linux-sg2042/drivers/regulator/core.c

2487 lines
64 KiB
C

/*
* core.c -- Voltage/Current Regulator framework.
*
* Copyright 2007, 2008 Wolfson Microelectronics PLC.
* Copyright 2008 SlimLogic Ltd.
*
* Author: Liam Girdwood <lrg@slimlogic.co.uk>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*
*/
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/device.h>
#include <linux/err.h>
#include <linux/mutex.h>
#include <linux/suspend.h>
#include <linux/regulator/consumer.h>
#include <linux/regulator/driver.h>
#include <linux/regulator/machine.h>
#define REGULATOR_VERSION "0.5"
static DEFINE_MUTEX(regulator_list_mutex);
static LIST_HEAD(regulator_list);
static LIST_HEAD(regulator_map_list);
static int has_full_constraints;
/*
* struct regulator_map
*
* Used to provide symbolic supply names to devices.
*/
struct regulator_map {
struct list_head list;
const char *dev_name; /* The dev_name() for the consumer */
const char *supply;
struct regulator_dev *regulator;
};
/*
* struct regulator
*
* One for each consumer device.
*/
struct regulator {
struct device *dev;
struct list_head list;
int uA_load;
int min_uV;
int max_uV;
char *supply_name;
struct device_attribute dev_attr;
struct regulator_dev *rdev;
};
static int _regulator_is_enabled(struct regulator_dev *rdev);
static int _regulator_disable(struct regulator_dev *rdev);
static int _regulator_get_voltage(struct regulator_dev *rdev);
static int _regulator_get_current_limit(struct regulator_dev *rdev);
static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
static void _notifier_call_chain(struct regulator_dev *rdev,
unsigned long event, void *data);
/* gets the regulator for a given consumer device */
static struct regulator *get_device_regulator(struct device *dev)
{
struct regulator *regulator = NULL;
struct regulator_dev *rdev;
mutex_lock(&regulator_list_mutex);
list_for_each_entry(rdev, &regulator_list, list) {
mutex_lock(&rdev->mutex);
list_for_each_entry(regulator, &rdev->consumer_list, list) {
if (regulator->dev == dev) {
mutex_unlock(&rdev->mutex);
mutex_unlock(&regulator_list_mutex);
return regulator;
}
}
mutex_unlock(&rdev->mutex);
}
mutex_unlock(&regulator_list_mutex);
return NULL;
}
/* Platform voltage constraint check */
static int regulator_check_voltage(struct regulator_dev *rdev,
int *min_uV, int *max_uV)
{
BUG_ON(*min_uV > *max_uV);
if (!rdev->constraints) {
printk(KERN_ERR "%s: no constraints for %s\n", __func__,
rdev->desc->name);
return -ENODEV;
}
if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
printk(KERN_ERR "%s: operation not allowed for %s\n",
__func__, rdev->desc->name);
return -EPERM;
}
if (*max_uV > rdev->constraints->max_uV)
*max_uV = rdev->constraints->max_uV;
if (*min_uV < rdev->constraints->min_uV)
*min_uV = rdev->constraints->min_uV;
if (*min_uV > *max_uV)
return -EINVAL;
return 0;
}
/* current constraint check */
static int regulator_check_current_limit(struct regulator_dev *rdev,
int *min_uA, int *max_uA)
{
BUG_ON(*min_uA > *max_uA);
if (!rdev->constraints) {
printk(KERN_ERR "%s: no constraints for %s\n", __func__,
rdev->desc->name);
return -ENODEV;
}
if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
printk(KERN_ERR "%s: operation not allowed for %s\n",
__func__, rdev->desc->name);
return -EPERM;
}
if (*max_uA > rdev->constraints->max_uA)
*max_uA = rdev->constraints->max_uA;
if (*min_uA < rdev->constraints->min_uA)
*min_uA = rdev->constraints->min_uA;
if (*min_uA > *max_uA)
return -EINVAL;
return 0;
}
/* operating mode constraint check */
static int regulator_check_mode(struct regulator_dev *rdev, int mode)
{
switch (mode) {
case REGULATOR_MODE_FAST:
case REGULATOR_MODE_NORMAL:
case REGULATOR_MODE_IDLE:
case REGULATOR_MODE_STANDBY:
break;
default:
return -EINVAL;
}
if (!rdev->constraints) {
printk(KERN_ERR "%s: no constraints for %s\n", __func__,
rdev->desc->name);
return -ENODEV;
}
if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
printk(KERN_ERR "%s: operation not allowed for %s\n",
__func__, rdev->desc->name);
return -EPERM;
}
if (!(rdev->constraints->valid_modes_mask & mode)) {
printk(KERN_ERR "%s: invalid mode %x for %s\n",
__func__, mode, rdev->desc->name);
return -EINVAL;
}
return 0;
}
/* dynamic regulator mode switching constraint check */
static int regulator_check_drms(struct regulator_dev *rdev)
{
if (!rdev->constraints) {
printk(KERN_ERR "%s: no constraints for %s\n", __func__,
rdev->desc->name);
return -ENODEV;
}
if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
printk(KERN_ERR "%s: operation not allowed for %s\n",
__func__, rdev->desc->name);
return -EPERM;
}
return 0;
}
static ssize_t device_requested_uA_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct regulator *regulator;
regulator = get_device_regulator(dev);
if (regulator == NULL)
return 0;
return sprintf(buf, "%d\n", regulator->uA_load);
}
static ssize_t regulator_uV_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct regulator_dev *rdev = dev_get_drvdata(dev);
ssize_t ret;
mutex_lock(&rdev->mutex);
ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
mutex_unlock(&rdev->mutex);
return ret;
}
static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
static ssize_t regulator_uA_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct regulator_dev *rdev = dev_get_drvdata(dev);
return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
}
static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
static ssize_t regulator_name_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct regulator_dev *rdev = dev_get_drvdata(dev);
const char *name;
if (rdev->constraints && rdev->constraints->name)
name = rdev->constraints->name;
else if (rdev->desc->name)
name = rdev->desc->name;
else
name = "";
return sprintf(buf, "%s\n", name);
}
static ssize_t regulator_print_opmode(char *buf, int mode)
{
switch (mode) {
case REGULATOR_MODE_FAST:
return sprintf(buf, "fast\n");
case REGULATOR_MODE_NORMAL:
return sprintf(buf, "normal\n");
case REGULATOR_MODE_IDLE:
return sprintf(buf, "idle\n");
case REGULATOR_MODE_STANDBY:
return sprintf(buf, "standby\n");
}
return sprintf(buf, "unknown\n");
}
static ssize_t regulator_opmode_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct regulator_dev *rdev = dev_get_drvdata(dev);
return regulator_print_opmode(buf, _regulator_get_mode(rdev));
}
static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
static ssize_t regulator_print_state(char *buf, int state)
{
if (state > 0)
return sprintf(buf, "enabled\n");
else if (state == 0)
return sprintf(buf, "disabled\n");
else
return sprintf(buf, "unknown\n");
}
static ssize_t regulator_state_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct regulator_dev *rdev = dev_get_drvdata(dev);
ssize_t ret;
mutex_lock(&rdev->mutex);
ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
mutex_unlock(&rdev->mutex);
return ret;
}
static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
static ssize_t regulator_status_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct regulator_dev *rdev = dev_get_drvdata(dev);
int status;
char *label;
status = rdev->desc->ops->get_status(rdev);
if (status < 0)
return status;
switch (status) {
case REGULATOR_STATUS_OFF:
label = "off";
break;
case REGULATOR_STATUS_ON:
label = "on";
break;
case REGULATOR_STATUS_ERROR:
label = "error";
break;
case REGULATOR_STATUS_FAST:
label = "fast";
break;
case REGULATOR_STATUS_NORMAL:
label = "normal";
break;
case REGULATOR_STATUS_IDLE:
label = "idle";
break;
case REGULATOR_STATUS_STANDBY:
label = "standby";
break;
default:
return -ERANGE;
}
return sprintf(buf, "%s\n", label);
}
static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
static ssize_t regulator_min_uA_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct regulator_dev *rdev = dev_get_drvdata(dev);
if (!rdev->constraints)
return sprintf(buf, "constraint not defined\n");
return sprintf(buf, "%d\n", rdev->constraints->min_uA);
}
static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
static ssize_t regulator_max_uA_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct regulator_dev *rdev = dev_get_drvdata(dev);
if (!rdev->constraints)
return sprintf(buf, "constraint not defined\n");
return sprintf(buf, "%d\n", rdev->constraints->max_uA);
}
static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
static ssize_t regulator_min_uV_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct regulator_dev *rdev = dev_get_drvdata(dev);
if (!rdev->constraints)
return sprintf(buf, "constraint not defined\n");
return sprintf(buf, "%d\n", rdev->constraints->min_uV);
}
static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
static ssize_t regulator_max_uV_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct regulator_dev *rdev = dev_get_drvdata(dev);
if (!rdev->constraints)
return sprintf(buf, "constraint not defined\n");
return sprintf(buf, "%d\n", rdev->constraints->max_uV);
}
static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
static ssize_t regulator_total_uA_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct regulator_dev *rdev = dev_get_drvdata(dev);
struct regulator *regulator;
int uA = 0;
mutex_lock(&rdev->mutex);
list_for_each_entry(regulator, &rdev->consumer_list, list)
uA += regulator->uA_load;
mutex_unlock(&rdev->mutex);
return sprintf(buf, "%d\n", uA);
}
static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
static ssize_t regulator_num_users_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct regulator_dev *rdev = dev_get_drvdata(dev);
return sprintf(buf, "%d\n", rdev->use_count);
}
static ssize_t regulator_type_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct regulator_dev *rdev = dev_get_drvdata(dev);
switch (rdev->desc->type) {
case REGULATOR_VOLTAGE:
return sprintf(buf, "voltage\n");
case REGULATOR_CURRENT:
return sprintf(buf, "current\n");
}
return sprintf(buf, "unknown\n");
}
static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct regulator_dev *rdev = dev_get_drvdata(dev);
return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
}
static DEVICE_ATTR(suspend_mem_microvolts, 0444,
regulator_suspend_mem_uV_show, NULL);
static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct regulator_dev *rdev = dev_get_drvdata(dev);
return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
}
static DEVICE_ATTR(suspend_disk_microvolts, 0444,
regulator_suspend_disk_uV_show, NULL);
static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct regulator_dev *rdev = dev_get_drvdata(dev);
return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
}
static DEVICE_ATTR(suspend_standby_microvolts, 0444,
regulator_suspend_standby_uV_show, NULL);
static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct regulator_dev *rdev = dev_get_drvdata(dev);
return regulator_print_opmode(buf,
rdev->constraints->state_mem.mode);
}
static DEVICE_ATTR(suspend_mem_mode, 0444,
regulator_suspend_mem_mode_show, NULL);
static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct regulator_dev *rdev = dev_get_drvdata(dev);
return regulator_print_opmode(buf,
rdev->constraints->state_disk.mode);
}
static DEVICE_ATTR(suspend_disk_mode, 0444,
regulator_suspend_disk_mode_show, NULL);
static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct regulator_dev *rdev = dev_get_drvdata(dev);
return regulator_print_opmode(buf,
rdev->constraints->state_standby.mode);
}
static DEVICE_ATTR(suspend_standby_mode, 0444,
regulator_suspend_standby_mode_show, NULL);
static ssize_t regulator_suspend_mem_state_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct regulator_dev *rdev = dev_get_drvdata(dev);
return regulator_print_state(buf,
rdev->constraints->state_mem.enabled);
}
static DEVICE_ATTR(suspend_mem_state, 0444,
regulator_suspend_mem_state_show, NULL);
static ssize_t regulator_suspend_disk_state_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct regulator_dev *rdev = dev_get_drvdata(dev);
return regulator_print_state(buf,
rdev->constraints->state_disk.enabled);
}
static DEVICE_ATTR(suspend_disk_state, 0444,
regulator_suspend_disk_state_show, NULL);
static ssize_t regulator_suspend_standby_state_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct regulator_dev *rdev = dev_get_drvdata(dev);
return regulator_print_state(buf,
rdev->constraints->state_standby.enabled);
}
static DEVICE_ATTR(suspend_standby_state, 0444,
regulator_suspend_standby_state_show, NULL);
/*
* These are the only attributes are present for all regulators.
* Other attributes are a function of regulator functionality.
*/
static struct device_attribute regulator_dev_attrs[] = {
__ATTR(name, 0444, regulator_name_show, NULL),
__ATTR(num_users, 0444, regulator_num_users_show, NULL),
__ATTR(type, 0444, regulator_type_show, NULL),
__ATTR_NULL,
};
static void regulator_dev_release(struct device *dev)
{
struct regulator_dev *rdev = dev_get_drvdata(dev);
kfree(rdev);
}
static struct class regulator_class = {
.name = "regulator",
.dev_release = regulator_dev_release,
.dev_attrs = regulator_dev_attrs,
};
/* Calculate the new optimum regulator operating mode based on the new total
* consumer load. All locks held by caller */
static void drms_uA_update(struct regulator_dev *rdev)
{
struct regulator *sibling;
int current_uA = 0, output_uV, input_uV, err;
unsigned int mode;
err = regulator_check_drms(rdev);
if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
!rdev->desc->ops->get_voltage || !rdev->desc->ops->set_mode)
return;
/* get output voltage */
output_uV = rdev->desc->ops->get_voltage(rdev);
if (output_uV <= 0)
return;
/* get input voltage */
if (rdev->supply && rdev->supply->desc->ops->get_voltage)
input_uV = rdev->supply->desc->ops->get_voltage(rdev->supply);
else
input_uV = rdev->constraints->input_uV;
if (input_uV <= 0)
return;
/* calc total requested load */
list_for_each_entry(sibling, &rdev->consumer_list, list)
current_uA += sibling->uA_load;
/* now get the optimum mode for our new total regulator load */
mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
output_uV, current_uA);
/* check the new mode is allowed */
err = regulator_check_mode(rdev, mode);
if (err == 0)
rdev->desc->ops->set_mode(rdev, mode);
}
static int suspend_set_state(struct regulator_dev *rdev,
struct regulator_state *rstate)
{
int ret = 0;
/* enable & disable are mandatory for suspend control */
if (!rdev->desc->ops->set_suspend_enable ||
!rdev->desc->ops->set_suspend_disable) {
printk(KERN_ERR "%s: no way to set suspend state\n",
__func__);
return -EINVAL;
}
if (rstate->enabled)
ret = rdev->desc->ops->set_suspend_enable(rdev);
else
ret = rdev->desc->ops->set_suspend_disable(rdev);
if (ret < 0) {
printk(KERN_ERR "%s: failed to enabled/disable\n", __func__);
return ret;
}
if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
if (ret < 0) {
printk(KERN_ERR "%s: failed to set voltage\n",
__func__);
return ret;
}
}
if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
if (ret < 0) {
printk(KERN_ERR "%s: failed to set mode\n", __func__);
return ret;
}
}
return ret;
}
/* locks held by caller */
static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
{
if (!rdev->constraints)
return -EINVAL;
switch (state) {
case PM_SUSPEND_STANDBY:
return suspend_set_state(rdev,
&rdev->constraints->state_standby);
case PM_SUSPEND_MEM:
return suspend_set_state(rdev,
&rdev->constraints->state_mem);
case PM_SUSPEND_MAX:
return suspend_set_state(rdev,
&rdev->constraints->state_disk);
default:
return -EINVAL;
}
}
static void print_constraints(struct regulator_dev *rdev)
{
struct regulation_constraints *constraints = rdev->constraints;
char buf[80];
int count;
if (rdev->desc->type == REGULATOR_VOLTAGE) {
if (constraints->min_uV == constraints->max_uV)
count = sprintf(buf, "%d mV ",
constraints->min_uV / 1000);
else
count = sprintf(buf, "%d <--> %d mV ",
constraints->min_uV / 1000,
constraints->max_uV / 1000);
} else {
if (constraints->min_uA == constraints->max_uA)
count = sprintf(buf, "%d mA ",
constraints->min_uA / 1000);
else
count = sprintf(buf, "%d <--> %d mA ",
constraints->min_uA / 1000,
constraints->max_uA / 1000);
}
if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
count += sprintf(buf + count, "fast ");
if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
count += sprintf(buf + count, "normal ");
if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
count += sprintf(buf + count, "idle ");
if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
count += sprintf(buf + count, "standby");
printk(KERN_INFO "regulator: %s: %s\n", rdev->desc->name, buf);
}
/**
* set_machine_constraints - sets regulator constraints
* @rdev: regulator source
* @constraints: constraints to apply
*
* Allows platform initialisation code to define and constrain
* regulator circuits e.g. valid voltage/current ranges, etc. NOTE:
* Constraints *must* be set by platform code in order for some
* regulator operations to proceed i.e. set_voltage, set_current_limit,
* set_mode.
*/
static int set_machine_constraints(struct regulator_dev *rdev,
struct regulation_constraints *constraints)
{
int ret = 0;
const char *name;
struct regulator_ops *ops = rdev->desc->ops;
if (constraints->name)
name = constraints->name;
else if (rdev->desc->name)
name = rdev->desc->name;
else
name = "regulator";
/* constrain machine-level voltage specs to fit
* the actual range supported by this regulator.
*/
if (ops->list_voltage && rdev->desc->n_voltages) {
int count = rdev->desc->n_voltages;
int i;
int min_uV = INT_MAX;
int max_uV = INT_MIN;
int cmin = constraints->min_uV;
int cmax = constraints->max_uV;
/* it's safe to autoconfigure fixed-voltage supplies
and the constraints are used by list_voltage. */
if (count == 1 && !cmin) {
cmin = 1;
cmax = INT_MAX;
constraints->min_uV = cmin;
constraints->max_uV = cmax;
}
/* voltage constraints are optional */
if ((cmin == 0) && (cmax == 0))
goto out;
/* else require explicit machine-level constraints */
if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
pr_err("%s: %s '%s' voltage constraints\n",
__func__, "invalid", name);
ret = -EINVAL;
goto out;
}
/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
for (i = 0; i < count; i++) {
int value;
value = ops->list_voltage(rdev, i);
if (value <= 0)
continue;
/* maybe adjust [min_uV..max_uV] */
if (value >= cmin && value < min_uV)
min_uV = value;
if (value <= cmax && value > max_uV)
max_uV = value;
}
/* final: [min_uV..max_uV] valid iff constraints valid */
if (max_uV < min_uV) {
pr_err("%s: %s '%s' voltage constraints\n",
__func__, "unsupportable", name);
ret = -EINVAL;
goto out;
}
/* use regulator's subset of machine constraints */
if (constraints->min_uV < min_uV) {
pr_debug("%s: override '%s' %s, %d -> %d\n",
__func__, name, "min_uV",
constraints->min_uV, min_uV);
constraints->min_uV = min_uV;
}
if (constraints->max_uV > max_uV) {
pr_debug("%s: override '%s' %s, %d -> %d\n",
__func__, name, "max_uV",
constraints->max_uV, max_uV);
constraints->max_uV = max_uV;
}
}
rdev->constraints = constraints;
/* do we need to apply the constraint voltage */
if (rdev->constraints->apply_uV &&
rdev->constraints->min_uV == rdev->constraints->max_uV &&
ops->set_voltage) {
ret = ops->set_voltage(rdev,
rdev->constraints->min_uV, rdev->constraints->max_uV);
if (ret < 0) {
printk(KERN_ERR "%s: failed to apply %duV constraint to %s\n",
__func__,
rdev->constraints->min_uV, name);
rdev->constraints = NULL;
goto out;
}
}
/* do we need to setup our suspend state */
if (constraints->initial_state) {
ret = suspend_prepare(rdev, constraints->initial_state);
if (ret < 0) {
printk(KERN_ERR "%s: failed to set suspend state for %s\n",
__func__, name);
rdev->constraints = NULL;
goto out;
}
}
if (constraints->initial_mode) {
if (!ops->set_mode) {
printk(KERN_ERR "%s: no set_mode operation for %s\n",
__func__, name);
ret = -EINVAL;
goto out;
}
ret = ops->set_mode(rdev, constraints->initial_mode);
if (ret < 0) {
printk(KERN_ERR
"%s: failed to set initial mode for %s: %d\n",
__func__, name, ret);
goto out;
}
}
/* If the constraints say the regulator should be on at this point
* and we have control then make sure it is enabled.
*/
if ((constraints->always_on || constraints->boot_on) && ops->enable) {
ret = ops->enable(rdev);
if (ret < 0) {
printk(KERN_ERR "%s: failed to enable %s\n",
__func__, name);
rdev->constraints = NULL;
goto out;
}
}
print_constraints(rdev);
out:
return ret;
}
/**
* set_supply - set regulator supply regulator
* @rdev: regulator name
* @supply_rdev: supply regulator name
*
* Called by platform initialisation code to set the supply regulator for this
* regulator. This ensures that a regulators supply will also be enabled by the
* core if it's child is enabled.
*/
static int set_supply(struct regulator_dev *rdev,
struct regulator_dev *supply_rdev)
{
int err;
err = sysfs_create_link(&rdev->dev.kobj, &supply_rdev->dev.kobj,
"supply");
if (err) {
printk(KERN_ERR
"%s: could not add device link %s err %d\n",
__func__, supply_rdev->dev.kobj.name, err);
goto out;
}
rdev->supply = supply_rdev;
list_add(&rdev->slist, &supply_rdev->supply_list);
out:
return err;
}
/**
* set_consumer_device_supply: Bind a regulator to a symbolic supply
* @rdev: regulator source
* @consumer_dev: device the supply applies to
* @consumer_dev_name: dev_name() string for device supply applies to
* @supply: symbolic name for supply
*
* Allows platform initialisation code to map physical regulator
* sources to symbolic names for supplies for use by devices. Devices
* should use these symbolic names to request regulators, avoiding the
* need to provide board-specific regulator names as platform data.
*
* Only one of consumer_dev and consumer_dev_name may be specified.
*/
static int set_consumer_device_supply(struct regulator_dev *rdev,
struct device *consumer_dev, const char *consumer_dev_name,
const char *supply)
{
struct regulator_map *node;
int has_dev;
if (consumer_dev && consumer_dev_name)
return -EINVAL;
if (!consumer_dev_name && consumer_dev)
consumer_dev_name = dev_name(consumer_dev);
if (supply == NULL)
return -EINVAL;
if (consumer_dev_name != NULL)
has_dev = 1;
else
has_dev = 0;
list_for_each_entry(node, &regulator_map_list, list) {
if (consumer_dev_name != node->dev_name)
continue;
if (strcmp(node->supply, supply) != 0)
continue;
dev_dbg(consumer_dev, "%s/%s is '%s' supply; fail %s/%s\n",
dev_name(&node->regulator->dev),
node->regulator->desc->name,
supply,
dev_name(&rdev->dev), rdev->desc->name);
return -EBUSY;
}
node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
if (node == NULL)
return -ENOMEM;
node->regulator = rdev;
node->supply = supply;
if (has_dev) {
node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
if (node->dev_name == NULL) {
kfree(node);
return -ENOMEM;
}
}
list_add(&node->list, &regulator_map_list);
return 0;
}
static void unset_consumer_device_supply(struct regulator_dev *rdev,
const char *consumer_dev_name, struct device *consumer_dev)
{
struct regulator_map *node, *n;
if (consumer_dev && !consumer_dev_name)
consumer_dev_name = dev_name(consumer_dev);
list_for_each_entry_safe(node, n, &regulator_map_list, list) {
if (rdev != node->regulator)
continue;
if (consumer_dev_name && node->dev_name &&
strcmp(consumer_dev_name, node->dev_name))
continue;
list_del(&node->list);
kfree(node->dev_name);
kfree(node);
return;
}
}
static void unset_regulator_supplies(struct regulator_dev *rdev)
{
struct regulator_map *node, *n;
list_for_each_entry_safe(node, n, &regulator_map_list, list) {
if (rdev == node->regulator) {
list_del(&node->list);
kfree(node->dev_name);
kfree(node);
return;
}
}
}
#define REG_STR_SIZE 32
static struct regulator *create_regulator(struct regulator_dev *rdev,
struct device *dev,
const char *supply_name)
{
struct regulator *regulator;
char buf[REG_STR_SIZE];
int err, size;
regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
if (regulator == NULL)
return NULL;
mutex_lock(&rdev->mutex);
regulator->rdev = rdev;
list_add(&regulator->list, &rdev->consumer_list);
if (dev) {
/* create a 'requested_microamps_name' sysfs entry */
size = scnprintf(buf, REG_STR_SIZE, "microamps_requested_%s",
supply_name);
if (size >= REG_STR_SIZE)
goto overflow_err;
regulator->dev = dev;
regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL);
if (regulator->dev_attr.attr.name == NULL)
goto attr_name_err;
regulator->dev_attr.attr.owner = THIS_MODULE;
regulator->dev_attr.attr.mode = 0444;
regulator->dev_attr.show = device_requested_uA_show;
err = device_create_file(dev, &regulator->dev_attr);
if (err < 0) {
printk(KERN_WARNING "%s: could not add regulator_dev"
" load sysfs\n", __func__);
goto attr_name_err;
}
/* also add a link to the device sysfs entry */
size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
dev->kobj.name, supply_name);
if (size >= REG_STR_SIZE)
goto attr_err;
regulator->supply_name = kstrdup(buf, GFP_KERNEL);
if (regulator->supply_name == NULL)
goto attr_err;
err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
buf);
if (err) {
printk(KERN_WARNING
"%s: could not add device link %s err %d\n",
__func__, dev->kobj.name, err);
device_remove_file(dev, &regulator->dev_attr);
goto link_name_err;
}
}
mutex_unlock(&rdev->mutex);
return regulator;
link_name_err:
kfree(regulator->supply_name);
attr_err:
device_remove_file(regulator->dev, &regulator->dev_attr);
attr_name_err:
kfree(regulator->dev_attr.attr.name);
overflow_err:
list_del(&regulator->list);
kfree(regulator);
mutex_unlock(&rdev->mutex);
return NULL;
}
/* Internal regulator request function */
static struct regulator *_regulator_get(struct device *dev, const char *id,
int exclusive)
{
struct regulator_dev *rdev;
struct regulator_map *map;
struct regulator *regulator = ERR_PTR(-ENODEV);
const char *devname = NULL;
int ret;
if (id == NULL) {
printk(KERN_ERR "regulator: get() with no identifier\n");
return regulator;
}
if (dev)
devname = dev_name(dev);
mutex_lock(&regulator_list_mutex);
list_for_each_entry(map, &regulator_map_list, list) {
/* If the mapping has a device set up it must match */
if (map->dev_name &&
(!devname || strcmp(map->dev_name, devname)))
continue;
if (strcmp(map->supply, id) == 0) {
rdev = map->regulator;
goto found;
}
}
mutex_unlock(&regulator_list_mutex);
return regulator;
found:
if (rdev->exclusive) {
regulator = ERR_PTR(-EPERM);
goto out;
}
if (exclusive && rdev->open_count) {
regulator = ERR_PTR(-EBUSY);
goto out;
}
if (!try_module_get(rdev->owner))
goto out;
regulator = create_regulator(rdev, dev, id);
if (regulator == NULL) {
regulator = ERR_PTR(-ENOMEM);
module_put(rdev->owner);
}
rdev->open_count++;
if (exclusive) {
rdev->exclusive = 1;
ret = _regulator_is_enabled(rdev);
if (ret > 0)
rdev->use_count = 1;
else
rdev->use_count = 0;
}
out:
mutex_unlock(&regulator_list_mutex);
return regulator;
}
/**
* regulator_get - lookup and obtain a reference to a regulator.
* @dev: device for regulator "consumer"
* @id: Supply name or regulator ID.
*
* Returns a struct regulator corresponding to the regulator producer,
* or IS_ERR() condition containing errno.
*
* Use of supply names configured via regulator_set_device_supply() is
* strongly encouraged. It is recommended that the supply name used
* should match the name used for the supply and/or the relevant
* device pins in the datasheet.
*/
struct regulator *regulator_get(struct device *dev, const char *id)
{
return _regulator_get(dev, id, 0);
}
EXPORT_SYMBOL_GPL(regulator_get);
/**
* regulator_get_exclusive - obtain exclusive access to a regulator.
* @dev: device for regulator "consumer"
* @id: Supply name or regulator ID.
*
* Returns a struct regulator corresponding to the regulator producer,
* or IS_ERR() condition containing errno. Other consumers will be
* unable to obtain this reference is held and the use count for the
* regulator will be initialised to reflect the current state of the
* regulator.
*
* This is intended for use by consumers which cannot tolerate shared
* use of the regulator such as those which need to force the
* regulator off for correct operation of the hardware they are
* controlling.
*
* Use of supply names configured via regulator_set_device_supply() is
* strongly encouraged. It is recommended that the supply name used
* should match the name used for the supply and/or the relevant
* device pins in the datasheet.
*/
struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
{
return _regulator_get(dev, id, 1);
}
EXPORT_SYMBOL_GPL(regulator_get_exclusive);
/**
* regulator_put - "free" the regulator source
* @regulator: regulator source
*
* Note: drivers must ensure that all regulator_enable calls made on this
* regulator source are balanced by regulator_disable calls prior to calling
* this function.
*/
void regulator_put(struct regulator *regulator)
{
struct regulator_dev *rdev;
if (regulator == NULL || IS_ERR(regulator))
return;
mutex_lock(&regulator_list_mutex);
rdev = regulator->rdev;
/* remove any sysfs entries */
if (regulator->dev) {
sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
kfree(regulator->supply_name);
device_remove_file(regulator->dev, &regulator->dev_attr);
kfree(regulator->dev_attr.attr.name);
}
list_del(&regulator->list);
kfree(regulator);
rdev->open_count--;
rdev->exclusive = 0;
module_put(rdev->owner);
mutex_unlock(&regulator_list_mutex);
}
EXPORT_SYMBOL_GPL(regulator_put);
static int _regulator_can_change_status(struct regulator_dev *rdev)
{
if (!rdev->constraints)
return 0;
if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
return 1;
else
return 0;
}
/* locks held by regulator_enable() */
static int _regulator_enable(struct regulator_dev *rdev)
{
int ret;
/* do we need to enable the supply regulator first */
if (rdev->supply) {
ret = _regulator_enable(rdev->supply);
if (ret < 0) {
printk(KERN_ERR "%s: failed to enable %s: %d\n",
__func__, rdev->desc->name, ret);
return ret;
}
}
/* check voltage and requested load before enabling */
if (rdev->constraints &&
(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
drms_uA_update(rdev);
if (rdev->use_count == 0) {
/* The regulator may on if it's not switchable or left on */
ret = _regulator_is_enabled(rdev);
if (ret == -EINVAL || ret == 0) {
if (!_regulator_can_change_status(rdev))
return -EPERM;
if (rdev->desc->ops->enable) {
ret = rdev->desc->ops->enable(rdev);
if (ret < 0)
return ret;
} else {
return -EINVAL;
}
} else if (ret < 0) {
printk(KERN_ERR "%s: is_enabled() failed for %s: %d\n",
__func__, rdev->desc->name, ret);
return ret;
}
/* Fallthrough on positive return values - already enabled */
}
rdev->use_count++;
return 0;
}
/**
* regulator_enable - enable regulator output
* @regulator: regulator source
*
* Request that the regulator be enabled with the regulator output at
* the predefined voltage or current value. Calls to regulator_enable()
* must be balanced with calls to regulator_disable().
*
* NOTE: the output value can be set by other drivers, boot loader or may be
* hardwired in the regulator.
*/
int regulator_enable(struct regulator *regulator)
{
struct regulator_dev *rdev = regulator->rdev;
int ret = 0;
mutex_lock(&rdev->mutex);
ret = _regulator_enable(rdev);
mutex_unlock(&rdev->mutex);
return ret;
}
EXPORT_SYMBOL_GPL(regulator_enable);
/* locks held by regulator_disable() */
static int _regulator_disable(struct regulator_dev *rdev)
{
int ret = 0;
if (WARN(rdev->use_count <= 0,
"unbalanced disables for %s\n",
rdev->desc->name))
return -EIO;
/* are we the last user and permitted to disable ? */
if (rdev->use_count == 1 &&
(rdev->constraints && !rdev->constraints->always_on)) {
/* we are last user */
if (_regulator_can_change_status(rdev) &&
rdev->desc->ops->disable) {
ret = rdev->desc->ops->disable(rdev);
if (ret < 0) {
printk(KERN_ERR "%s: failed to disable %s\n",
__func__, rdev->desc->name);
return ret;
}
}
/* decrease our supplies ref count and disable if required */
if (rdev->supply)
_regulator_disable(rdev->supply);
rdev->use_count = 0;
} else if (rdev->use_count > 1) {
if (rdev->constraints &&
(rdev->constraints->valid_ops_mask &
REGULATOR_CHANGE_DRMS))
drms_uA_update(rdev);
rdev->use_count--;
}
return ret;
}
/**
* regulator_disable - disable regulator output
* @regulator: regulator source
*
* Disable the regulator output voltage or current. Calls to
* regulator_enable() must be balanced with calls to
* regulator_disable().
*
* NOTE: this will only disable the regulator output if no other consumer
* devices have it enabled, the regulator device supports disabling and
* machine constraints permit this operation.
*/
int regulator_disable(struct regulator *regulator)
{
struct regulator_dev *rdev = regulator->rdev;
int ret = 0;
mutex_lock(&rdev->mutex);
ret = _regulator_disable(rdev);
mutex_unlock(&rdev->mutex);
return ret;
}
EXPORT_SYMBOL_GPL(regulator_disable);
/* locks held by regulator_force_disable() */
static int _regulator_force_disable(struct regulator_dev *rdev)
{
int ret = 0;
/* force disable */
if (rdev->desc->ops->disable) {
/* ah well, who wants to live forever... */
ret = rdev->desc->ops->disable(rdev);
if (ret < 0) {
printk(KERN_ERR "%s: failed to force disable %s\n",
__func__, rdev->desc->name);
return ret;
}
/* notify other consumers that power has been forced off */
_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE,
NULL);
}
/* decrease our supplies ref count and disable if required */
if (rdev->supply)
_regulator_disable(rdev->supply);
rdev->use_count = 0;
return ret;
}
/**
* regulator_force_disable - force disable regulator output
* @regulator: regulator source
*
* Forcibly disable the regulator output voltage or current.
* NOTE: this *will* disable the regulator output even if other consumer
* devices have it enabled. This should be used for situations when device
* damage will likely occur if the regulator is not disabled (e.g. over temp).
*/
int regulator_force_disable(struct regulator *regulator)
{
int ret;
mutex_lock(&regulator->rdev->mutex);
regulator->uA_load = 0;
ret = _regulator_force_disable(regulator->rdev);
mutex_unlock(&regulator->rdev->mutex);
return ret;
}
EXPORT_SYMBOL_GPL(regulator_force_disable);
static int _regulator_is_enabled(struct regulator_dev *rdev)
{
/* sanity check */
if (!rdev->desc->ops->is_enabled)
return -EINVAL;
return rdev->desc->ops->is_enabled(rdev);
}
/**
* regulator_is_enabled - is the regulator output enabled
* @regulator: regulator source
*
* Returns positive if the regulator driver backing the source/client
* has requested that the device be enabled, zero if it hasn't, else a
* negative errno code.
*
* Note that the device backing this regulator handle can have multiple
* users, so it might be enabled even if regulator_enable() was never
* called for this particular source.
*/
int regulator_is_enabled(struct regulator *regulator)
{
int ret;
mutex_lock(&regulator->rdev->mutex);
ret = _regulator_is_enabled(regulator->rdev);
mutex_unlock(&regulator->rdev->mutex);
return ret;
}
EXPORT_SYMBOL_GPL(regulator_is_enabled);
/**
* regulator_count_voltages - count regulator_list_voltage() selectors
* @regulator: regulator source
*
* Returns number of selectors, or negative errno. Selectors are
* numbered starting at zero, and typically correspond to bitfields
* in hardware registers.
*/
int regulator_count_voltages(struct regulator *regulator)
{
struct regulator_dev *rdev = regulator->rdev;
return rdev->desc->n_voltages ? : -EINVAL;
}
EXPORT_SYMBOL_GPL(regulator_count_voltages);
/**
* regulator_list_voltage - enumerate supported voltages
* @regulator: regulator source
* @selector: identify voltage to list
* Context: can sleep
*
* Returns a voltage that can be passed to @regulator_set_voltage(),
* zero if this selector code can't be used on this sytem, or a
* negative errno.
*/
int regulator_list_voltage(struct regulator *regulator, unsigned selector)
{
struct regulator_dev *rdev = regulator->rdev;
struct regulator_ops *ops = rdev->desc->ops;
int ret;
if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
return -EINVAL;
mutex_lock(&rdev->mutex);
ret = ops->list_voltage(rdev, selector);
mutex_unlock(&rdev->mutex);
if (ret > 0) {
if (ret < rdev->constraints->min_uV)
ret = 0;
else if (ret > rdev->constraints->max_uV)
ret = 0;
}
return ret;
}
EXPORT_SYMBOL_GPL(regulator_list_voltage);
/**
* regulator_is_supported_voltage - check if a voltage range can be supported
*
* @regulator: Regulator to check.
* @min_uV: Minimum required voltage in uV.
* @max_uV: Maximum required voltage in uV.
*
* Returns a boolean or a negative error code.
*/
int regulator_is_supported_voltage(struct regulator *regulator,
int min_uV, int max_uV)
{
int i, voltages, ret;
ret = regulator_count_voltages(regulator);
if (ret < 0)
return ret;
voltages = ret;
for (i = 0; i < voltages; i++) {
ret = regulator_list_voltage(regulator, i);
if (ret >= min_uV && ret <= max_uV)
return 1;
}
return 0;
}
/**
* regulator_set_voltage - set regulator output voltage
* @regulator: regulator source
* @min_uV: Minimum required voltage in uV
* @max_uV: Maximum acceptable voltage in uV
*
* Sets a voltage regulator to the desired output voltage. This can be set
* during any regulator state. IOW, regulator can be disabled or enabled.
*
* If the regulator is enabled then the voltage will change to the new value
* immediately otherwise if the regulator is disabled the regulator will
* output at the new voltage when enabled.
*
* NOTE: If the regulator is shared between several devices then the lowest
* request voltage that meets the system constraints will be used.
* Regulator system constraints must be set for this regulator before
* calling this function otherwise this call will fail.
*/
int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
{
struct regulator_dev *rdev = regulator->rdev;
int ret;
mutex_lock(&rdev->mutex);
/* sanity check */
if (!rdev->desc->ops->set_voltage) {
ret = -EINVAL;
goto out;
}
/* constraints check */
ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
if (ret < 0)
goto out;
regulator->min_uV = min_uV;
regulator->max_uV = max_uV;
ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV);
out:
_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE, NULL);
mutex_unlock(&rdev->mutex);
return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_voltage);
static int _regulator_get_voltage(struct regulator_dev *rdev)
{
/* sanity check */
if (rdev->desc->ops->get_voltage)
return rdev->desc->ops->get_voltage(rdev);
else
return -EINVAL;
}
/**
* regulator_get_voltage - get regulator output voltage
* @regulator: regulator source
*
* This returns the current regulator voltage in uV.
*
* NOTE: If the regulator is disabled it will return the voltage value. This
* function should not be used to determine regulator state.
*/
int regulator_get_voltage(struct regulator *regulator)
{
int ret;
mutex_lock(&regulator->rdev->mutex);
ret = _regulator_get_voltage(regulator->rdev);
mutex_unlock(&regulator->rdev->mutex);
return ret;
}
EXPORT_SYMBOL_GPL(regulator_get_voltage);
/**
* regulator_set_current_limit - set regulator output current limit
* @regulator: regulator source
* @min_uA: Minimuum supported current in uA
* @max_uA: Maximum supported current in uA
*
* Sets current sink to the desired output current. This can be set during
* any regulator state. IOW, regulator can be disabled or enabled.
*
* If the regulator is enabled then the current will change to the new value
* immediately otherwise if the regulator is disabled the regulator will
* output at the new current when enabled.
*
* NOTE: Regulator system constraints must be set for this regulator before
* calling this function otherwise this call will fail.
*/
int regulator_set_current_limit(struct regulator *regulator,
int min_uA, int max_uA)
{
struct regulator_dev *rdev = regulator->rdev;
int ret;
mutex_lock(&rdev->mutex);
/* sanity check */
if (!rdev->desc->ops->set_current_limit) {
ret = -EINVAL;
goto out;
}
/* constraints check */
ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
if (ret < 0)
goto out;
ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
out:
mutex_unlock(&rdev->mutex);
return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_current_limit);
static int _regulator_get_current_limit(struct regulator_dev *rdev)
{
int ret;
mutex_lock(&rdev->mutex);
/* sanity check */
if (!rdev->desc->ops->get_current_limit) {
ret = -EINVAL;
goto out;
}
ret = rdev->desc->ops->get_current_limit(rdev);
out:
mutex_unlock(&rdev->mutex);
return ret;
}
/**
* regulator_get_current_limit - get regulator output current
* @regulator: regulator source
*
* This returns the current supplied by the specified current sink in uA.
*
* NOTE: If the regulator is disabled it will return the current value. This
* function should not be used to determine regulator state.
*/
int regulator_get_current_limit(struct regulator *regulator)
{
return _regulator_get_current_limit(regulator->rdev);
}
EXPORT_SYMBOL_GPL(regulator_get_current_limit);
/**
* regulator_set_mode - set regulator operating mode
* @regulator: regulator source
* @mode: operating mode - one of the REGULATOR_MODE constants
*
* Set regulator operating mode to increase regulator efficiency or improve
* regulation performance.
*
* NOTE: Regulator system constraints must be set for this regulator before
* calling this function otherwise this call will fail.
*/
int regulator_set_mode(struct regulator *regulator, unsigned int mode)
{
struct regulator_dev *rdev = regulator->rdev;
int ret;
mutex_lock(&rdev->mutex);
/* sanity check */
if (!rdev->desc->ops->set_mode) {
ret = -EINVAL;
goto out;
}
/* constraints check */
ret = regulator_check_mode(rdev, mode);
if (ret < 0)
goto out;
ret = rdev->desc->ops->set_mode(rdev, mode);
out:
mutex_unlock(&rdev->mutex);
return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_mode);
static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
{
int ret;
mutex_lock(&rdev->mutex);
/* sanity check */
if (!rdev->desc->ops->get_mode) {
ret = -EINVAL;
goto out;
}
ret = rdev->desc->ops->get_mode(rdev);
out:
mutex_unlock(&rdev->mutex);
return ret;
}
/**
* regulator_get_mode - get regulator operating mode
* @regulator: regulator source
*
* Get the current regulator operating mode.
*/
unsigned int regulator_get_mode(struct regulator *regulator)
{
return _regulator_get_mode(regulator->rdev);
}
EXPORT_SYMBOL_GPL(regulator_get_mode);
/**
* regulator_set_optimum_mode - set regulator optimum operating mode
* @regulator: regulator source
* @uA_load: load current
*
* Notifies the regulator core of a new device load. This is then used by
* DRMS (if enabled by constraints) to set the most efficient regulator
* operating mode for the new regulator loading.
*
* Consumer devices notify their supply regulator of the maximum power
* they will require (can be taken from device datasheet in the power
* consumption tables) when they change operational status and hence power
* state. Examples of operational state changes that can affect power
* consumption are :-
*
* o Device is opened / closed.
* o Device I/O is about to begin or has just finished.
* o Device is idling in between work.
*
* This information is also exported via sysfs to userspace.
*
* DRMS will sum the total requested load on the regulator and change
* to the most efficient operating mode if platform constraints allow.
*
* Returns the new regulator mode or error.
*/
int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
{
struct regulator_dev *rdev = regulator->rdev;
struct regulator *consumer;
int ret, output_uV, input_uV, total_uA_load = 0;
unsigned int mode;
mutex_lock(&rdev->mutex);
regulator->uA_load = uA_load;
ret = regulator_check_drms(rdev);
if (ret < 0)
goto out;
ret = -EINVAL;
/* sanity check */
if (!rdev->desc->ops->get_optimum_mode)
goto out;
/* get output voltage */
output_uV = rdev->desc->ops->get_voltage(rdev);
if (output_uV <= 0) {
printk(KERN_ERR "%s: invalid output voltage found for %s\n",
__func__, rdev->desc->name);
goto out;
}
/* get input voltage */
if (rdev->supply && rdev->supply->desc->ops->get_voltage)
input_uV = rdev->supply->desc->ops->get_voltage(rdev->supply);
else
input_uV = rdev->constraints->input_uV;
if (input_uV <= 0) {
printk(KERN_ERR "%s: invalid input voltage found for %s\n",
__func__, rdev->desc->name);
goto out;
}
/* calc total requested load for this regulator */
list_for_each_entry(consumer, &rdev->consumer_list, list)
total_uA_load += consumer->uA_load;
mode = rdev->desc->ops->get_optimum_mode(rdev,
input_uV, output_uV,
total_uA_load);
ret = regulator_check_mode(rdev, mode);
if (ret < 0) {
printk(KERN_ERR "%s: failed to get optimum mode for %s @"
" %d uA %d -> %d uV\n", __func__, rdev->desc->name,
total_uA_load, input_uV, output_uV);
goto out;
}
ret = rdev->desc->ops->set_mode(rdev, mode);
if (ret < 0) {
printk(KERN_ERR "%s: failed to set optimum mode %x for %s\n",
__func__, mode, rdev->desc->name);
goto out;
}
ret = mode;
out:
mutex_unlock(&rdev->mutex);
return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
/**
* regulator_register_notifier - register regulator event notifier
* @regulator: regulator source
* @nb: notifier block
*
* Register notifier block to receive regulator events.
*/
int regulator_register_notifier(struct regulator *regulator,
struct notifier_block *nb)
{
return blocking_notifier_chain_register(&regulator->rdev->notifier,
nb);
}
EXPORT_SYMBOL_GPL(regulator_register_notifier);
/**
* regulator_unregister_notifier - unregister regulator event notifier
* @regulator: regulator source
* @nb: notifier block
*
* Unregister regulator event notifier block.
*/
int regulator_unregister_notifier(struct regulator *regulator,
struct notifier_block *nb)
{
return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
nb);
}
EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
/* notify regulator consumers and downstream regulator consumers.
* Note mutex must be held by caller.
*/
static void _notifier_call_chain(struct regulator_dev *rdev,
unsigned long event, void *data)
{
struct regulator_dev *_rdev;
/* call rdev chain first */
blocking_notifier_call_chain(&rdev->notifier, event, NULL);
/* now notify regulator we supply */
list_for_each_entry(_rdev, &rdev->supply_list, slist) {
mutex_lock(&_rdev->mutex);
_notifier_call_chain(_rdev, event, data);
mutex_unlock(&_rdev->mutex);
}
}
/**
* regulator_bulk_get - get multiple regulator consumers
*
* @dev: Device to supply
* @num_consumers: Number of consumers to register
* @consumers: Configuration of consumers; clients are stored here.
*
* @return 0 on success, an errno on failure.
*
* This helper function allows drivers to get several regulator
* consumers in one operation. If any of the regulators cannot be
* acquired then any regulators that were allocated will be freed
* before returning to the caller.
*/
int regulator_bulk_get(struct device *dev, int num_consumers,
struct regulator_bulk_data *consumers)
{
int i;
int ret;
for (i = 0; i < num_consumers; i++)
consumers[i].consumer = NULL;
for (i = 0; i < num_consumers; i++) {
consumers[i].consumer = regulator_get(dev,
consumers[i].supply);
if (IS_ERR(consumers[i].consumer)) {
dev_err(dev, "Failed to get supply '%s'\n",
consumers[i].supply);
ret = PTR_ERR(consumers[i].consumer);
consumers[i].consumer = NULL;
goto err;
}
}
return 0;
err:
for (i = 0; i < num_consumers && consumers[i].consumer; i++)
regulator_put(consumers[i].consumer);
return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_get);
/**
* regulator_bulk_enable - enable multiple regulator consumers
*
* @num_consumers: Number of consumers
* @consumers: Consumer data; clients are stored here.
* @return 0 on success, an errno on failure
*
* This convenience API allows consumers to enable multiple regulator
* clients in a single API call. If any consumers cannot be enabled
* then any others that were enabled will be disabled again prior to
* return.
*/
int regulator_bulk_enable(int num_consumers,
struct regulator_bulk_data *consumers)
{
int i;
int ret;
for (i = 0; i < num_consumers; i++) {
ret = regulator_enable(consumers[i].consumer);
if (ret != 0)
goto err;
}
return 0;
err:
printk(KERN_ERR "Failed to enable %s\n", consumers[i].supply);
for (i = 0; i < num_consumers; i++)
regulator_disable(consumers[i].consumer);
return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_enable);
/**
* regulator_bulk_disable - disable multiple regulator consumers
*
* @num_consumers: Number of consumers
* @consumers: Consumer data; clients are stored here.
* @return 0 on success, an errno on failure
*
* This convenience API allows consumers to disable multiple regulator
* clients in a single API call. If any consumers cannot be enabled
* then any others that were disabled will be disabled again prior to
* return.
*/
int regulator_bulk_disable(int num_consumers,
struct regulator_bulk_data *consumers)
{
int i;
int ret;
for (i = 0; i < num_consumers; i++) {
ret = regulator_disable(consumers[i].consumer);
if (ret != 0)
goto err;
}
return 0;
err:
printk(KERN_ERR "Failed to disable %s\n", consumers[i].supply);
for (i = 0; i < num_consumers; i++)
regulator_enable(consumers[i].consumer);
return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_disable);
/**
* regulator_bulk_free - free multiple regulator consumers
*
* @num_consumers: Number of consumers
* @consumers: Consumer data; clients are stored here.
*
* This convenience API allows consumers to free multiple regulator
* clients in a single API call.
*/
void regulator_bulk_free(int num_consumers,
struct regulator_bulk_data *consumers)
{
int i;
for (i = 0; i < num_consumers; i++) {
regulator_put(consumers[i].consumer);
consumers[i].consumer = NULL;
}
}
EXPORT_SYMBOL_GPL(regulator_bulk_free);
/**
* regulator_notifier_call_chain - call regulator event notifier
* @rdev: regulator source
* @event: notifier block
* @data: callback-specific data.
*
* Called by regulator drivers to notify clients a regulator event has
* occurred. We also notify regulator clients downstream.
* Note lock must be held by caller.
*/
int regulator_notifier_call_chain(struct regulator_dev *rdev,
unsigned long event, void *data)
{
_notifier_call_chain(rdev, event, data);
return NOTIFY_DONE;
}
EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
/**
* regulator_mode_to_status - convert a regulator mode into a status
*
* @mode: Mode to convert
*
* Convert a regulator mode into a status.
*/
int regulator_mode_to_status(unsigned int mode)
{
switch (mode) {
case REGULATOR_MODE_FAST:
return REGULATOR_STATUS_FAST;
case REGULATOR_MODE_NORMAL:
return REGULATOR_STATUS_NORMAL;
case REGULATOR_MODE_IDLE:
return REGULATOR_STATUS_IDLE;
case REGULATOR_STATUS_STANDBY:
return REGULATOR_STATUS_STANDBY;
default:
return 0;
}
}
EXPORT_SYMBOL_GPL(regulator_mode_to_status);
/*
* To avoid cluttering sysfs (and memory) with useless state, only
* create attributes that can be meaningfully displayed.
*/
static int add_regulator_attributes(struct regulator_dev *rdev)
{
struct device *dev = &rdev->dev;
struct regulator_ops *ops = rdev->desc->ops;
int status = 0;
/* some attributes need specific methods to be displayed */
if (ops->get_voltage) {
status = device_create_file(dev, &dev_attr_microvolts);
if (status < 0)
return status;
}
if (ops->get_current_limit) {
status = device_create_file(dev, &dev_attr_microamps);
if (status < 0)
return status;
}
if (ops->get_mode) {
status = device_create_file(dev, &dev_attr_opmode);
if (status < 0)
return status;
}
if (ops->is_enabled) {
status = device_create_file(dev, &dev_attr_state);
if (status < 0)
return status;
}
if (ops->get_status) {
status = device_create_file(dev, &dev_attr_status);
if (status < 0)
return status;
}
/* some attributes are type-specific */
if (rdev->desc->type == REGULATOR_CURRENT) {
status = device_create_file(dev, &dev_attr_requested_microamps);
if (status < 0)
return status;
}
/* all the other attributes exist to support constraints;
* don't show them if there are no constraints, or if the
* relevant supporting methods are missing.
*/
if (!rdev->constraints)
return status;
/* constraints need specific supporting methods */
if (ops->set_voltage) {
status = device_create_file(dev, &dev_attr_min_microvolts);
if (status < 0)
return status;
status = device_create_file(dev, &dev_attr_max_microvolts);
if (status < 0)
return status;
}
if (ops->set_current_limit) {
status = device_create_file(dev, &dev_attr_min_microamps);
if (status < 0)
return status;
status = device_create_file(dev, &dev_attr_max_microamps);
if (status < 0)
return status;
}
/* suspend mode constraints need multiple supporting methods */
if (!(ops->set_suspend_enable && ops->set_suspend_disable))
return status;
status = device_create_file(dev, &dev_attr_suspend_standby_state);
if (status < 0)
return status;
status = device_create_file(dev, &dev_attr_suspend_mem_state);
if (status < 0)
return status;
status = device_create_file(dev, &dev_attr_suspend_disk_state);
if (status < 0)
return status;
if (ops->set_suspend_voltage) {
status = device_create_file(dev,
&dev_attr_suspend_standby_microvolts);
if (status < 0)
return status;
status = device_create_file(dev,
&dev_attr_suspend_mem_microvolts);
if (status < 0)
return status;
status = device_create_file(dev,
&dev_attr_suspend_disk_microvolts);
if (status < 0)
return status;
}
if (ops->set_suspend_mode) {
status = device_create_file(dev,
&dev_attr_suspend_standby_mode);
if (status < 0)
return status;
status = device_create_file(dev,
&dev_attr_suspend_mem_mode);
if (status < 0)
return status;
status = device_create_file(dev,
&dev_attr_suspend_disk_mode);
if (status < 0)
return status;
}
return status;
}
/**
* regulator_register - register regulator
* @regulator_desc: regulator to register
* @dev: struct device for the regulator
* @init_data: platform provided init data, passed through by driver
* @driver_data: private regulator data
*
* Called by regulator drivers to register a regulator.
* Returns 0 on success.
*/
struct regulator_dev *regulator_register(struct regulator_desc *regulator_desc,
struct device *dev, struct regulator_init_data *init_data,
void *driver_data)
{
static atomic_t regulator_no = ATOMIC_INIT(0);
struct regulator_dev *rdev;
int ret, i;
if (regulator_desc == NULL)
return ERR_PTR(-EINVAL);
if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
return ERR_PTR(-EINVAL);
if (regulator_desc->type != REGULATOR_VOLTAGE &&
regulator_desc->type != REGULATOR_CURRENT)
return ERR_PTR(-EINVAL);
if (!init_data)
return ERR_PTR(-EINVAL);
rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
if (rdev == NULL)
return ERR_PTR(-ENOMEM);
mutex_lock(&regulator_list_mutex);
mutex_init(&rdev->mutex);
rdev->reg_data = driver_data;
rdev->owner = regulator_desc->owner;
rdev->desc = regulator_desc;
INIT_LIST_HEAD(&rdev->consumer_list);
INIT_LIST_HEAD(&rdev->supply_list);
INIT_LIST_HEAD(&rdev->list);
INIT_LIST_HEAD(&rdev->slist);
BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
/* preform any regulator specific init */
if (init_data->regulator_init) {
ret = init_data->regulator_init(rdev->reg_data);
if (ret < 0)
goto clean;
}
/* register with sysfs */
rdev->dev.class = &regulator_class;
rdev->dev.parent = dev;
dev_set_name(&rdev->dev, "regulator.%d",
atomic_inc_return(&regulator_no) - 1);
ret = device_register(&rdev->dev);
if (ret != 0)
goto clean;
dev_set_drvdata(&rdev->dev, rdev);
/* set regulator constraints */
ret = set_machine_constraints(rdev, &init_data->constraints);
if (ret < 0)
goto scrub;
/* add attributes supported by this regulator */
ret = add_regulator_attributes(rdev);
if (ret < 0)
goto scrub;
/* set supply regulator if it exists */
if (init_data->supply_regulator_dev) {
ret = set_supply(rdev,
dev_get_drvdata(init_data->supply_regulator_dev));
if (ret < 0)
goto scrub;
}
/* add consumers devices */
for (i = 0; i < init_data->num_consumer_supplies; i++) {
ret = set_consumer_device_supply(rdev,
init_data->consumer_supplies[i].dev,
init_data->consumer_supplies[i].dev_name,
init_data->consumer_supplies[i].supply);
if (ret < 0) {
for (--i; i >= 0; i--)
unset_consumer_device_supply(rdev,
init_data->consumer_supplies[i].dev_name,
init_data->consumer_supplies[i].dev);
goto scrub;
}
}
list_add(&rdev->list, &regulator_list);
out:
mutex_unlock(&regulator_list_mutex);
return rdev;
scrub:
device_unregister(&rdev->dev);
/* device core frees rdev */
rdev = ERR_PTR(ret);
goto out;
clean:
kfree(rdev);
rdev = ERR_PTR(ret);
goto out;
}
EXPORT_SYMBOL_GPL(regulator_register);
/**
* regulator_unregister - unregister regulator
* @rdev: regulator to unregister
*
* Called by regulator drivers to unregister a regulator.
*/
void regulator_unregister(struct regulator_dev *rdev)
{
if (rdev == NULL)
return;
mutex_lock(&regulator_list_mutex);
WARN_ON(rdev->open_count);
unset_regulator_supplies(rdev);
list_del(&rdev->list);
if (rdev->supply)
sysfs_remove_link(&rdev->dev.kobj, "supply");
device_unregister(&rdev->dev);
mutex_unlock(&regulator_list_mutex);
}
EXPORT_SYMBOL_GPL(regulator_unregister);
/**
* regulator_suspend_prepare - prepare regulators for system wide suspend
* @state: system suspend state
*
* Configure each regulator with it's suspend operating parameters for state.
* This will usually be called by machine suspend code prior to supending.
*/
int regulator_suspend_prepare(suspend_state_t state)
{
struct regulator_dev *rdev;
int ret = 0;
/* ON is handled by regulator active state */
if (state == PM_SUSPEND_ON)
return -EINVAL;
mutex_lock(&regulator_list_mutex);
list_for_each_entry(rdev, &regulator_list, list) {
mutex_lock(&rdev->mutex);
ret = suspend_prepare(rdev, state);
mutex_unlock(&rdev->mutex);
if (ret < 0) {
printk(KERN_ERR "%s: failed to prepare %s\n",
__func__, rdev->desc->name);
goto out;
}
}
out:
mutex_unlock(&regulator_list_mutex);
return ret;
}
EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
/**
* regulator_has_full_constraints - the system has fully specified constraints
*
* Calling this function will cause the regulator API to disable all
* regulators which have a zero use count and don't have an always_on
* constraint in a late_initcall.
*
* The intention is that this will become the default behaviour in a
* future kernel release so users are encouraged to use this facility
* now.
*/
void regulator_has_full_constraints(void)
{
has_full_constraints = 1;
}
EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
/**
* rdev_get_drvdata - get rdev regulator driver data
* @rdev: regulator
*
* Get rdev regulator driver private data. This call can be used in the
* regulator driver context.
*/
void *rdev_get_drvdata(struct regulator_dev *rdev)
{
return rdev->reg_data;
}
EXPORT_SYMBOL_GPL(rdev_get_drvdata);
/**
* regulator_get_drvdata - get regulator driver data
* @regulator: regulator
*
* Get regulator driver private data. This call can be used in the consumer
* driver context when non API regulator specific functions need to be called.
*/
void *regulator_get_drvdata(struct regulator *regulator)
{
return regulator->rdev->reg_data;
}
EXPORT_SYMBOL_GPL(regulator_get_drvdata);
/**
* regulator_set_drvdata - set regulator driver data
* @regulator: regulator
* @data: data
*/
void regulator_set_drvdata(struct regulator *regulator, void *data)
{
regulator->rdev->reg_data = data;
}
EXPORT_SYMBOL_GPL(regulator_set_drvdata);
/**
* regulator_get_id - get regulator ID
* @rdev: regulator
*/
int rdev_get_id(struct regulator_dev *rdev)
{
return rdev->desc->id;
}
EXPORT_SYMBOL_GPL(rdev_get_id);
struct device *rdev_get_dev(struct regulator_dev *rdev)
{
return &rdev->dev;
}
EXPORT_SYMBOL_GPL(rdev_get_dev);
void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
{
return reg_init_data->driver_data;
}
EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
static int __init regulator_init(void)
{
printk(KERN_INFO "regulator: core version %s\n", REGULATOR_VERSION);
return class_register(&regulator_class);
}
/* init early to allow our consumers to complete system booting */
core_initcall(regulator_init);
static int __init regulator_init_complete(void)
{
struct regulator_dev *rdev;
struct regulator_ops *ops;
struct regulation_constraints *c;
int enabled, ret;
const char *name;
mutex_lock(&regulator_list_mutex);
/* If we have a full configuration then disable any regulators
* which are not in use or always_on. This will become the
* default behaviour in the future.
*/
list_for_each_entry(rdev, &regulator_list, list) {
ops = rdev->desc->ops;
c = rdev->constraints;
if (c && c->name)
name = c->name;
else if (rdev->desc->name)
name = rdev->desc->name;
else
name = "regulator";
if (!ops->disable || (c && c->always_on))
continue;
mutex_lock(&rdev->mutex);
if (rdev->use_count)
goto unlock;
/* If we can't read the status assume it's on. */
if (ops->is_enabled)
enabled = ops->is_enabled(rdev);
else
enabled = 1;
if (!enabled)
goto unlock;
if (has_full_constraints) {
/* We log since this may kill the system if it
* goes wrong. */
printk(KERN_INFO "%s: disabling %s\n",
__func__, name);
ret = ops->disable(rdev);
if (ret != 0) {
printk(KERN_ERR
"%s: couldn't disable %s: %d\n",
__func__, name, ret);
}
} else {
/* The intention is that in future we will
* assume that full constraints are provided
* so warn even if we aren't going to do
* anything here.
*/
printk(KERN_WARNING
"%s: incomplete constraints, leaving %s on\n",
__func__, name);
}
unlock:
mutex_unlock(&rdev->mutex);
}
mutex_unlock(&regulator_list_mutex);
return 0;
}
late_initcall(regulator_init_complete);