403 lines
10 KiB
C
403 lines
10 KiB
C
/* arch/sparc64/mm/tsb.c
|
|
*
|
|
* Copyright (C) 2006 David S. Miller <davem@davemloft.net>
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#include <asm/system.h>
|
|
#include <asm/page.h>
|
|
#include <asm/tlbflush.h>
|
|
#include <asm/tlb.h>
|
|
#include <asm/mmu_context.h>
|
|
#include <asm/pgtable.h>
|
|
#include <asm/tsb.h>
|
|
|
|
extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
|
|
|
|
static inline unsigned long tsb_hash(unsigned long vaddr, unsigned long nentries)
|
|
{
|
|
vaddr >>= PAGE_SHIFT;
|
|
return vaddr & (nentries - 1);
|
|
}
|
|
|
|
static inline int tag_compare(unsigned long tag, unsigned long vaddr)
|
|
{
|
|
return (tag == (vaddr >> 22));
|
|
}
|
|
|
|
/* TSB flushes need only occur on the processor initiating the address
|
|
* space modification, not on each cpu the address space has run on.
|
|
* Only the TLB flush needs that treatment.
|
|
*/
|
|
|
|
void flush_tsb_kernel_range(unsigned long start, unsigned long end)
|
|
{
|
|
unsigned long v;
|
|
|
|
for (v = start; v < end; v += PAGE_SIZE) {
|
|
unsigned long hash = tsb_hash(v, KERNEL_TSB_NENTRIES);
|
|
struct tsb *ent = &swapper_tsb[hash];
|
|
|
|
if (tag_compare(ent->tag, v)) {
|
|
ent->tag = (1UL << TSB_TAG_INVALID_BIT);
|
|
membar_storeload_storestore();
|
|
}
|
|
}
|
|
}
|
|
|
|
void flush_tsb_user(struct mmu_gather *mp)
|
|
{
|
|
struct mm_struct *mm = mp->mm;
|
|
unsigned long nentries, base, flags;
|
|
struct tsb *tsb;
|
|
int i;
|
|
|
|
spin_lock_irqsave(&mm->context.lock, flags);
|
|
|
|
tsb = mm->context.tsb;
|
|
nentries = mm->context.tsb_nentries;
|
|
|
|
if (tlb_type == cheetah_plus || tlb_type == hypervisor)
|
|
base = __pa(tsb);
|
|
else
|
|
base = (unsigned long) tsb;
|
|
|
|
for (i = 0; i < mp->tlb_nr; i++) {
|
|
unsigned long v = mp->vaddrs[i];
|
|
unsigned long tag, ent, hash;
|
|
|
|
v &= ~0x1UL;
|
|
|
|
hash = tsb_hash(v, nentries);
|
|
ent = base + (hash * sizeof(struct tsb));
|
|
tag = (v >> 22UL);
|
|
|
|
tsb_flush(ent, tag);
|
|
}
|
|
|
|
spin_unlock_irqrestore(&mm->context.lock, flags);
|
|
}
|
|
|
|
static void setup_tsb_params(struct mm_struct *mm, unsigned long tsb_bytes)
|
|
{
|
|
unsigned long tsb_reg, base, tsb_paddr;
|
|
unsigned long page_sz, tte;
|
|
|
|
mm->context.tsb_nentries = tsb_bytes / sizeof(struct tsb);
|
|
|
|
base = TSBMAP_BASE;
|
|
tte = pgprot_val(PAGE_KERNEL_LOCKED);
|
|
tsb_paddr = __pa(mm->context.tsb);
|
|
BUG_ON(tsb_paddr & (tsb_bytes - 1UL));
|
|
|
|
/* Use the smallest page size that can map the whole TSB
|
|
* in one TLB entry.
|
|
*/
|
|
switch (tsb_bytes) {
|
|
case 8192 << 0:
|
|
tsb_reg = 0x0UL;
|
|
#ifdef DCACHE_ALIASING_POSSIBLE
|
|
base += (tsb_paddr & 8192);
|
|
#endif
|
|
page_sz = 8192;
|
|
break;
|
|
|
|
case 8192 << 1:
|
|
tsb_reg = 0x1UL;
|
|
page_sz = 64 * 1024;
|
|
break;
|
|
|
|
case 8192 << 2:
|
|
tsb_reg = 0x2UL;
|
|
page_sz = 64 * 1024;
|
|
break;
|
|
|
|
case 8192 << 3:
|
|
tsb_reg = 0x3UL;
|
|
page_sz = 64 * 1024;
|
|
break;
|
|
|
|
case 8192 << 4:
|
|
tsb_reg = 0x4UL;
|
|
page_sz = 512 * 1024;
|
|
break;
|
|
|
|
case 8192 << 5:
|
|
tsb_reg = 0x5UL;
|
|
page_sz = 512 * 1024;
|
|
break;
|
|
|
|
case 8192 << 6:
|
|
tsb_reg = 0x6UL;
|
|
page_sz = 512 * 1024;
|
|
break;
|
|
|
|
case 8192 << 7:
|
|
tsb_reg = 0x7UL;
|
|
page_sz = 4 * 1024 * 1024;
|
|
break;
|
|
|
|
default:
|
|
BUG();
|
|
};
|
|
tte |= pte_sz_bits(page_sz);
|
|
|
|
if (tlb_type == cheetah_plus || tlb_type == hypervisor) {
|
|
/* Physical mapping, no locked TLB entry for TSB. */
|
|
tsb_reg |= tsb_paddr;
|
|
|
|
mm->context.tsb_reg_val = tsb_reg;
|
|
mm->context.tsb_map_vaddr = 0;
|
|
mm->context.tsb_map_pte = 0;
|
|
} else {
|
|
tsb_reg |= base;
|
|
tsb_reg |= (tsb_paddr & (page_sz - 1UL));
|
|
tte |= (tsb_paddr & ~(page_sz - 1UL));
|
|
|
|
mm->context.tsb_reg_val = tsb_reg;
|
|
mm->context.tsb_map_vaddr = base;
|
|
mm->context.tsb_map_pte = tte;
|
|
}
|
|
|
|
/* Setup the Hypervisor TSB descriptor. */
|
|
if (tlb_type == hypervisor) {
|
|
struct hv_tsb_descr *hp = &mm->context.tsb_descr;
|
|
|
|
switch (PAGE_SIZE) {
|
|
case 8192:
|
|
default:
|
|
hp->pgsz_idx = HV_PGSZ_IDX_8K;
|
|
break;
|
|
|
|
case 64 * 1024:
|
|
hp->pgsz_idx = HV_PGSZ_IDX_64K;
|
|
break;
|
|
|
|
case 512 * 1024:
|
|
hp->pgsz_idx = HV_PGSZ_IDX_512K;
|
|
break;
|
|
|
|
case 4 * 1024 * 1024:
|
|
hp->pgsz_idx = HV_PGSZ_IDX_4MB;
|
|
break;
|
|
};
|
|
hp->assoc = 1;
|
|
hp->num_ttes = tsb_bytes / 16;
|
|
hp->ctx_idx = 0;
|
|
switch (PAGE_SIZE) {
|
|
case 8192:
|
|
default:
|
|
hp->pgsz_mask = HV_PGSZ_MASK_8K;
|
|
break;
|
|
|
|
case 64 * 1024:
|
|
hp->pgsz_mask = HV_PGSZ_MASK_64K;
|
|
break;
|
|
|
|
case 512 * 1024:
|
|
hp->pgsz_mask = HV_PGSZ_MASK_512K;
|
|
break;
|
|
|
|
case 4 * 1024 * 1024:
|
|
hp->pgsz_mask = HV_PGSZ_MASK_4MB;
|
|
break;
|
|
};
|
|
hp->tsb_base = tsb_paddr;
|
|
hp->resv = 0;
|
|
}
|
|
}
|
|
|
|
/* When the RSS of an address space exceeds mm->context.tsb_rss_limit,
|
|
* do_sparc64_fault() invokes this routine to try and grow the TSB.
|
|
*
|
|
* When we reach the maximum TSB size supported, we stick ~0UL into
|
|
* mm->context.tsb_rss_limit so the grow checks in update_mmu_cache()
|
|
* will not trigger any longer.
|
|
*
|
|
* The TSB can be anywhere from 8K to 1MB in size, in increasing powers
|
|
* of two. The TSB must be aligned to it's size, so f.e. a 512K TSB
|
|
* must be 512K aligned. It also must be physically contiguous, so we
|
|
* cannot use vmalloc().
|
|
*
|
|
* The idea here is to grow the TSB when the RSS of the process approaches
|
|
* the number of entries that the current TSB can hold at once. Currently,
|
|
* we trigger when the RSS hits 3/4 of the TSB capacity.
|
|
*/
|
|
void tsb_grow(struct mm_struct *mm, unsigned long rss)
|
|
{
|
|
unsigned long max_tsb_size = 1 * 1024 * 1024;
|
|
unsigned long size, old_size, flags;
|
|
struct page *page;
|
|
struct tsb *old_tsb, *new_tsb;
|
|
unsigned long order, new_rss_limit;
|
|
gfp_t gfp_flags;
|
|
|
|
if (max_tsb_size > (PAGE_SIZE << MAX_ORDER))
|
|
max_tsb_size = (PAGE_SIZE << MAX_ORDER);
|
|
|
|
for (size = PAGE_SIZE; size < max_tsb_size; size <<= 1UL) {
|
|
unsigned long n_entries = size / sizeof(struct tsb);
|
|
|
|
n_entries = (n_entries * 3) / 4;
|
|
if (n_entries > rss)
|
|
break;
|
|
}
|
|
|
|
if (size == max_tsb_size)
|
|
new_rss_limit = ~0UL;
|
|
else
|
|
new_rss_limit = ((size / sizeof(struct tsb)) * 3) / 4;
|
|
|
|
retry_page_alloc:
|
|
order = get_order(size);
|
|
gfp_flags = GFP_KERNEL;
|
|
if (order > 1)
|
|
gfp_flags = __GFP_NOWARN | __GFP_NORETRY;
|
|
|
|
page = alloc_pages(gfp_flags, order);
|
|
if (unlikely(!page)) {
|
|
/* Not being able to fork due to a high-order TSB
|
|
* allocation failure is very bad behavior. Just back
|
|
* down to a 0-order allocation and force no TSB
|
|
* growing for this address space.
|
|
*/
|
|
if (mm->context.tsb == NULL && order > 0) {
|
|
size = PAGE_SIZE;
|
|
new_rss_limit = ~0UL;
|
|
goto retry_page_alloc;
|
|
}
|
|
|
|
/* If we failed on a TSB grow, we are under serious
|
|
* memory pressure so don't try to grow any more.
|
|
*/
|
|
if (mm->context.tsb != NULL)
|
|
mm->context.tsb_rss_limit = ~0UL;
|
|
return;
|
|
}
|
|
|
|
/* Mark all tags as invalid. */
|
|
new_tsb = page_address(page);
|
|
memset(new_tsb, 0x40, size);
|
|
|
|
/* Ok, we are about to commit the changes. If we are
|
|
* growing an existing TSB the locking is very tricky,
|
|
* so WATCH OUT!
|
|
*
|
|
* We have to hold mm->context.lock while committing to the
|
|
* new TSB, this synchronizes us with processors in
|
|
* flush_tsb_user() and switch_mm() for this address space.
|
|
*
|
|
* But even with that lock held, processors run asynchronously
|
|
* accessing the old TSB via TLB miss handling. This is OK
|
|
* because those actions are just propagating state from the
|
|
* Linux page tables into the TSB, page table mappings are not
|
|
* being changed. If a real fault occurs, the processor will
|
|
* synchronize with us when it hits flush_tsb_user(), this is
|
|
* also true for the case where vmscan is modifying the page
|
|
* tables. The only thing we need to be careful with is to
|
|
* skip any locked TSB entries during copy_tsb().
|
|
*
|
|
* When we finish committing to the new TSB, we have to drop
|
|
* the lock and ask all other cpus running this address space
|
|
* to run tsb_context_switch() to see the new TSB table.
|
|
*/
|
|
spin_lock_irqsave(&mm->context.lock, flags);
|
|
|
|
old_tsb = mm->context.tsb;
|
|
old_size = mm->context.tsb_nentries * sizeof(struct tsb);
|
|
|
|
/* Handle multiple threads trying to grow the TSB at the same time.
|
|
* One will get in here first, and bump the size and the RSS limit.
|
|
* The others will get in here next and hit this check.
|
|
*/
|
|
if (unlikely(old_tsb && (rss < mm->context.tsb_rss_limit))) {
|
|
spin_unlock_irqrestore(&mm->context.lock, flags);
|
|
|
|
free_pages((unsigned long) new_tsb, get_order(size));
|
|
return;
|
|
}
|
|
|
|
mm->context.tsb_rss_limit = new_rss_limit;
|
|
|
|
if (old_tsb) {
|
|
extern void copy_tsb(unsigned long old_tsb_base,
|
|
unsigned long old_tsb_size,
|
|
unsigned long new_tsb_base,
|
|
unsigned long new_tsb_size);
|
|
unsigned long old_tsb_base = (unsigned long) old_tsb;
|
|
unsigned long new_tsb_base = (unsigned long) new_tsb;
|
|
|
|
if (tlb_type == cheetah_plus || tlb_type == hypervisor) {
|
|
old_tsb_base = __pa(old_tsb_base);
|
|
new_tsb_base = __pa(new_tsb_base);
|
|
}
|
|
copy_tsb(old_tsb_base, old_size, new_tsb_base, size);
|
|
}
|
|
|
|
mm->context.tsb = new_tsb;
|
|
setup_tsb_params(mm, size);
|
|
|
|
spin_unlock_irqrestore(&mm->context.lock, flags);
|
|
|
|
/* If old_tsb is NULL, we're being invoked for the first time
|
|
* from init_new_context().
|
|
*/
|
|
if (old_tsb) {
|
|
/* Reload it on the local cpu. */
|
|
tsb_context_switch(mm);
|
|
|
|
/* Now force other processors to do the same. */
|
|
smp_tsb_sync(mm);
|
|
|
|
/* Now it is safe to free the old tsb. */
|
|
free_pages((unsigned long) old_tsb, get_order(old_size));
|
|
}
|
|
}
|
|
|
|
int init_new_context(struct task_struct *tsk, struct mm_struct *mm)
|
|
{
|
|
spin_lock_init(&mm->context.lock);
|
|
|
|
mm->context.sparc64_ctx_val = 0UL;
|
|
|
|
/* copy_mm() copies over the parent's mm_struct before calling
|
|
* us, so we need to zero out the TSB pointer or else tsb_grow()
|
|
* will be confused and think there is an older TSB to free up.
|
|
*/
|
|
mm->context.tsb = NULL;
|
|
|
|
/* If this is fork, inherit the parent's TSB size. We would
|
|
* grow it to that size on the first page fault anyways.
|
|
*/
|
|
tsb_grow(mm, get_mm_rss(mm));
|
|
|
|
if (unlikely(!mm->context.tsb))
|
|
return -ENOMEM;
|
|
|
|
return 0;
|
|
}
|
|
|
|
void destroy_context(struct mm_struct *mm)
|
|
{
|
|
unsigned long size = mm->context.tsb_nentries * sizeof(struct tsb);
|
|
unsigned long flags;
|
|
|
|
free_pages((unsigned long) mm->context.tsb, get_order(size));
|
|
|
|
/* We can remove these later, but for now it's useful
|
|
* to catch any bogus post-destroy_context() references
|
|
* to the TSB.
|
|
*/
|
|
mm->context.tsb = NULL;
|
|
mm->context.tsb_reg_val = 0UL;
|
|
|
|
spin_lock_irqsave(&ctx_alloc_lock, flags);
|
|
|
|
if (CTX_VALID(mm->context)) {
|
|
unsigned long nr = CTX_NRBITS(mm->context);
|
|
mmu_context_bmap[nr>>6] &= ~(1UL << (nr & 63));
|
|
}
|
|
|
|
spin_unlock_irqrestore(&ctx_alloc_lock, flags);
|
|
}
|