
p_hwfn->dmae_info.p_completion_word, p_phys);
|
|
p_hwfn->dmae_info.p_completion_word = NULL;
|
|
}
|
|
|
|
if (p_hwfn->dmae_info.p_dmae_cmd) {
|
|
p_phys = p_hwfn->dmae_info.dmae_cmd_phys_addr;
|
|
dma_free_coherent(&p_hwfn->cdev->pdev->dev,
|
|
sizeof(struct dmae_cmd),
|
|
p_hwfn->dmae_info.p_dmae_cmd, p_phys);
|
|
p_hwfn->dmae_info.p_dmae_cmd = NULL;
|
|
}
|
|
|
|
if (p_hwfn->dmae_info.p_intermediate_buffer) {
|
|
p_phys = p_hwfn->dmae_info.intermediate_buffer_phys_addr;
|
|
dma_free_coherent(&p_hwfn->cdev->pdev->dev,
|
|
sizeof(u32) * DMAE_MAX_RW_SIZE,
|
|
p_hwfn->dmae_info.p_intermediate_buffer,
|
|
p_phys);
|
|
p_hwfn->dmae_info.p_intermediate_buffer = NULL;
|
|
}
|
|
|
|
mutex_unlock(&p_hwfn->dmae_info.mutex);
|
|
}
|
|
|
|
static int qed_dmae_operation_wait(struct qed_hwfn *p_hwfn)
|
|
{
|
|
u32 wait_cnt_limit = 10000, wait_cnt = 0;
|
|
int qed_status = 0;
|
|
|
|
barrier();
|
|
while (*p_hwfn->dmae_info.p_completion_word != DMAE_COMPLETION_VAL) {
|
|
udelay(DMAE_MIN_WAIT_TIME);
|
|
if (++wait_cnt > wait_cnt_limit) {
|
|
DP_NOTICE(p_hwfn->cdev,
|
|
"Timed-out waiting for operation to complete. Completion word is 0x%08x expected 0x%08x.\n",
|
|
*p_hwfn->dmae_info.p_completion_word,
|
|
DMAE_COMPLETION_VAL);
|
|
qed_status = -EBUSY;
|
|
break;
|
|
}
|
|
|
|
/* to sync the completion_word since we are not
|
|
* using the volatile keyword for p_completion_word
|
|
*/
|
|
barrier();
|
|
}
|
|
|
|
if (qed_status == 0)
|
|
*p_hwfn->dmae_info.p_completion_word = 0;
|
|
|
|
return qed_status;
|
|
}
|
|
|
|
static int qed_dmae_execute_sub_operation(struct qed_hwfn *p_hwfn,
|
|
struct qed_ptt *p_ptt,
|
|
u64 src_addr,
|
|
u64 dst_addr,
|
|
u8 src_type,
|
|
u8 dst_type,
|
|
u32 length_dw)
|
|
{
|
|
dma_addr_t phys = p_hwfn->dmae_info.intermediate_buffer_phys_addr;
|
|
struct dmae_cmd *cmd = p_hwfn->dmae_info.p_dmae_cmd;
|
|
int qed_status = 0;
|
|
|
|
switch (src_type) {
|
|
case QED_DMAE_ADDRESS_GRC:
|
|
case QED_DMAE_ADDRESS_HOST_PHYS:
|
|
cmd->src_addr_hi = cpu_to_le32(upper_32_bits(src_addr));
|
|
cmd->src_addr_lo = cpu_to_le32(lower_32_bits(src_addr));
|
|
break;
|
|
/* for virtual source addresses we use the intermediate buffer. */
|
|
case QED_DMAE_ADDRESS_HOST_VIRT:
|
|
cmd->src_addr_hi = cpu_to_le32(upper_32_bits(phys));
|
|
cmd->src_addr_lo = cpu_to_le32(lower_32_bits(phys));
|
|
memcpy(&p_hwfn->dmae_info.p_intermediate_buffer[0],
|
|
(void *)(uintptr_t)src_addr,
|
|
length_dw * sizeof(u32));
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
switch (dst_type) {
|
|
case QED_DMAE_ADDRESS_GRC:
|
|
case QED_DMAE_ADDRESS_HOST_PHYS:
|
|
cmd->dst_addr_hi = cpu_to_le32(upper_32_bits(dst_addr));
|
|
cmd->dst_addr_lo = cpu_to_le32(lower_32_bits(dst_addr));
|
|
break;
|
|
/* for virtual source addresses we use the intermediate buffer. */
|
|
case QED_DMAE_ADDRESS_HOST_VIRT:
|
|
cmd->dst_addr_hi = cpu_to_le32(upper_32_bits(phys));
|
|
cmd->dst_addr_lo = cpu_to_le32(lower_32_bits(phys));
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
cmd->length_dw = cpu_to_le16((u16)length_dw);
|
|
|
|
qed_dmae_post_command(p_hwfn, p_ptt);
|
|
|
|
qed_status = qed_dmae_operation_wait(p_hwfn);
|
|
|
|
if (qed_status) {
|
|
DP_NOTICE(p_hwfn,
|
|
"qed_dmae_host2grc: Wait Failed. source_addr 0x%llx, grc_addr 0x%llx, size_in_dwords 0x%x\n",
|
|
src_addr, dst_addr, length_dw);
|
|
return qed_status;
|
|
}
|
|
|
|
if (dst_type == QED_DMAE_ADDRESS_HOST_VIRT)
|
|
memcpy((void *)(uintptr_t)(dst_addr),
|
|
&p_hwfn->dmae_info.p_intermediate_buffer[0],
|
|
length_dw * sizeof(u32));
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int qed_dmae_execute_command(struct qed_hwfn *p_hwfn,
|
|
struct qed_ptt *p_ptt,
|
|
u64 src_addr, u64 dst_addr,
|
|
u8 src_type, u8 dst_type,
|
|
u32 size_in_dwords,
|
|
struct qed_dmae_params *p_params)
|
|
{
|
|
dma_addr_t phys = p_hwfn->dmae_info.completion_word_phys_addr;
|
|
u16 length_cur = 0, i = 0, cnt_split = 0, length_mod = 0;
|
|
struct dmae_cmd *cmd = p_hwfn->dmae_info.p_dmae_cmd;
|
|
u64 src_addr_split = 0, dst_addr_split = 0;
|
|
u16 length_limit = DMAE_MAX_RW_SIZE;
|
|
int qed_status = 0;
|
|
u32 offset = 0;
|
|
|
|
qed_dmae_opcode(p_hwfn,
|
|
(src_type == QED_DMAE_ADDRESS_GRC),
|
|
(dst_type == QED_DMAE_ADDRESS_GRC),
|
|
p_params);
|
|
|
|
cmd->comp_addr_lo = cpu_to_le32(lower_32_bits(phys));
|
|
cmd->comp_addr_hi = cpu_to_le32(upper_32_bits(phys));
|
|
cmd->comp_val = cpu_to_le32(DMAE_COMPLETION_VAL);
|
|
|
|
/* Check if the grc_addr is valid like < MAX_GRC_OFFSET */
|
|
cnt_split = size_in_dwords / length_limit;
|
|
length_mod = size_in_dwords % length_limit;
|
|
|
|
src_addr_split = src_addr;
|
|
dst_addr_split = dst_addr;
|
|
|
|
for (i = 0; i <= cnt_split; i++) {
|
|
offset = length_limit * i;
|
|
|
|
if (!(p_params->flags & QED_DMAE_FLAG_RW_REPL_SRC)) {
|
|
if (src_type == QED_DMAE_ADDRESS_GRC)
|
|
src_addr_split = src_addr + offset;
|
|
else
|
|
src_addr_split = src_addr + (offset * 4);
|
|
}
|
|
|
|
if (dst_type == QED_DMAE_ADDRESS_GRC)
|
|
dst_addr_split = dst_addr + offset;
|
|
else
|
|
dst_addr_split = dst_addr + (offset * 4);
|
|
|
|
length_cur = (cnt_split == i) ? length_mod : length_limit;
|
|
|
|
/* might be zero on last iteration */
|
|
if (!length_cur)
|
|
continue;
|
|
|
|
qed_status = qed_dmae_execute_sub_operation(p_hwfn,
|
|
p_ptt,
|
|
src_addr_split,
|
|
dst_addr_split,
|
|
src_type,
|
|
dst_type,
|
|
length_cur);
|
|
if (qed_status) {
|
|
DP_NOTICE(p_hwfn,
|
|
"qed_dmae_execute_sub_operation Failed with error 0x%x. source_addr 0x%llx, destination addr 0x%llx, size_in_dwords 0x%x\n",
|
|
qed_status, src_addr, dst_addr, length_cur);
|
|
break;
|
|
}
|
|
}
|
|
|
|
return qed_status;
|
|
}
|
|
|
|
int qed_dmae_host2grc(struct qed_hwfn *p_hwfn,
|
|
struct qed_ptt *p_ptt,
|
|
u64 source_addr, u32 grc_addr, u32 size_in_dwords, u32 flags)
|
|
{
|
|
u32 grc_addr_in_dw = grc_addr / sizeof(u32);
|
|
struct qed_dmae_params params;
|
|
int rc;
|
|
|
|
memset(¶ms, 0, sizeof(struct qed_dmae_params));
|
|
params.flags = flags;
|
|
|
|
mutex_lock(&p_hwfn->dmae_info.mutex);
|
|
|
|
rc = qed_dmae_execute_command(p_hwfn, p_ptt, source_addr,
|
|
grc_addr_in_dw,
|
|
QED_DMAE_ADDRESS_HOST_VIRT,
|
|
QED_DMAE_ADDRESS_GRC,
|
|
size_in_dwords, ¶ms);
|
|
|
|
mutex_unlock(&p_hwfn->dmae_info.mutex);
|
|
|
|
return rc;
|
|
}
|
|
|
|
int qed_dmae_grc2host(struct qed_hwfn *p_hwfn,
|
|
struct qed_ptt *p_ptt,
|
|
u32 grc_addr,
|
|
dma_addr_t dest_addr, u32 size_in_dwords, u32 flags)
|
|
{
|
|
u32 grc_addr_in_dw = grc_addr / sizeof(u32);
|
|
struct qed_dmae_params params;
|
|
int rc;
|
|
|
|
memset(¶ms, 0, sizeof(struct qed_dmae_params));
|
|
params.flags = flags;
|
|
|
|
mutex_lock(&p_hwfn->dmae_info.mutex);
|
|
|
|
rc = qed_dmae_execute_command(p_hwfn, p_ptt, grc_addr_in_dw,
|
|
dest_addr, QED_DMAE_ADDRESS_GRC,
|
|
QED_DMAE_ADDRESS_HOST_VIRT,
|
|
size_in_dwords, ¶ms);
|
|
|
|
mutex_unlock(&p_hwfn->dmae_info.mutex);
|
|
|
|
return rc;
|
|
}
|
|
|
|
int qed_dmae_host2host(struct qed_hwfn *p_hwfn,
|
|
struct qed_ptt *p_ptt,
|
|
dma_addr_t source_addr,
|
|
dma_addr_t dest_addr,
|
|
u32 size_in_dwords, struct qed_dmae_params *p_params)
|
|
{
|
|
int rc;
|
|
|
|
mutex_lock(&(p_hwfn->dmae_info.mutex));
|
|
|
|
rc = qed_dmae_execute_command(p_hwfn, p_ptt, source_addr,
|
|
dest_addr,
|
|
QED_DMAE_ADDRESS_HOST_PHYS,
|
|
QED_DMAE_ADDRESS_HOST_PHYS,
|
|
size_in_dwords, p_params);
|
|
|
|
mutex_unlock(&(p_hwfn->dmae_info.mutex));
|
|
|
|
return rc;
|
|
}
|
|
|